Review Special Issues

Molecular Dynamics Simulations for Predicting Surface Wetting

  • Received: 03 March 2014 Accepted: 26 May 2014 Published: 13 June 2014
  • The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD) simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.

    Citation: Jing Chen, Ben J. Hanson, Melissa A. Pasquinelli. Molecular Dynamics Simulations for Predicting Surface Wetting[J]. AIMS Materials Science, 2014, 1(2): 121-131. doi: 10.3934/matersci.2014.2.121

    Related Papers:

  • The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD) simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.


    加载中
    [1] Callies M, Quere D (2005) On water repellency. Soft Matter 1(1): 55-61.
    [2] Tuteja A, Choi W, Ma M, et al. (2007) Designing superoleophobic surfaces. Science 318(5856):1618-1622.
    [3] Wang S, Jiang L (2007) Definition of superhydrophobic states. Adv Mater 19(21): 3423-3424.
    [4] Young T (1805) An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 95: 65-87. doi: 10.1098/rstl.1805.0005
    [5] 6. Lee HJ (2012) Design and development of anti-icing textile surfaces. J Mater Sci 47(13):14-5120.
    [6] 7. Owens DK (1970) Some thermodynamic aspects of polymer adhesion. J Appl Polym Sci 14(7):1725-1730.
    [7] 8. Lee HJ, Michielsen S (2006) Lotus effect: Superhydrophobicity. J Text Inst 95): 455-462.
    [8] 9. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. T Faraday Soc 40: 0546-0550. doi: 10.1039/tf9444000546
    [9] 10. Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2(7): 457-460.
    [10] 11. Ensikat HJ, Ditsche-Kuru P, Neinhuis C, et al. (2011) Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein J Nanotechno 2: 152-161. doi: 10.3762/bjnano.2.19
    [11] 13. Erasmus E, Barkhuysen FA (2009) Superhydrophobic cotton by fluorosilane modification. Indian J Fibre Text 34: 377-379.
    [12] 14. Nishino T, Meguro M, Nakamae K, et al. (1999) The lowest surface free energy based on -CF3 alignment. Langmuir 15(13): 4321-4323.
    [13] 15. Tada H, Nagayama H (1995) Chemical-vapor surface modification of porous-glass with fluoroalkyl-functionalized silanes 2. resistance to water. Langmuir 11(1): -142.
    [14] 16. Thunemann AF (2000) Complexes of polyethyleneimine with perfluorinated carboxylic acids: Wettability of lamellar structured mesophases. Langmuir 16(2): 824-828.
    [15] 17. Anton D (1998) Surface-fluorinated coatings. Adv Mater 10(: 1197-1205.
    [16] 18. Shibuichi S, Onda T, Satoh N, et al. (1996) Super water-repellent surfaces resulting from fractal structure. J Phys Chem 100(50): 19512-19517.
    [17] 19. Shibuichi S, Yamamoto T, Onda T, et al. (1998) Super water- and oil-repellent surfaces resulting from fractal structure. J Colloid Interface Sci 208(1): 287-294.
    [18] 20. Onda T, Shibuichi S, Satoh N, et al. (1996) Super-water-repellent fractal surfaces. Langmuir12(9): 2125-2127.
    [19] 21. Pasquinelli MA, Yingling YG (2012) Molecular dynamics simulations of bio-nano interactions. In: Encyclopedia of Nanotechnology. Springer 1454-1463.
    [20] 22. Lee C, McCammon JA, Rossky PJ (1984) The structure of liquid water at an extended hydrophobic surface. J Chem Phys 80(9): 4448.
    [21] 23. Dimitrov DI, Milchev A, Binder K, et al. (2006) Structure of polymer brushes in cylindrical tubes: A molecular dynamics simulation. Macromol Theory Simul 15(7): 573-583.
    [22] 24. Dong S, Yan J, Xu N, et al. (2011) Molecular dynamics simulation on surface modification of carbon black with polyvinyl alcohol. Surf Sci 605: 868-874. doi: 10.1016/j.susc.2011.01.021
    [23] 25. Hirvi JT, Pakkanen TA (2007) Wetting of nanogrooved polymer surfaces. Langmuir 14):7724-7729.
    [24] 26. Liu H, Li Y, Krause WE, et al. (2012) The soft-confined method for creating molecular models of amorphous polymer surfaces. J Phys Chem B 116(8): 2633.
    [25] 27. Bardzinski PJ (2011) Determination of the electronic band structure of the rutile polymorph of TiO2: A quantum chemical approach. Mat Sci-Poland 29(3): 223-232.
    [26] 28. Prathab B, Aminabhavi TM (2007) Atomistic simulations to compute surface properties of poly(N-vinyl-2-pyrrolidone) (PVP) and blends of PVP/chitosan. Langmuir 23(10): 5439-5444.
    [27] 29. Shi B (2006) Molecular dynamics simulation of the surface tension and contact angle of argon and water [dissertation]. University of California Los Angeles.
    [28] 30. Gonzalez-Melchor M (2006) Getting the surface tension from computer simulations. Front Contemp Phys 809: 240-244.
    [29] 31. Chauve G, Heux L, Arouini R, et al. (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6(4): 2025-2031.
    [30] 32. Jaffe RL, Gonnet P, Werder T, et al. (2004) Water carbon interactions 2: Calibration of potentials using contact angle data for different interaction models. Mol Simulat 4): 205-216.
    [31] 33. Wang J, Kalinichev AG, Kirkpatrick RJ (2006) Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochim Cosmochim Ac 70(3): 562-582.
    [32] 34. Quddus MAAR, Rojas OJ, Pasquinelli MA (2014) Molecular dynamics simulations of the adhesion of a thin annealed film of oleic acid onto crystalline cellulose. Biomacromolecules15(4): 1476-1483.
    [33] 35. Fan C, Cagin T (1995) Wetting of crystalline polymer surfaces-a molecular-dynamics simulation. J Chem Phys 103(20): 9053-9061.
    [34] 36. Giovambattista N, Debenedetti PG, Rossky PJ (2007) Effect of surface polarity on water contact angle and interfacial hydration structure. J Phys Chem B 111(32): 9581-9587.
    [35] 37. Hirvi JT, Pakkanen TA (2006) Molecular dynamics simulations of water droplets on polymer surfaces. J Chem Phys 125(14): 144712-144712.
    [36] 38. Hautman J, Klein M (1991) Microscopic wetting phenomena. Phys Rev Lett 67(13): 1763-1766.
    [37] 39. Giovambattista N, Debenedetti PG, Rossky PJ (2007) Effect of surface polarity on water contact angle and interfacial hydration structure. J Phys Chem B 111(32): 9581-9587.
    [38] 40. Hong SD, Ha MY, Balachandar S (2009) Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation. J Colloid Interface Sci 339(1): 187-195.
    [39] 41. Park J, Ha M, Choi H, et al. (2011) A study on the contact angles of a water droplet on smooth and rough solid surfaces. J Mech Sci Technol 25(2): 323-332.
    [40] 42. Sergi D, Scocchi G, Ortona A (2012) Molecular dynamics simulations of the contact angle between water droplets and graphite surfaces. Fluid Phase Equilib 332(0): 173-177.
    [41] 43. Ohler B, Langel W (2009) Molecular dynamics simulations on the interface between titanium dioxide and water droplets: A new model for the contact angle. J Phys Chem C 113(23):10189-10197.
    [42] 44. Dai Z, Ling J, Huang X et al. (2011) Molecular simulation on the interactions of water with polypropylene surfaces. J Phys Chem C 115(21): 10702-10708.
    [43] 45. Heine DR, Grest GS, Webb EB (2005) Surface wetting of liquid nanodroplets: Droplet-size effects. Phys Rev Lett 95(10): 107801.
    [44] 46. Scocchi G, Sergi D, D'Angelo C, et al. (2011) Wetting and contact-line effects for spherical and cylindrical droplets on graphene layers: A comparative molecular-dynamics investigation. Phys Rev E 84: 061602.
    [45] 47. Mattia D (2007) Templated growth and characterization of carbon nanotubes for nanofluidic applications [dissertation]. Drexel University.
    [46] 48. Wu C, Kuo L, Lin S, et al. (2012) Effects of temperature, size of water droplets, and surface roughness on nanowetting properties investigated using molecular dynamics simulation. Comp Mater Sci 53(1): 25-30.
    [47] 49. Li H, Zeng XC (2012) Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron nitride sheets. ACS Nano 6(3): 2401-2409.
    [48] 50. Chai J, Liu S, Yang X. (2009) Molecular dynamics simulation of wetting on modified amorphous silica surface. Appl Surf Sci 255(22): 9078-9084.
    [49] 51. Lee SH, Rossky PJ (1994) A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular dynamics simulation study. J Chem Phys100(4): 3334-3345.
    [50] 52. Koishi T, Yasuoka K, Fujikawa S, et al. (2011) Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the cassie and wenzel states: A molecular dynamics simulation study. ACS Nano 5(9): 6834-6842.
    [51] 53. Shi B, Dhir VK (2009) Molecular dynamics simulation of the contact angle of liquids on solid surfaces. J Chem Phys 130(3): 034705.
    [52] 54. Grest G, Heine D, Webb E (2006) Liquid nanodroplets spreading on chemically patterned surfaces. Langmuir 22(10): 4745-4749.
    [53] 55. Yu FG, De YS (2010) Molecular-dynamics simulations of droplets on a solid surface. Chinese Phys Lett 27(6): 066802.
    [54] 56. Wu H, Borhan A, Fichthorn K (2009) Coarse-grained interaction of a fluid with a physically-patterned solid surface: Application to nanodroplet wetting. J Low Temp Phys157(3-4): 277-295.
    [55] 57. Ingebrigtsen T, Toxvaerd S (2007) Contact angles of lennard-jones liquids and droplets on planar surfaces. J Phys Chem C 111(24): 8518-8523.
    [56] 58. Leroy F, dos Santos DJVA, Müller-Plathe F (2009) Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration. Macromol Rapid Comm 30: 864-870. doi: 10.1002/marc.200800746
    [57] 59. Shahraz A, Borhan A, Fichthorn KA (2013) Wetting on physically patterned solid surfaces: The relevance of molecular dynamics simulations to macroscopic systems. Langmuir 29(37):11632-11639.
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4744) PDF downloads(1073) Cited by(11)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog