Review Topical Sections

A review of electrohydrodynamic casting energy conversion polymer composites

  • Received: 28 December 2017 Accepted: 07 March 2018 Published: 14 March 2018
  • This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD) casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.

    Citation: Yong X. Gan. A review of electrohydrodynamic casting energy conversion polymer composites[J]. AIMS Materials Science, 2018, 5(2): 206-225. doi: 10.3934/matersci.2018.2.206

    Related Papers:

  • This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD) casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.


    加载中
    [1] Ho WJ, Hsiao KY, Hu CH, et al. (2017) Characterized plasmonic effects of various metallic nanoparticles on silicon solar cells using the same anodic aluminum oxide mask for film deposition. Thin Solid Films 631: 64–71. doi: 10.1016/j.tsf.2017.04.016
    [2] Starowicz Z, Kędra A, Berent K, et al. (2017) Influence of Ag nanoparticles microstructure on their optical and plasmonic properties for photovoltaic applications. Sol Energy 158: 610–616. doi: 10.1016/j.solener.2017.10.020
    [3] Taylor G (1969) Electrically Driven Jets. Proc R Soc Lond A 313: 453–475.
    [4] Melcher JR (1963) Field-Couple Surface Waves: A Comparative Study of Surface Coupled Electrohydrodynamic and Magnetohydrodynamic Systems, Cambridge, Massachusetts: The MIT Press, 1–63.
    [5] VillaVelázquez-Mendoza CI, Mendoza-Barraza SS, Rodriguez JL, et al. (2016) Simultaneous synthesis of β-Si3N4 nanofibers and pea-pods and hand-fan like Si2N2O nanostructures by the CVD method. Mater Lett 175: 139–142. doi: 10.1016/j.matlet.2016.04.028
    [6] Maldonado JR, Peckerar M (2016) X-Ray lithography: Some history, current status and future prospects. Microelectron Eng 161: 87–93. doi: 10.1016/j.mee.2016.03.052
    [7] Stoychev GV, Okhrimenko DV, Appelhans D, et al. (2016) Electron beam-induced formation of crystalline nanoparticle chains from amorphous cadmium hydroxide nanofibers. J Colloid Interf Sci 461: 122–127. doi: 10.1016/j.jcis.2015.09.023
    [8] Subbiah T, Bhat GS, Tock RW, et al. (2005) Electrospinning of nanofibers. J Appl Polym Sci 96: 557–559. doi: 10.1002/app.21481
    [9] Gan YX, Chen AD, Gan RN, et al. (2017) Energy conversion behaviors of antimony telluride particle loaded partially carbonized nanofiber composite mat manufactured by electrohydrodynamic casting. Microelectron Eng 181: 16–21. doi: 10.1016/j.mee.2017.06.009
    [10] Gan YX, Draper CW, Gan JB (2017) Carbon nanofiber network made by electrohydrodynamic casting immiscible fluids. Mater Today Commun 13: 248–254. doi: 10.1016/j.mtcomm.2017.10.008
    [11] Han Y, Wei C, Dong J (2015) Droplet formation and settlement of phase-change ink in high resolution electrohydrodynamic (EHD) 3D printing. J Manuf Process 20: 485–491. doi: 10.1016/j.jmapro.2015.06.019
    [12] Han Y, Dong J (2017) High-resolution electrohydrodynamic (EHD) direct printing of molten metal. Procedia Manuf 10: 845–850. doi: 10.1016/j.promfg.2017.07.070
    [13] Zhang Y, Huang ZM, Xu X, et al. (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16: 3406–3409. doi: 10.1021/cm049580f
    [14] Loscertales IG, Barrero A, Guerrero I, et al. (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295: 1695–1698. doi: 10.1126/science.1067595
    [15] Kurban Z, Lovell A, Bennington SM, et al. (2010) A solution selection model for coaxial electrospinning and its application to nanostructured hydrogen storage materials. J Phys Chem C 114: 21201–21213. doi: 10.1021/jp107871v
    [16] Wang C, Yan KW, Lin YD, et al. (2010) Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release. Macromolecules 43: 6389–6397. doi: 10.1021/ma100423x
    [17] Zhang YZ, Wang X, Feng Y, et al. (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ɛ-caprolactone) nanofibers for sustained release. Biomacromolecules 7: 1049–1057. doi: 10.1021/bm050743i
    [18] Zhang H, Zhao CG, Zhao YH, et al. (2010) Electrospinning of ultrafine core/shell fibers for biomedical applications. Sci China Chem 53: 1246–1254. doi: 10.1007/s11426-010-3180-3
    [19] Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: Nano channel and capsule by coaxial electrospinning, In: Kumar A, Nanofibers, Croatia: InTech, 419–438.
    [20] Chan KHK, Kotaki M (2009) Fabrication and morphology control of poly(methyl methacrylate) hollow structures via coaxial electrospinning. J Appl Polym Sci 111: 408–416. doi: 10.1002/app.28994
    [21] Chen H, Wang N, Di J, et al. (2010) Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26: 11291–11296. doi: 10.1021/la100611f
    [22] Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicron diameter fibers by two-fluids electrospinning. Adv Mater 16: 1562–1566. doi: 10.1002/adma.200306644
    [23] Gan YX, Chen AD, Gan JB, et al. (2018) Electrohydrodynamic casting bismuth telluride micro particle loaded carbon nanofiber composite material with multiple sensing functions. J Micro Nano-Manuf 6: 011005.
    [24] Sun B, Long YZ, Zhang HD, et al. (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39: 862–890. doi: 10.1016/j.progpolymsci.2013.06.002
    [25] Zhang Y, Tse C, Rouholamin D, et al. (2012) Scaffolds for tissue engineering produced by inkjet printing. Cent Eur J Eng 2: 325–335.
    [26] Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Progr 19: 243–253. doi: 10.1021/bp020143k
    [27] Lee M, Kim HY (2014) Toward nanoscale three-dimensional printing: Nanowalls built of electrospun nanofibers. Langmuir 30: 1210–1214. doi: 10.1021/la404704z
    [28] Mandrycky C, Wang Z, Kim K, et al. (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34: 422–434. doi: 10.1016/j.biotechadv.2015.12.011
    [29] Huang C, Jian G, DeLisio JB, et al. (2015) Electrospray deposition of energetic polymer nanocomposites with high mass particle loadings: A prelude to 3D printing of rocket motors. Adv Eng Mater 17: 95–101. doi: 10.1002/adem.201400151
    [30] Liu Y, Pollaor S, Wu Y (2015) Electrohydrodynamic processing of p-type transparent conducting oxides. J Nanomater 2015: 423157.
    [31] Sun J, Zhou W, Huang D, et al. (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Tech 8: 1605–1615. doi: 10.1007/s11947-015-1528-6
    [32] Mironov V, Trusk T, Kasyanov V, et al. (2009) Biofabrication: A 21st century manufacturing paradigm. Biofabrication 1: 022001. doi: 10.1088/1758-5082/1/2/022001
    [33] Visser J, Peters B, Burger TJ, et al. (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5: 035007. doi: 10.1088/1758-5082/5/3/035007
    [34] Mittal A, Negi P, Garkhal K, et al. (2010) Integration of porosity and bio-functionalization to form a 3D scaffold: Cell culture studies and in Vitro degradation. Biomed Mater 5: 045001. doi: 10.1088/1748-6041/5/4/045001
    [35] Ozbolat I, Yu Y (2013) Bioprinting towards organ fabrication: Challenges and future trends. IEEE T Biomed Eng 60: 691–699. doi: 10.1109/TBME.2013.2243912
    [36] Mironov V, Rels N, Derby B (2006) Bioprinting: A beginning. Tissue Eng 12: 631–634. doi: 10.1089/ten.2006.12.631
    [37] Catros S, Guillemot F, Nandakumar A, et al. (2011) Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng 18: 1–9.
    [38] Vozzi G, Tirella A, Ahluwalia A (2012) Rapid prototyping composite and complex scaffolds with PAM2, In: Liebschner M, Computer-Aided Tissue Engineering. Methods in Molecular Biology (Methods and Protocols), Totowa, NJ: Humana Press, 868: 59–70.
    [39] Shim JH, Yoon MC, Jeong CM, et al. (2014) Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomed Mater 9: 065006. doi: 10.1088/1748-6041/9/6/065006
    [40] Laudenslager MJ, Sigmund WM (2011) Developments in electrohydrodynamic forming: Fabricating nanomaterials from charged liquids via electrospinning and electrospraying. Am Ceram Soc Bull 90: 23–27.
    [41] Martins A, Chung S, Pedro AJ, et al. (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen M 3: 37–42. doi: 10.1002/term.132
    [42] Zhu W, Masood F, O'Brien J, et al. (2015) Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomed-Nanotechnol 11: 693–704. doi: 10.1016/j.nano.2014.12.001
    [43] Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and b-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29: 4065–4073. doi: 10.1016/j.biomaterials.2008.06.022
    [44] Giannitelli SM, Mozetic P, Trombetta M, et al. (2015) Combined additive manufacturing approaches in tissue engineering. Acta Biomater 24: 1–11. doi: 10.1016/j.actbio.2015.06.032
    [45] Xu T, Binder KW, Albanna MZ, et al. (2013) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5: 015001.
    [46] Nam J, Huang Y, Agarwal S, et al. (2007) Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 13: 2249–2257. doi: 10.1089/ten.2006.0306
    [47] Abdelaal OAM, Darwish SMH (2013) Review of rapid prototyping techniques for tissue engineering scaffolds fabrication, In: Öchsner A, da Silva L, Altenbach H, Characterization and Development of Biosystems and Biomaterials. Advanced Structured Materials, Berlin, Heidelberg: Springer, 29: 33–54. doi: 10.1007/978-3-642-31470-4_3
    [48] Zhu W, O'Brien C, O'Brien JR, et al. (2014) 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 9: 859–875. doi: 10.2217/nnm.14.36
    [49] Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32: 1728–1743. doi: 10.1007/s10439-004-7825-2
    [50] Jung JW, Lee H, Hong JM, et al. (2015) A new method of fabricating a blend scaffold using an indirect three dimensional printing technique. Biofabrication 7: 045003. doi: 10.1088/1758-5090/7/4/045003
    [51] Kim JT, Seol SK, Pyo J, et al. (2011) Three-dimensional writing of conducting polymer nanowire arrays by meniscus-guided polymerization. Adv Mater 23: 1968–1970. doi: 10.1002/adma.201004528
    [52] Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng 12: 2249–2257.
    [53] Rosenthal T, Welzmiller S, Neudert L, et al. (2014) Novel superstructure of the rock salt type and element distribution in germanium tin antimony tellurides. J Solid State Chem 219: 108–117. doi: 10.1016/j.jssc.2014.07.014
    [54] Kitagawa H, Takimura K, Ido S, et al. (2017) Thermoelectric properties of crystal-aligned bismuth antimony tellurides prepared by pulse-current sintering under cyclic uniaxial pressure. J Alloy Compd 692: 388–394. doi: 10.1016/j.jallcom.2016.09.054
    [55] Hatsuta N, Takemori D, Takashiri M (2016) Effect of thermal annealing on the structural and thermoelectric properties of electrodeposited antimony telluride thin films. J Alloy Compd 685: 147–152. doi: 10.1016/j.jallcom.2016.05.268
    [56] Sasaki Y, Takashiri M (2016) Effects of Cr interlayer thickness on adhesive, structural, and thermoelectric properties of antimony telluride thin films deposited by radio-frequency magnetron sputtering. Thin Solid Films 619: 195–201. doi: 10.1016/j.tsf.2016.10.069
    [57] Takashiri M, Hamada J (2016) Bismuth antimony telluride thin films with unique crystal orientation by two-step method. J Alloy Compd 683: 276–281. doi: 10.1016/j.jallcom.2016.05.058
    [58] Catrangiu AS, Sin I, Prioteasa P, et al. (2016) Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids. Thin Solid Films 611: 88–100. doi: 10.1016/j.tsf.2016.04.030
    [59] Masayuki K, Takashiri M (2015) Investigation of the effects of compressive and tensile strain on n-type bismuth telluride and p-type antimony telluride nanocrystalline thin films for use in flexible thermoelectric generators. J Alloy Compd 653: 480–485. doi: 10.1016/j.jallcom.2015.09.039
    [60] Catlin GC, Tripathi R, Nunes G, et al. (2017) An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials. J Power Sources 343: 316–321. doi: 10.1016/j.jpowsour.2016.12.092
    [61] Urban P, Schneider MN, Oeckler O (2015) Temperature dependent ordering phenomena in single crystals of germanium antimony tellurides. J Solid State Chem 227: 223–231. doi: 10.1016/j.jssc.2015.04.007
    [62] Hu LP, Zhu TJ, Yue XQ, et al. (2015) Enhanced figure of merit in antimony telluride thermoelectric materials by In–Ag Co-alloying for mid-temperature power generation. Acta Mater 85: 270–278. doi: 10.1016/j.actamat.2014.11.023
    [63] Lee WY, Park NW, Hong JE, et al. (2015) Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film. J Alloy Compd 620: 120–124. doi: 10.1016/j.jallcom.2014.09.053
    [64] Rosalbino F, Carlini R, Zanicchi G, et al. (2013) Microstructural characterization and corrosion behavior of lead, bismuth and antimony tellurides prepared by melting. J Alloy Compd 567: 26–32. doi: 10.1016/j.jallcom.2013.03.071
    [65] Kim DH, Kwon IH, Kim C, et al. (2013) Tellurium-evaporation-annealing for p-type bismuth-antimony-telluride thermoelectric materials. J Alloy Compd 548: 126–132. doi: 10.1016/j.jallcom.2012.08.130
    [66] Bochentyn B, Miruszewski T, Karczewski J, et al. (2016) Thermoelectric properties of bismuth-antimony-telluride alloys obtained by reduction of oxide reagents. Mater Chem Phys 177: 353–359. doi: 10.1016/j.matchemphys.2016.04.039
    [67] Qiu W, Yang S, Zhao X (2011) Effect of hot-press treatment on electrochemically deposited antimony telluride film. Thin Solid Films 519: 6399–6402. doi: 10.1016/j.tsf.2011.04.106
    [68] Takashiri M, Tanaka S, Miyazaki K (2010) Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films. Thin Solid Films 519: 619–624. doi: 10.1016/j.tsf.2010.08.013
    [69] Takashiri M, Tanaka S, Hagino H, et al. (2014) Strain and grain size effects on thermal transport in highly-oriented nanocrystalline bismuth antimony telluride thin films. Int J Heat Mass Tran 76: 376–384. doi: 10.1016/j.ijheatmasstransfer.2014.04.048
    [70] Lim SK, Kim MY, Oh TS (2009) Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications. Thin Solid Films 517: 4199–4203. doi: 10.1016/j.tsf.2009.02.005
    [71] Jung H, Myung NV (2011) Electrodeposition of antimony telluride thin films from acidic nitrate-tartrate baths. Electrochim Acta 56: 5611–5615. doi: 10.1016/j.electacta.2011.04.010
    [72] Fan P, Chen T, Zheng Z, et al. (2013) The influence of Bi doping in the thermoelectric properties of Co-sputtering deposited bismuth antimony telluride thin films. Mater Res Bull 48: 333–336. doi: 10.1016/j.materresbull.2012.10.026
    [73] Lensch-Falk JL, Banga D, Hopkins PE, et al. (2012) Electrodeposition and characterization of nano-crystalline antimony telluride thin films. Thin Solid Films 520: 6109–6117. doi: 10.1016/j.tsf.2012.05.078
    [74] Takashiri M, Tanaka S, Miyazaki K (2013) Growth of single-crystalline bismuth antimony telluride nanoplates on the surface of nanoparticle thin films. J Cryst Growth 372: 199–204. doi: 10.1016/j.jcrysgro.2013.03.028
    [75] Kim BG, Choi SM, Lee MH, et al. (2015) Facile fabrication of silicon and aluminum oxide nanotubes using antimony telluride nanowires as templates. Ceram Int 41: 12246–12252. doi: 10.1016/j.ceramint.2015.06.047
    [76] Ganguly S, Zhou C, Morelli D, et al. (2011) Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications. J Solid State Chem 184: 3195–3201. doi: 10.1016/j.jssc.2011.09.031
    [77] Li J, Chen Z, Wang X, et al. (1997) A novel two-dimensional mercury antimony telluride: Low temperature synthesis and characterization of RbHgSbTe3. J Alloy Compd 262–263: 28–33.
    [78] Baba S, Sato H, Huang L, et al. (2014) Formation and characterization of polyethylene terephthalate-based (Bi0.15Sb0.85)2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition. J Alloy Compd 589: 56–60.
    [79] Bark H, Kim JS, Kim H, et al. (2013) Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix. Curr Appl Phys 13: S111–S114. doi: 10.1016/j.cap.2013.01.019
    [80] Zhang HT, Luo XG, Wang CH, et al. (2004) Characterization of nanocrystalline bismuth telluride (Bi2Te3) synthesized by a hydrothermal method. J Cryst Growth 265: 558–562. doi: 10.1016/j.jcrysgro.2004.02.097
    [81] Sun Y, Cheng H, Gao S, et al. (2012) Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J Am Chem Soc 134: 20294–20297. doi: 10.1021/ja3102049
    [82] Prieto AL, Sander MS, Martin-Gonzalez MS, et al. (2001) Electrodeposition of ordered Bi2Te3 nanowire arrays. J Am Chem Soc 123: 7160–7161. doi: 10.1021/ja015989j
    [83] Borca-Tasciuc DA, Chen G, Prieto A, et al. (2004) Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina. Appl Phys Lett 85: 6001–6003. doi: 10.1063/1.1834991
    [84] Pang H, Piao YY, Tan YQ, et al. (2013) Thermoelectric behavior of segregated conductive polymer composites with hybrid fillers of carbon nanotube and bismuth telluride. Mater Lett 107: 150–153. doi: 10.1016/j.matlet.2013.06.008
    [85] Chatterjee K, Suresh A, Ganguly S, et al. (2009) Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite-A novel thermoelectric material. Mater Charact 60: 1597–1601. doi: 10.1016/j.matchar.2009.09.012
    [86] Li JF, Liu J (2006) Effect of nano-SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals. Phys Status Solidi A 203: 3768–3773. doi: 10.1002/pssa.200622011
    [87] Kim KT, Choi SY, Shin EH, et al. (2013) The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite. Carbon 52: 541–549. doi: 10.1016/j.carbon.2012.10.008
    [88] Lu W, Ding Y, Chen Y, et al. (2005) Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. J Am Chem Soc 127: 10112–10116. doi: 10.1021/ja052286j
    [89] Sumithra S, Takas NJ, Misra DK, et al. (2011) Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions. Adv Energy Mater 1: 1–7.
    [90] Zhao XB, Ji XH, Zhang YH, et al. (2005) Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett 86: 062111. doi: 10.1063/1.1863440
    [91] Chen CL, Chen YY, Lin SJ, et al. (2010) Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. J Phys Chem C 114: 3385–3389. doi: 10.1021/jp909926z
    [92] Toprak M, Zhang Y, Muhammed M (2003) Chemical alloying and characterization of nanocrystalline bismuth telluride. Mater Lett 57: 3976–3982. doi: 10.1016/S0167-577X(03)00250-7
    [93] Kim KT, Koo HY, Lee GG, et al. (2012) Synthesis of alumina nanoparticle-embedded-bismuth telluride matrix thermoelectric composite powders. Mater Lett 82: 141–144. doi: 10.1016/j.matlet.2012.05.053
    [94] Chávez-Ángel E, Reparaz JS, Gomis-Bresco J, et al. (2014) Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry. APL Mater 2: 012113. doi: 10.1063/1.4861796
    [95] Liang B, Song Z, Wang M, et al. (2013) Fabrication and thermoelectric properties of graphene/Bi2Te3 composite materials. J Nanomater 2013: 210767.
    [96] Goldsmid HJ (2014) Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 2014: 2577–2592.
    [97] Keshavarz MK, Vasilevskiy D, Masut RA, et al. (2013) p-Type bismuth telluride-based composite thermoelectric materials produced by mechanical alloying and hot extrusion. J Electron Mater 42: 1429–1435. doi: 10.1007/s11664-012-2284-2
    [98] Chang HC, Chen CH (2011) Self-assembled bismuth telluride films with well-aligned zero-to three-dimensional nanoblocks for thermoelectric applications. CrystEngComm 13: 5956–5962.
    [99] Deng Y, Nan CW, Wei GD, et al. (2003) Organic-assisted growth of bismuth telluride nanocrystals. Chem Phys Lett 374: 410–415. doi: 10.1016/S0009-2614(03)00783-8
    [100] Liao CN, She TH (2007) Preparation of bismuth telluride thin films through interfacial reaction. Thin Solid Films 515: 8059–8064. doi: 10.1016/j.tsf.2007.03.086
    [101] Sokolova OB, Skipidarova SY, Duvankova NI, et al. (2004) Chemical reactions on the Bi2Te3-Bi2Se3 section in the process of crystal growth. J Cryst Growth 262: 442–448. doi: 10.1016/j.jcrysgro.2003.10.073
    [102] Kim KT, Ha GH (2013) Fabrication and enhanced thermoelectric properties of alumina nanoparticle-dispersed Bi0.5Sb1.5Te3 matrix composites. J Nanomater 2013: 821657.
    [103] Gothard N, Wilks G, Tritt TM, et al. (2010) Effect of processing route on the microstructure and thermoelectric properties of bismuth telluride-based alloys. J Electron Mater 39: 1909–1913. doi: 10.1007/s11664-009-1051-5
    [104] Thiebaud L, Legeai S, Ghanbaja J, et al. (2018) Synthesis of Te-Bi core-shell nanowires by two-step electrodeposition in ionic liquids. Electrochem Commun 86: 30–33. doi: 10.1016/j.elecom.2017.11.010
    [105] Kim J, Lee JY, Lim JH, et al. (2016) Optimization of thermoelectric properties of p-type AgSbTe2 thin films via electrochemical synthesis. Electrochim Acta 196: 579–586. doi: 10.1016/j.electacta.2016.02.206
    [106] Suzuki M, Tsuchiya T, Akedo J (2017) Effect of starting powder morphology on film texture for bismuth layer-structured ferroelectrics prepared by aerosol deposition method. Jpn J Appl Phys 56: 06GH02.
    [107] Chu F, Zhang Q, Zhou Z, et al. (2018) Enhanced thermoelectric and mechanical properties of Na-doped polycrystalline SnSe thermoelectric materials via CNTs dispersion. J Alloy Compd 741: 756–764. doi: 10.1016/j.jallcom.2018.01.178
    [108] Chung DDL (2017) Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites. Mater Sci Eng R 113: 1–29. doi: 10.1016/j.mser.2017.01.002
    [109] Mahmoud L, Alhwarai M, Samad YA, et al. (2015) Characterization of a graphene-based thermoelectric generator using a cost-effective fabrication process. Energy Procedia 75: 615–620. doi: 10.1016/j.egypro.2015.07.466
    [110] Lee S, Kim J, Ku BC, et al. (2012) Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv Chem Eng Sci 2: 275–282. doi: 10.4236/aces.2012.22032
    [111] Saha B, Schatz GC (2012) Carbonization in polyacrylonitrile (PAN) based carbon fibers studied by ReaxFF molecular dynamics simulations. J Phys Chem B 116: 4684–4692. doi: 10.1021/jp300581b
    [112] Ma Q, Gao A, Tong Y, et al. (2016) The densification mechanism of polyacrylonitrile carbon fibers during carbonization. New Carbon Mater 31: 550–554. doi: 10.1016/S1872-5805(16)60031-8
    [113] Hameed N, Sharp J, Nunna S, et al. (2016) Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization. Polym Degrad Stabil 128: 39–45. doi: 10.1016/j.polymdegradstab.2016.02.029
    [114] Liu J, Wang PH, Li RY (1994) Continuous carbonization of polyacrylonitrile-based oxidized fibers: Aspects on mechanical properties and morphological structure. J Appl Polym Sci 52: 945–950. doi: 10.1002/app.1994.070520712
    [115] Wang H, Zhang X, Zhang Y, et al. (2016) Study of carbonization behavior of polyacrylonitrile/tin salt as anode material for lithium-ion batteries. J Appl Polym Sci 2016: 43914.
    [116] Sun J, Wu G, Wang Q (2005) The effects of carbonization temperature on the properties and structure of PAN-based activated carbon hollow fiber. J Appl Polym Sci 97: 2155–2160. doi: 10.1002/app.21955
    [117] Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stabil 92: 1421–1432. doi: 10.1016/j.polymdegradstab.2007.03.023
    [118] Zhao LR, Jang BZ, Zhou JN (1998) Effect of polymeric precursors on properties of semiconducting carbon/carbon composites. J Mater Sci 33: 1809–1817. doi: 10.1023/A:1004392919018
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5504) PDF downloads(1029) Cited by(3)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog