Mini review Special Issues

Magnéli oxides as promising n-type thermoelectrics

  • Received: 29 July 2014 Accepted: 20 October 2014 Published: 29 October 2014
  • The discovery of a large thermopower in cobalt oxides in 1997 lead to a surge of interest in oxides for thermoelectric application. Whereas conversion efficiencies of p-type oxides can compete with non-oxide materials, n-type oxides show significantly lower thermoelectric performances. In this context so-called Magnéli oxides have recently gained attention as promising n-type thermoelectrics. A combination of crystallographic shear and intrinsic disorder lead to relatively low thermal conductivities and metallic-like electrical conductivities in Magnéli oxides. Current peak-zT values of 0.3 around 1100 K for titanium and tungsten Magnéli oxides are encouraging for future research. Here, we put Magnéli oxides into context of n-type oxide thermoelectrics and give a perspective where future research can bring us.

    Citation: Gregor Kieslich, Wolfgang Tremel. Magnéli oxides as promising n-type thermoelectrics[J]. AIMS Materials Science, 2014, 1(4): 184-190. doi: 10.3934/matersci.2014.4.184

    Related Papers:

    [1] Holly Gaff, Robyn Nadolny . Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM. Mathematical Biosciences and Engineering, 2013, 10(3): 625-635. doi: 10.3934/mbe.2013.10.625
    [2] Ardak Kashkynbayev, Daiana Koptleuova . Global dynamics of tick-borne diseases. Mathematical Biosciences and Engineering, 2020, 17(4): 4064-4079. doi: 10.3934/mbe.2020225
    [3] Kwadwo Antwi-Fordjour, Folashade B. Agusto, Isabella Kemajou-Brown . Modeling the effects of lethal and non-lethal predation on the dynamics of tick-borne disease. Mathematical Biosciences and Engineering, 2025, 22(6): 1428-1463. doi: 10.3934/mbe.2025054
    [4] Yijun Lou, Li Liu, Daozhou Gao . Modeling co-infection of Ixodes tick-borne pathogens. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1301-1316. doi: 10.3934/mbe.2017067
    [5] Shangbing Ai . Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences and Engineering, 2007, 4(4): 567-572. doi: 10.3934/mbe.2007.4.567
    [6] Marco Tosato, Xue Zhang, Jianhong Wu . A patchy model for tick population dynamics with patch-specific developmental delays. Mathematical Biosciences and Engineering, 2022, 19(5): 5329-5360. doi: 10.3934/mbe.2022250
    [7] Maeve L. McCarthy, Dorothy I. Wallace . Optimal control of a tick population with a view to control of Rocky Mountain Spotted Fever. Mathematical Biosciences and Engineering, 2023, 20(10): 18916-18938. doi: 10.3934/mbe.2023837
    [8] Wandi Ding . Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences and Engineering, 2007, 4(4): 633-659. doi: 10.3934/mbe.2007.4.633
    [9] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
    [10] Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou . Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences and Engineering, 2018, 15(4): 1033-1054. doi: 10.3934/mbe.2018046
  • The discovery of a large thermopower in cobalt oxides in 1997 lead to a surge of interest in oxides for thermoelectric application. Whereas conversion efficiencies of p-type oxides can compete with non-oxide materials, n-type oxides show significantly lower thermoelectric performances. In this context so-called Magnéli oxides have recently gained attention as promising n-type thermoelectrics. A combination of crystallographic shear and intrinsic disorder lead to relatively low thermal conductivities and metallic-like electrical conductivities in Magnéli oxides. Current peak-zT values of 0.3 around 1100 K for titanium and tungsten Magnéli oxides are encouraging for future research. Here, we put Magnéli oxides into context of n-type oxide thermoelectrics and give a perspective where future research can bring us.


    [1] Gaultois MW, Sparks TD, Borg CKH, et al. (2013) Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chem Mater 15: 2911-2920.
    [2] He J, Liu Y, Funahashi R (2011) Oxide thermoelectrics: The challenges, progress, and outlook. J Mater Res 15: 1762-1772.
    [3] Nag A, Shubha V (2014) Oxide Thermoelectric Materials: A Structure-Property Relationship. J Elec Mater 4: 962-977.
    [4] Kieslich G, Birkel CS, Douglas JE, et al. (2013) SPS-assisted preparation of the Magnéli phase WO2.90 for thermoelectric applications. J Mater Chem A 42: 13050-13054.
    [5] Veremchuk I, Antonyshyn I, Candolfi C, et al. (2013) Diffusion-Controlled Formation of Ti2O3 during Spark-Plasma Synthesis. Inorg Chem 52:4458-4463. doi: 10.1021/ic3027094
    [6] Biswas K, He J, Blum ID, et al. (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489: 414-418. doi: 10.1038/nature11439
    [7] Mingo N, Hauser D, Kobayashi NP, et al. (2009) “Nanoparticle-in-Alloy” Approach to Efficient Thermoelectrics: Silicides in SiGe. Nano Lett 2: 711-715.
    [8] Toberer ES, May AF, Snyder GJ (2010) Zintl Chemistry for Designing High Efficiency Thermoelectric Materials. Chem Mater 3: 624-634.
    [9] Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 20: R12685.
    [10] Heremans JP, Dresselhaus MS, Bell LE, et al. (2013) When thermoelectrics reached the nanoscale. Nat Nanotechnol 7: 471-473.
    [11] Zebarjadi M, Esfarjani K, Shakouri A, et al. (2009) Effect of Nanoparticles on Electron and Thermoelectric Transport. J Elec Mater 7: 954-959.
    [12] Zhao L, He J, Berardan D, et al. (2014) BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Env Sci 7: 2900-2924. doi: 10.1039/C4EE00997E
    [13] Bérardan D, Guilmeau E, Maignan A, et al. (2008) In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Comm 1-2: 97-101.
    [14] Ohtaki M, Araki K, Yamamoto K (2009) High Thermoelectric Performance of Dually Doped ZnO Ceramics. J Elec Mater 7: 1234-1238.
    [15] Andersson S, Collén B, Kuylenstierna U, et al. (1957) Phase Analysis Studies on the Titanium-Oxygen System. Acta Chem Scand 11: 1641-1652. doi: 10.3891/acta.chem.scand.11-1641
    [16] Gadó P, Magnéli A, Niklasson RJV, et al. (1965) Shear Structure of the Wolfram Oxide WO2.95. Acta Chem Scand 19: 1514-1515. doi: 10.3891/acta.chem.scand.19-1514
    [17] Bursill LA, Hyde BG (1971) Crystal structures in the {l32} CS family of higher titanium oxides TinO2n-1. Acta Cryst B 1: 210-215.
    [18] Eyring LR, Tai LT (1973) The Structural Chemistry of Extended Defects. Annu Rev Phys Chem1: 189-206.
    [19] Migas DB, Shaposhnikov VL, Borisenko VE (2010) Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys 9: 93714.
    [20] Booth J, Ekström T, Iguchi E, et al. (1982) Notes on phases occurring in the binary tungsten-oxygen system. J Solid State Chem 3: 293-307.
    [21] Kelm K, Mader W (2006) The Symmetry of Ordered Cubic γ-Fe2O3 investigated by TEM. Z. Naturforsch B 61b: 665-671.
    [22] Canadell E, Whangbo MH (1991) Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides. Chem Rev 5:965-1034.
    [23] Bartholomew R, Frankl D (1969) Electrical Properties of Some Titanium Oxides. Phys Rev 3:828-833.
    [24] Sahle W, Nygren M (1983) Electrical conductivity and high resolution electron microscopy studies of WO3-x crystals with 0 ≤ x ≤ 0.28. J Solid State Chem 2: 154-160.
    [25] Kieslich G, Veremchuk I, Antonyshyn I, et al. (2013) Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Phys Chem Chem Phys 37: 15399-15403.
    [26] Parreira NMG, Polcar T, Caalerio A (2007) Thermal stability of reactive sputtered tungsten oxide coatings. Surface and Coatings Technol 201: 7076-7082. doi: 10.1016/j.surfcoat.2007.01.019
    [27] Harada S, Tanaka K, Inui H, (2010) Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèli phases. J Appl Phys 8: 83703-83709.
    [28] Mikami M, Ozaki K, (2012) Thermoelectric properties of nitrogen-doped TiO2-x compounds. J Phys Conf Ser 379: 12006-12012. doi: 10.1088/1742-6596/379/1/012006
    [29] Kieslich G, Burkhardt U, Birkel CS, et al. (2014) Enhanced thermoelectric properties of the n-type Magnéli phase WO2.90: Reduced thermal conductivity through microstructure engineering. J Mater Chem A 2: 13492-13497.
    [30] Li J, Sui J, Pei Y, et al. (2012) A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energ Environ Sci 9: 8543-8547.
    [31] Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46: 6131-6140. doi: 10.1103/PhysRevB.46.6131
    [32] Goodenough J (1970) Interpretation of MxV2O5-β and MxV2-yTyO5-β phases. J Solid State Comm3-4: 349-358.
    [33] Gaultois MW, Sparks TD, Borg CKH, et al. (2013) Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chem Mater 25: 2911-2920. doi: 10.1021/cm400893e
    [34] Hebert S, Maignan A (2010) Thermoelectric Oxides, In: Bruce DW, O'Hare Dermot, Walton RI, Functional Oxides, 1 Eds, West Sussex, John Wiley & Sons, 203-255.
    [35] Backhaus-Ricoult M, Rustad JR, Vargheese D, et al. (2012) Levers for Thermoelectric Properties in Titania-Based Ceramics. J Elec Mater 6: 1636-1647.
    [36] Chaikin P, Beni G (1976) Thermopower in the correlated hopping regime. Phys Rev B 2:647-651.
    [37] Liu C, Miao L, Zhou J, et al. (2013) Chemical Tuning of TiO2 Nanoparticles and Sintered Compacts for Enhanced Thermoelectric Properties. J Phys Chem C 22: 11487-11497.
    [38] Fuda K, Shoji T, Kikuchi S, et al. (2013) Fabrication of Titanium Oxide-Based Composites by Reactive SPS Sintering and Their Thermoelectric Properties. J Elec Mater 7: 2209-2213
    [39] Wang N, Chen H, He H, et al. (2013) Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci Reports 3: 3449-3453.
    [40] Portehault D, Maneeratana V, Candolfi C, et al. (2011) Facile General Route toward Tunable Magnéli Nanostrcutures and Their Use As Thermoelectric Metal Oxide/Carbon Nanocomposites. ACS Nano 5: 9052-9061. doi: 10.1021/nn203265u
  • This article has been cited by:

    1. Anne E. Yust, Davida S. Smyth, 2020, Chapter 5, 978-3-030-33644-8, 217, 10.1007/978-3-030-33645-5_5
    2. Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM, 2013, 10, 1551-0018, 625, 10.3934/mbe.2013.10.625
    3. Shelby M. Scott, Casey E. Middleton, Erin N. Bodine, 2019, 40, 9780444641526, 3, 10.1016/bs.host.2018.10.001
    4. Antoinette Ludwig, Howard S. Ginsberg, Graham J. Hickling, Nicholas H. Ogden, A Dynamic Population Model to Investigate Effects of Climate and Climate-Independent Factors on the Lifecycle ofAmblyomma americanum(Acari: Ixodidae), 2016, 53, 0022-2585, 99, 10.1093/jme/tjv150
    5. Kamuela E. Yong, Anuj Mubayi, Christopher M. Kribs, Agent-based mathematical modeling as a tool for estimating Trypanosoma cruzi vector–host contact rates, 2015, 151, 0001706X, 21, 10.1016/j.actatropica.2015.06.025
    6. Milliward Maliyoni, Faraimunashe Chirove, Holly D. Gaff, Keshlan S. Govinder, A stochastic epidemic model for the dynamics of two pathogens in a single tick population, 2019, 127, 00405809, 75, 10.1016/j.tpb.2019.04.004
    7. David Gammack, Elsa Schaefer, Holly Gaff, 2013, 9780124157804, 105, 10.1016/B978-0-12-415780-4.00004-1
    8. R. Nadolny, H. Gaff, Modelling the Effects of Habitat and Hosts on Tick Invasions, 2018, 5, 23737867, 10.30707/LiB5.1Nadolny
    9. Milliward Maliyoni, Faraimunashe Chirove, Holly D. Gaff, Keshlan S. Govinder, A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence, 2017, 79, 0092-8240, 1999, 10.1007/s11538-017-0317-y
    10. Olivier M. Zannou, Achille S. Ouedraogo, Abel S. Biguezoton, Emmanuel Abatih, Marco Coral-Almeida, Souaïbou Farougou, Kouassi Patrick Yao, Laetitia Lempereur, Claude Saegerman, Models for Studying the Distribution of Ticks and Tick-Borne Diseases in Animals: A Systematic Review and a Meta-Analysis with a Focus on Africa, 2021, 10, 2076-0817, 893, 10.3390/pathogens10070893
    11. Xue Zhang, Jianhong Wu, A coupled algebraic-delay differential system modeling tick-host interactive behavioural dynamics and multi-stability, 2023, 86, 0303-6812, 10.1007/s00285-023-01879-8
    12. Alexis L. White, Holly D. Gaff, 2021, Chapter 4, 978-3-030-84595-7, 31, 10.1007/978-3-030-84596-4_4
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7006) PDF downloads(1067) Cited by(10)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog