Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Electrical and optical properties of hybrid polymer solar cells incorporating Au and CuO nanoparticles

Materials Science and Engineering Department, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53201, USA

Topical Section: The solar cell

In this study, to enhance the power conversion efficiency (PCE) of the polymer solar cells (PSCs), Gold (Au) and Copper oxide nanoparticles (CuO-NPs) are incorporated into the PEDOT:PSS and P3HT/PCBM active layers respectively. PSCs with a constant CuO-NP content were fabricated with varying amounts of Au NPs. Addition of Au NPs increased the power conversion efficiency by up to 18% compared to a reference cell without Au-NPs. The short circuit current(Jsc) of the cells containing 0.06 mg of Au NPs was measured at 7.491 mA/cm2 compared to 6.484 mA/cm2 in the reference cells with 0.6 mg of CuO nanoparticles; meanwhile, the external quantum efficiency(EQE) increased from 53% to 61%, showing an enhancement of 15.1%. Au-NPs improved the charge collection at the anode, which results in higher short circuit current and fill factor. However, the strong near field surrounding Au-NPs due to localized surface plasmonic resonance (LSPR) effect is not distributed into the active layer. Instead, it is spread horizontally through the PEDOT:PSS layer, thus minimizing the light absorption in the active layer.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Au nanoparticles; CuO nanoparticles; plasmonic effect; UV-visible spectroscopy; PSCs

Citation: Aruna P. Wanninayake, Shengyi Li, Benjamin C. Church, Nidal Abu-Zahra. Electrical and optical properties of hybrid polymer solar cells incorporating Au and CuO nanoparticles. AIMS Materials Science, 2016, 3(1): 35-50. doi: 10.3934/matersci.2016.1.35

References

  • 1. Abu-Zahra N, Algazzar M (2013) Effect of crystallinity on the performance of P3HT/PC70BM/n-dodecylthiol polymer solar cells. J Sol Energy Eng 136(2):021023.
  • 2. Manceau M, Angmo D, Jorgensen M, et al. (2011) ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules. Org Electron 12, 566–574.
  • 3. Michael CH, Ali D (2014) Efficient generation of model bulk heterojunction morphologies for organic photovoltaic device modeling. Appl Phys Rev 2: 014008.    
  • 4. Choulis SA, Kim Y, Nelson J, et al. (2004) High ambipolar and balanced carrier mobility in regioregular poly (3-hexy thiophene). Appl Phys Rev 85: 3890–3892.
  • 5. Ma W, Yang C, Gong X, et al. (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15: 1617–1622.    
  • 6. Liao SH, Jhuo HJ, Yeh PN, et al. (2014) Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep, 4: 6813: 4–10.
  • 7. Raja R, Liu WS, Hsiow CY, et al. (2015) Terthiophene-C60 dyads as donor/acceptor compatibilizers for developing highly stable P3HT/ PCBM bulk heterojunction solar cells. J Mater Chem A 3: 14401–14408.    
  • 8. Jung K, Song HJ, Lee G, et al. (2014) Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano 8: 2590-2601.    
  • 9. Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 3: 9.
  • 10. Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107: 1324–1338.    
  • 11. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9: 205–213.    
  • 12. Schuller JA, Barnard ES, Cai W, et al. (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9: 193–204.    
  • 13. Mahmoud AY, Izquierdo R, Truong VV (2014) Gold nanorods incorporated cathode for better performance of polymer solar cells. J Nanomater (2014): 464160.
  • 14. Brown M, Suteewong T, Kumar R, et al. (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett: 11: 438–445.    
  • 15. Kim SS, Na SI, Jo J, et al. (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93: 073307.    
  • 16. Chou SY, Ding W (2013) Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Opt Express 21: 60–76.    
  • 17. Chen FC, Wu JL, Lee CL, et al. (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution- processable metal nanoparticles. Appl Phys Lett 95: 013305.    
  • 18. Xie F, Choy W, Wang C, et al. (2011) Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl Phys Lett 99: 153304.    
  • 19. Wang DH, Kim DY, Choi KW, et al. (2011) Enhancement of Donor–Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angew Chem Int Ed 50: 5519–5523.    
  • 20. Xie F, Choy W, Zhu X, et al. (2011) Improving polymer solar cell performances by manipulating the self-organization of polymer. Appl Phys Lett 98: 243302.    
  • 21. Baek SW, Noh J, Lee CH, et al. (2013) Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Nat Sci Rep 3: 1726.
  • 22. Chen X, Zuo L, Fu W, et al. (2013) Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Sol Energy Mat Sol 111: 1–8.    
  • 23. Choy W, Sha W, Li X, et al. (2014) Multi-Physical Properties of Plasmonic Organic Solar Cells. Prog Electromag Res 146: 25–46.    
  • 24. Choy W (2014) The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells. Chem Commun 50: 11984–11993.    
  • 25. Gan Q, Bartoli FJ, Kafafi ZH (2013) Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier. Adv Mater 25: 2385–2396.    
  • 26. Wanninayake AP, Gunashekar S, Li S, et al. (2015) CuO Nanoparticles Based Bulk Heterojunction Solar Cells: Investigations on Morphology and Performance. J Sol Energy Eng 137: 031016.    
  • 27. Wright M, Uddin A (2012) Organic-inorganic hybrid solar cells: A comparative review. Sol Energ Mat Sol C 107: 87–111.
  • 28. Bundgaard E, Shaheen SE, Krebs FC, et al. (2007) Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole. Sol Energ Mat Sol C 91: 1631–1637.    
  • 29. Fung D, Qiao LF, Choy W, et al. (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. J Mater Chem 21: 16349–16356.    
  • 30. Hsu MH, Yu P, Huang JH, et al. (2011) Balanced carrier transport in organic solar cells employing embedded indium-tinoxide nanoelectrodes. Appl Phys Lett 98: 073308-1.    
  • 31. Li G, Shrotriya V, Yao Y, et al. (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly„3-hexylthiophen. J Appl Phys 98: 043704.    
  • 32. Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87: 203113.    
  • 33. Krebs FC, Thomann Y, Thomann R, et al. (2008) A simple nanostructured polymer/ZnO hybrid solar cell-preparation and operation in air. Nanotechnology 19: 424013.    
  • 34. Wanninayake A, Gunashekar S, Li S, et al. (2015) Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semicond Sci Technol 30: 064004.    
  • 35. Nguyen BP, Kim T, Park CR (2014) Nanocomposite-based bulk heterojunction hybrid solar cells. J Nanomater (2014): 243041.
  • 36. Eisenhawer B, Sensfuss S, Sivakov V, et al. (2011) Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22: 315401.    

 

This article has been cited by

  • 1. Raid A Ismail, Ryam S Abdul-Hamed, Laser ablation of Au–CuO core–shell nanocomposite in water for optoelectronic devices, Materials Research Express, 2017, 4, 12, 125020, 10.1088/2053-1591/aa9e14
  • 2. Hamed Moeini Alishah, Mehmet Kazici, Fatih Ongül, Sinem Bozar, Macide Cantürk Rodop, Cihangir Kahveci, Melih Besir Arvas, Yücel Sahin, Metin Gencten, Murat Kaleli, Salih Akyürekli, Hüseyin Utku Yilmaz, Ahmet Bugrahan Bayram, Serap Günes, Effect of UV exposure of ITO/PEDOT:PSS substrates on the performance of inverted-type perovskite solar cells, Journal of Materials Science: Materials in Electronics, 2020, 10.1007/s10854-020-03336-4
  • 3. Shadpour Mallakpour, Elham Azadi, Chaudhery Mustansar Hussain, Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies, Coordination Chemistry Reviews, 2020, 419, 213378, 10.1016/j.ccr.2020.213378

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Nidal Abu-Zahra, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved