Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Characterization of speckle noise in three dimensional ultrasound data of material components

1 University of Applied Sciences, Saarland, htw saar, Goebenstrasse 40, 66117 Saarbuecken,Germany
2 Vibrations and Acoustic Laboratory, INSA-Lyon, 25 bis avenue Jean Capelle F-69621 VilleurbanneCedex, France

Ultrasound waves are preferably used as means to provide details about the inner structure of materials, thus providing a way to non-destructively evaluate the quality of produced components. Nevertheless, ultrasonic data are strongly affected by a multiplicative type of noise referred to as speckle noise. Within this paper, the modeling of the intensity distribution within ultrasound images and volumetric data is addressed through parametric approach modeling. The proposed model was compared with the state of the art models through measuring the corresponding goodness of fit of each model to the actual data distribution. The data were acquired on aluminum, ceramic and composite structures.
  Article Metrics

Keywords full matrix capture; sampling phased array; composite materials; aluminum; ceramic; speckle noise

Citation: Ahmad Osman, Valerie Kaftandjian. Characterization of speckle noise in three dimensional ultrasound data of material components. AIMS Materials Science, 2017, 4(4): 920-938. doi: 10.3934/matersci.2017.4.920


  • 1. Eltoft T (2006) Modeling the Amplitude Statistics of Ultrasound Images. IEEE T Med Imaging 25: 229–240.    
  • 2. Duan F, Xie M, Wang X, et al. (2012) Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging. Cardiovasc Ultrasoun 10.
  • 3. Crosby J, Amundsen BH, Hergum T, et al. (2009) 3-D Speckle Tracking for Assessment of Regional Left Ventricular Function. Ultrasound Med Biol 35: 458–471.    
  • 4. Noble JA (2009) Ultrasound image segmentation and tissue characterization. P I Mech Eng H 224: 307–316.
  • 5. Noble JA, Navab N, Becher H (2011) Ultrasonic image analysis and image-guided interventions. Interface Focus 1: 673–685.    
  • 6. Duda RO, Hart OE, Stork DG (2000) Pattern Classification (2nd edition), New York: Springer-Verlag.
  • 7. Yamaguchi T, Zenbutsu S, Igarashi Y, et al. (2010) Echo envelope analysis method for quantifying heterogeneity of scatterer distribution for tissue characterization of liver fibrosis. 2010 IEEE International Ultrasonics Symposium, 1412–1415.
  • 8. Shankar PM (2001) Ultrasonic tissue characterization using a generalized Nakagami model. IEEET Ultrason Ferr 48: 1716–1720.    
  • 9. Liu B, Cheng HD, Huang J, et al. (2010) Probability density difference-based active contour for ultrasound image segmentation. Pattern Recogn 43: 2028–2042.    
  • 10. Tao Z, Tagare HD, Beaty JD (2006) Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE T Med Imaging 25: 1483–1492.    
  • 11. Burckhardt CB (1978) Speckle in ultrasound B-mode scans. IEEE T Sonics Ultrason 25: 1–6.    
  • 12. Moser G, Zerubia J, Serpico SB (2006) SAR amplitude probability density function estimation based on a generalized Gaussian model. IEEE T Image Process 15: 1429–1442.    
  • 13. Shankar PM (2000) A general statistical model for ultrasonic scattering from tissue. IEEE T Ultrason Ferr 47: 727–736.    
  • 14. Oosterveld BJ, Thijssen JM, Verhoef WA (1985) Texture of B-mode echograms: 3-D simulations and experiments of the effects of diffraction and scatterer density. Ultrasonic Imaging 7: 142–160.    
  • 15. Oliver CJ, Quegan S (1998) Understanding Synthetic Aperture Radar Images, Boston, USA: Artech House.
  • 16. Goodman JW (1976) Some fundamental properties of speckle. J Opt Soc Am : 66: 1145–1150.    
  • 17. Kuruoglu EE, Zerubia J (2004) Modeling SAR images with a generalization of the Rayleigh distribution. IEEE T Image Process 13: 527–533.    
  • 18. Dutt V, Greenleaf J (1996) Statistics of Log-Compressed Envelope. J Acoust Soc Am 99: 3817–3825.
  • 19. Papoulis A (1991) Probability, Random Variables, and Stochastic Processed (3rd), New York, USA: MeGraw Hill.
  • 20. Shankar PM, Dumane VA, George T (1993) Classification of breast masses in ultrasonic B scans using Nakagami and K distributions. Phys Med Biol 48: 2229–2240.
  • 21. Goodman JW (1975) Laser Speckle and Related Phenomenon, New York: Springer-Verlag.
  • 22. Noble JA, Boukerroui D (2006) Ultrasound Image Segmentation: A Survey. IEEE T Med Imaging 25: 987–1010.    
  • 23. Thijssen JM (2003) Ultrasonic speckle formation, analysis and processing applied to tissue characterization. Pattern Recogn Lett 24: 659–675.    
  • 24. Nicholas D (1982) Evaluation of backscattering coeffcients for excised tissues: Results, interpretation and associated measurements. Ultrasound Med Biol 8: 17–28.    
  • 25. Jakeman E, Tough RJA (1987) Generalized K distribution: A statistical model for weak scattering. J Opt Soc Am 4: 1764–1772.    
  • 26. Weng L, Reid J, Shankar PM, et al. (1991) Ultrasound speckle analysis based on K-distribution. J Acoust Soc Am 89: 2992–2995.    
  • 27. Dutt V, Greenleaf JF (1994) Ultrasound echo envelope analysis using homodyned K distribution signal model. Ultrason Imaging 16: 265–287.    
  • 28. Eltoft T (2003) A new model for the amplitude statistics of SAR imagery. 2003 IEEE International Geoscience and Remote Sensing Symposium, 3: 1993–1995.
  • 29. Anastassopoulos V, Lampropoulos GA, Drosopoulos A, et al. (1999) High resolution radar clutter statistics. IEEE T Aero Elec Sys 35: 43–60.    
  • 30. Stacy EW (1962) A generalization of the Gamma distribution. Ann Math Statist 33: 1187–1192.    
  • 31. Stacy EW, Mihram GA (1965) Parameter estimation for a generalized gamma distribution. Technometrics 7: 349–358.    
  • 32. Pierce RD (1996) RCS characterization using the Alpha-Stable distribution. Proceedings of the 1996 IEEE National Radar Conference.
  • 33. Kuruoglu EE (2001) Density parameter estimation of skewed alpha-stable distributions. IEEE T Signal Proces 49: 2192–2201.    
  • 34. Kuruoglu EE, Zerubia J (2003) Skewed Alpha-stable distributions for modeling textures. Pattern Recogn Lett 24: 339–348.    
  • 35. Kappor R (1999) UWB radar detection of targets in foliage using alpha-stable clutter models. IEEE T Aero Elec Sys 35: 819–833.    
  • 36. Banerjee A, Burlina P, Chellappa R (1999) Adaptive target detection in foliage-penetrating SAR images using Alpha-Stable models. IEEE T Image Process 8: 1823–1831.    
  • 37. Vegas-Sanchez-Ferrero G, Martín-Martinéz D, Aja-Fernández S, et al. (2010) On the influence of interpolation on probabilistic models for ultrasound images. 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
  • 38. Ayed IB, Mitchie A, Belhadj Z (2005) Multiregion level-set partitioning of synthetic aperture radar images. IEEE T Pattern Anal 27: 793–800.    
  • 39. Oliver CJ (1993) Optimum texture estimators for SAR clutter. J Phys D Appl Phys 26: 1824–1835.    
  • 40. Tison C, Nicolas JM, Tupin F, et al. (2004) New statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE T Geosci Remote 42: 2046–2057.    
  • 41. Szajnowski W (1977) Estimator of log-normal distribution parameters. IEEE T Aero Elec Sys 13: 533–536.
  • 42. George SF (1968) The Detection of Non fluctuating Targets in Log-Normal Clutter. NRL Report 6796; Naval Research Laboratory, Washington, DC, USA.
  • 43. Zimmer Y, Tepper R, Akselrod S (2000) A lognormal approximation for the gray level statistics in ultrasound images. Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4: 2656–2661.
  • 44. Xiao G, Brady M, Noble JA, et al. (2002) Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE T Med Imaging 21: 48–57.    
  • 45. D'Agostino RB, Stephens MA (1986) Goodness-of-Fit Techniques, New York: Marcel Dekker.
  • 46. Michailovich O, Adam D (2003) Robust Estimation of Ultrasound Pulses Using Outlier-Resistant De-Noising. IEEE T Med Imaging 22: 368–392.    
  • 47. Li HC, Hong W, Wu YR, et al. (2011) On the Empirical-Statistical Modeling of SAR Images With Generalized Gamma Distribution. IEEE J-STSP 5: 386–397.
  • 48. Tison C, Nicolas JM, Tupin F (2003) Accuracy of fisher distributions and log-moment estimation to describe histograms of high-resolution SAR images over urban areas. 2003 IEEE International Geoscience and Remote Sensing Symposium.
  • 49. Serpico SB, Bruzzone L, Roli F (1996) An experimental comparison of neural and statistical nonparametric algorithms for supervised classification of remote sensing images. Pattern Recogn Lett 17: 1331–1341.    
  • 50. Oliver CJ, McConnell I, White RG (1996) Optimum Edge Detection in SAR. IEE Proceedings Radar, Sonar and Navigation, 143: 31–40.    
  • 51. Germain O, Réfrégier P (2001) Edge Location in SAR Images: Performance of the Likehood Ratio Filter and Accuracy Improvement with an Active Contour Approach. IEEE T Image Process 10: 72–77.    
  • 52. Galland F, Bertaux N, Réfrégier P (2003) Minimum Description Length Synthetic Aperture Radar Image Segmentation. IEEE T Image Process 12: 995–1006.    
  • 53. Slabaugh G, Gozde U, Rang T, et al. (2006) Ultrasound-Specific-Segmentation via Decorrelation and Statistical Region-Based Active Contours. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1: 45–53.
  • 54. Bulavinov A, Pinchuk R, Pudovikov S, et al. (2011) Ultrasonic Sampling Phased Array Testing as a Replacement for X-ray Testing of Weld Joints in Ship Construction. Proceedings of the 9th International Navigational Symposium on Marine Navigation and Safety of Sea Transportation, Gdynia, Poland.
  • 55. Bulavinov A (2005) Der getaktete Gruppenstrahler [PhD's Thesis]. Universität des Saarlandes.
  • 56. Doctor SR, Busse LJ, Collins HD (1985) The SAFT-UT Technology Evolution, United States: American Society of Metals.
  • 57. Kokkinakis K, Nandi AK (2006) Generalized gamma density-based score functions for fast and flexible ICA. Signal Process 87: 1156–1162.
  • 58. Krylov V, Moser G, Serpico SB, et al. (2011) On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation. [Research Report] RR-7666, INRIA.
  • 59. MathWave Technologies, EasyFit 5.5. Available from: http://www.mathwave.com/help/easyfit/index.html.
  • 60. Raju BI, Srinivasan MA (2002) Statistics of Envelope of High-Frequency Ultrasonic Backscatter from Human Skin In Vivo. IEEE T Ultrason Ferr 49: 871–882.    
  • 61. Nillesen MM, Lopata RGP, Gerrits IH, et al. (2008) Modeling Envelope Statistics of Blood and Myocardium for Segmentation of Echocardiographic Images. Ultrasound Med Biol 34: 674–680.    


Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Ahmad Osman, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved