Research article

Effect of the supersaturation on the precipitation kinetics of the Guinier-Preston zones in Al-rich Ag alloys

  • Received: 12 October 2016 Accepted: 04 January 2017 Published: 13 January 2017
  • The precipitation kinetics of the GP zones in a supersaturated solid solution depends on the level of its supersaturation which induces a driving force. The magnitude of this driving force increases with the increasing of the undercooling and the increasing of the solute supersaturation. At a given temperature, the increasing of the supersaturation accelerates the precipitation of the GP zones. In an Alxat.%Ag alloy, the transformation kinetics depends on the contribution of the driving force and on that of the thermal activation which is preponderant.

    Citation: Sabah Senouci, Azzeddine Abderrahmane Raho. Effect of the supersaturation on the precipitation kinetics of the Guinier-Preston zones in Al-rich Ag alloys[J]. AIMS Materials Science, 2017, 4(1): 137-146. doi: 10.3934/matersci.2017.1.137

    Related Papers:

  • The precipitation kinetics of the GP zones in a supersaturated solid solution depends on the level of its supersaturation which induces a driving force. The magnitude of this driving force increases with the increasing of the undercooling and the increasing of the solute supersaturation. At a given temperature, the increasing of the supersaturation accelerates the precipitation of the GP zones. In an Alxat.%Ag alloy, the transformation kinetics depends on the contribution of the driving force and on that of the thermal activation which is preponderant.


    加载中
    [1] Predel B, Gust W (1972) Diskontinuierliche ausscheidungsreaktionen im system Aluminium-Silber und ihre beeinflussung durch dritte legierungspartner. Mater Sci Eng 10: 211–222. doi: 10.1016/0025-5416(72)90091-2
    [2] Inoke K, Kaneko K (2006) Severe local strain and the plastic deformation of Guinier–Preston zones in the Al–Ag system revealed by three-dimensional electron tomography. Acta Mater 54: 2957–2963. doi: 10.1016/j.actamat.2006.02.029
    [3] Abd El-Khalek AM (2008) Transformation characteristics of Al-Ag and Al-Ag-Ti alloys. J Alloy Compd 459: 281–285. doi: 10.1016/j.jallcom.2007.05.055
    [4] Dubey PhA (1991) Shape and internal structure of Guinier-Preston zones in Al-Ag. Acta Metall Mater 39: 1161–1170. doi: 10.1016/0956-7151(91)90204-E
    [5] Schönfeld B, Malik A, Korotz G, et al. (1997) Guinier-Preston zones in Al-rich Al-Cu and Al-Ag single crystals. Physica B 234-236: 983–985. doi: 10.1016/S0921-4526(96)01232-X
    [6] Porter DA, Easterling KE (1992) Originally pub1ished by Chapman & Hall.
    [7] Guo Z, Sha W (2005) Quantification of precipitate fraction in Al-Si-Cu alloys. Mater Sci Eng A 392: 449–452. doi: 10.1016/j.msea.2004.09.020
    [8] Waterloo G, Hansen V, Gjonnes J, et al. (2001) Effect of predeformation and preaging at room temperature in Al-Zn-Mg-(Cu,Zr) alloys. Mater Sci Eng A 303: 226–233. doi: 10.1016/S0921-5093(00)01883-9
    [9] Wang G, Sun Q, Feng L, et al. (2007) Influence of Cu content on ageing behavior of AlSiMgCu cast alloys. Mater Design 28: 1001–1005. doi: 10.1016/j.matdes.2005.11.015
    [10] Novelo-Peralta O, Gonzalez G, Lara Rodriguez GA (2007) Characterization of precipitation in Al–Mg–Cu alloys by X-ray diffraction peak broadening analysis. Mater Charac 59: 773–780.
    [11] Shokuhfar A, Ahmadi S, Arabi H, et al. (2009) Mechanisms of precipitates formation in an Al- Cu- Li- Zr alloy using DSC technique and electrical resistance measurements. Iran J Mater Sci Eng 6: 15–20.
    [12] Anjabin N, Taheri AK (2010) The effect of aging treatment on mechanical properties of AA6082 alloy: modelling experiment. Iran J Mater Sci Eng 7: 14–21.
    [13] Baur R, Gerold V (1962) The existence of a metastable miscibility gap in aluminium-silver alloys. Acta Metall 10: 637–645. doi: 10.1016/0001-6160(62)90053-6
    [14] M. Hillert, Colloq. Int. CNRS Paris 118 (1962) 43.
    [15] Osamura K, Nakamura T, Kobayashi A, et al. (1987) Chemical composition of G.P. zones in Al-Ag alloys. Scripta Metall 21: 255–258.
    [16] Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. T Am I Min Metall Eng 135: 416–458.
    [17] Avrami M (1941) Kinetics of phase change. III: Granulation, Phase Change and Microstructure. J Chem Phys 9: 177–184
    [18] Kolmogorov AN (1937) Statistical theory of crystallization of metals. (in Russian). Izvestia Akademia Nauk SSSR Ser. Mathematica (Izv. Akad. Nauk SSSR, Ser. Mat; Bull. Acad. Sci. USSR. Ser. Math) 1: 355–359.
    [19] Doherty RD (1996) in Physical Metallurgy 4th edition, eds., Cahn R.W. Hassen P., Vol.2, North Holland, Amsterdam.
    [20] Christian JW (1965) The theory of phase transformations in metals and alloys, Part1. Pergamon Press, Oxford.
    [21] Esmaeili S, Lloyd DJ, Poole WJ (2003) A yield strength model for the Al–Mg–Si–Cu alloy AA 6111. Acta Mater 51: 2243–2257. doi: 10.1016/S1359-6454(03)00028-4
    [22] Merlin J, Merle P (1978) Analistic phenomena and structural state in aluminium silver alloys. Scripta Metalurgica 12: 227–232. doi: 10.1016/0036-9748(78)90103-5
    [23] Alexander WB, Slifkin LM (1970) Diffusion of Solutes in Aluminum and Dilute Aluminum Alloys. Phys Rev B 1: 3274. doi: 10.1103/PhysRevB.1.3274
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4647) PDF downloads(1052) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog