Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Influence of fibre volume fraction and temperature on fatigue life of glass fibre reinforced plastics

Institute of Machine Tools and Manufacturing (IWF), ETH Zürich, Zurich, Switzerland

Topical Section: Advanced composites

The influence of fibre volume fraction and temperature on fatigue life of continuous glass fibre reinforced plastics is investigated in detail. The physical causes of the two effects on the slope of the S-N-curve in fibre direction at R = 0.1 are researched and can be explained with help of micrographs. A new phenomenological approach is presented to model both effects in fibre dominated laminates with different stacking sequences using only the static ultimate strength as an input. Static and fatigue tests of different layups and fibre volume fractions are performed at different temperatures to validate the fatigue life predictions. Additionally it is derived that there is an optimal fibre volume fraction regarding a minimum damage sum. This fibre volume fraction is dependent on a given loading spectra and can be calculated using the phenomenological model.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Lässig R, Eisenhut M, Mathias A, et al. (2012) Serienproduktion von hochfesten Faserverbundbauteilen: VDMA Verlag.

2. Schürmann H (2007) Konstruieren mit Faser-Kunststoff-Verbunden. Berlin: Springer. 672 S. p.

3. Vassilopoulos AP, Keller T (2011) Fatigue of fiber-reinforced composites. London: Springer. 238 S. p.

4. Fertig III RS, Kenik DJ (2011) Predicting Composite Fatigue Life Using Constituent-Level Physics. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado.

5. Krüger H (2012) Ein physikalisch basiertes Ermüdungsschädigungsmodell zur Degradationsberechnung von Faser-Kunststoff-Verbunden [Ph.D Thesis]: Leibniz-Universität Hannover.

6. Talreja R, Singh CV (2012) Damage and Failure of Composite Materials. Cambridge: Cambridge University Press, 1-304 p.

7. Salkind MJ (2011) Fatigue of Composites. Composite Materials: Testing and Design (Second Conference). Philadelphia.

8. Kensche CW (1996) Fatigue of materials and components for wind turbine rotor blades. Brussels: German Aerospace Research Establishment.

9. Harris B (2003) Fatigue in composites science and technology of the fatigue response of fibre-reinforced plastics. Boca Raton: Elsevier Science Ltd 742 S. p.

10. Pandita SD, Huysmans G, Wevers M, et al. (2001) Tensile fatigue behaviour of glass plain-weave fabric composites in on- and off-axis directions. Compos Part A-Appl S 32: 1533-1539.    

11. Kawai M, Yajima S, Hachinohe A, et al. (2001) High-temperature off-axis fatigue behaviour of unidirectional carbon-fibre-reinforced composites with different resin matrices. Compos Sci Technol 61: 1285-1302.    

12. Quaresimin M, Susmel L, Talreja R (2010) Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int J Fatigue 32: 2-16.    

13. Kawai M (2004) A phenomenological model for off-axis fatigue behavior of unidirectional polymer matrix composites under different stress ratios. Compos Part A-Appl S 35: 955-963.    

14. Kawai M, Kato K (2006) Effects of R-ratio on the off-axis fatigue behavior of unidirectional hybrid GFRP/Al laminates at room temperature. Int J Fatigue 28: 1226-1238.    

15. Vassilopoulos AP, Manshadi BD, Keller T (2010) Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. Int J Fatigue 32: 659-669.    

16. Flore D, Wegener K (2016) Modelling the mean stress effect on fatigue life of fibre reinforced plastics. Int J Fatigue 82: 689-699.    

17. Van Paepegem W, Degrieck J (2001) Fatigue damage modeling of fibre-reinforced composite materials: review. Appl Mech Rev 54: 279-300.    

18. Kawai M, Teranuma T (2012) A multiaxial fatigue failure criterion based on the principal constant life diagrams for unidirectional carbon/epoxy laminates. Compos Part A 43: 1252-1266.

19. Papanicolaou GC, Zaoutsos SP (2011) Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites. In: Guedes RM, editor. Creep and fatigue in polymer matrix composites. Cambridge: Woodhead Publishing Limited. pp. 572.

20. Dillard DA (1990) Viscoelastic Behavior of Laminated Composite Materials. In: Reifsnider KL, editor. Fatigue of Composite Materials: Elsevier Science Publishers B.V.,.

21. Song J, Wen WD, Cui HT, et al. (2015) Effects of temperature and fiber volume fraction on mechanical properties of T300/QY8911-IV composites. J Reinf Plast Comp 34: 157-172.    

22. Vasiliev VV, Morozov EV (2013) Advanced mechanics of composite materials and structural elements. Amsterdam: Elsevier. 818 S. p.

23. Rejab MRM, Theng CW, Rahman MM, et al. An Investigation into the Effects of Fibre Volume Fraction on GFRP Plate; 2008.

24. Karahan M (2012) The effect of fibre volume fraction on damage initiation and propagation of woven carbon-epoxy multi-layer composites. Text Res J 82: 45-61.    

25. He HW, Gao F (2015) Effect of Fiber Volume Fraction on the Flexural Properties of Unidirectional Carbon Fiber/Epoxy Composites. Int J Polym Anal Ch 20: 180-189.    

26. Allah MHA, Abdin EM, Selmy AI, et al. (1996) Effect of fibre volume fraction on the fatigue behaviour of grp pultruded rod composites. Compos Sci Technol 56: 23-29.    

27. Mini KM, Lakshmanan M, Mathew L, et al. (2012) Effect of fibre volume fraction on fatigue behaviour of glass fibre reinforced composite. Fatigue Fract Eng M 35: 1160-1166.    

28. Samborsky DD, Mandell JF, Cairns DS (2002) Sandia Contractors report-Fatigue of composite materials and substructures for wind turbine blades. Montana State University.

29. Barbero EJ, Trovillion J, Mayugo JA, et al. (2006) Finite element modeling of plain weave fabrics from photomicrograph measurements. Compos Struct 73: 41-52.    

30. Kuhn JL, Charalambides PG (1999) Modeling of plain weave fabric composite geometry. J Compos Mater 33: 188-220.    

31. Sun CT, Vaidya RS (1996) Prediction of composite properties, from a representative volume element. Compos Sci Technol 56: 171-179.    

32. Talreja R, Singh CV (2012) Damage and Failure of Composite Materials. Cambridge Cambridge University Press 1-304 p.

33. Kennedy CR, Bradaigh CMO, Leen SB (2013) A multiaxial fatigue damage model for fibre reinforced polymer composites. Compos Struct 106: 201-210.    

34. Stellbrink K (1996) Micromechanics of Composites: Composite Properties of Fibre and Matrix Constituents. Cincinnati: Hanser.

35. Pristavok J (2006) Mikromechanische Untersuchung an Epoxidharz Glasfaser Verbunden unter zyklischer Beanspruchung [Ph.D. Thesis]: Technische Universität Dresden.

36. Soden PD, Hinton MJ, Kaddour AS (1998) Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos Sci Technol 58: 1011-1022.    

37. Hashin Z (1980) Failure Criteria for Unidirectional Fiber Composites. J Appl Mech-T Asme 47: 329-334.    

38. Miner MA (1945) Cumulative Damage in Fatigue. J Appl Mech-T Asme 12: A159-A164.

39. Van Paepegem W, Degrieck J (2002) Effects of load sequence and block loading on the fatigue response of fiber-reinforced composites. Mech Adv Mater Struc 9: 19-35.    

Copyright Info: © 2016, Dominik Flore, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved