Review Special Issues

Designing advanced functional periodic mesoporous organosilicas for biomedical applications

  • Received: 07 February 2014 Accepted: 28 February 2014 Published: 09 March 2014
  • Periodic mesoporous organosilicas (PMOs), reported for the first time in 1999, constitute a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size and homogenous distribution of organic bridges into a silica framework. Unlike conventional mesoporous silicas, these materials offer the possibility to adjust the surface (hydrophilicity/hydrophobicity) and physical properties (morphology, porosity) as well as their mechanical stability through the incorporation of different functional organic moieties in their pore walls. A broad variety of PMOs has been designed for their subsequent application in many fields. More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. This review provides a comprehensive overview of the most recent breakthroughs achieved for PMOs in biological and biomedical applications.

    Citation: Dolores Esquivel, Pascal Van Der Voort, Francisco J. Romero-Salguero. Designing advanced functional periodic mesoporous organosilicas for biomedical applications[J]. AIMS Materials Science, 2014, 1(1): 70-86. doi: 10.3934/matersci.2014.1.70

    Related Papers:

  • Periodic mesoporous organosilicas (PMOs), reported for the first time in 1999, constitute a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size and homogenous distribution of organic bridges into a silica framework. Unlike conventional mesoporous silicas, these materials offer the possibility to adjust the surface (hydrophilicity/hydrophobicity) and physical properties (morphology, porosity) as well as their mechanical stability through the incorporation of different functional organic moieties in their pore walls. A broad variety of PMOs has been designed for their subsequent application in many fields. More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. This review provides a comprehensive overview of the most recent breakthroughs achieved for PMOs in biological and biomedical applications.


    加载中
    [1] Kresge CT, Leonowicz ME, Roth WJ, et al. (1992) Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 359: 710-712. doi: 10.1038/359710a0
    [2] Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10:2950-2963. doi: 10.1021/cm980243e
    [3] Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic-organic mesoporous silicates - Nanoscopic reactors coming of age. Adv Mater 12: 1403-1419. doi: 10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
    [4] Asefa T, MacLachlan MJ, Coombs N, et al. (1999) Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402: 867-871.
    [5] Inagaki S, Guan S, Fukushima Y, et al. (1999) Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc 121:9611-9614. doi: 10.1021/ja9916658
    [6] Melde BJ, Holland BT, Blanford CF, et al. (1999) Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem Mater 11: 3302-3308. doi: 10.1021/cm9903935
    [7] Esquivel D, van den Berg O, Romero-Salguero FJ, et al. (2013) 100% thiol-functionalized ethylene PMOs prepared by "thiolacid-ene" chemistry. Chem Commun 49: 2344-2346. doi: 10.1039/c3cc39074h
    [8] Garcia RA, van Grieken R, Iglesias J, et al. (2010) Facile one-pot approach to the synthesis of chiral periodic mesoporous organosilicas SBA-15-type materials. J Catal 274: 221-227. doi: 10.1016/j.jcat.2010.07.003
    [9] Kuschel A, Luka M, Wessig M, et al. (2010) Organic Ligands Made Porous: Magnetic and Catalytic Properties of Transition Metals Coordinated to the Surfaces of Mesoporous Organosilica. Adv Funct Mater 20: 1133-1143. doi: 10.1002/adfm.200902056
    [10] Waki M, Mizoshita N, Tani T, et al. (2011) Periodic Mesoporous Organosilica Derivatives Bearing a High Density of Metal Complexes on Pore Surfaces. Angew Chem Int Edit 50: 11667-11671. doi: 10.1002/anie.201104063
    [11] Esquivel D, Jimenez-Sanchidrian C, Romero-Salguero FJ (2011) Comparison of the thermal and hydrothermal stabilities of ethylene, ethylidene, phenylene and biphenylene bridged periodic mesoporous organosilicas. Mater Lett 65: 1460-1462. doi: 10.1016/j.matlet.2011.02.037
    [12] Lopez MI, Esquivel D, Jimenez-Sanchidrian C, et al. (2013) Application of Sulfonic Acid Functionalised Hybrid Silicas Obtained by Oxidative Cleavage of Tetrasulfide Bridges as Catalysts in Esterification Reactions. Chemcatchem 5: 1002-1010. doi: 10.1002/cctc.201200509
    [13] Zhang YP, Jin Y, Yu H, et al. (2010) Pore expansion of highly monodisperse phenylene-bridged organosilica spheres for chromatographic application. Talanta 81: 824-830. doi: 10.1016/j.talanta.2010.01.022
    [14] Goethals F, Ciofi I, Madia O, et al. (2012) Ultra-low-k cyclic carbon-bridged PMO films with a high chemical resistance. J Mater Chem 22: 8281-8286. doi: 10.1039/c2jm30312d
    [15] De Canck E, Lapeire L, De Clercq J, et al. (2010) New Ultrastable Mesoporous Adsorbent for the Removal of Mercury Ions. Langmuir 26: 10076-10083. doi: 10.1021/la100204d
    [16] Bornscheuer UT (2003) Immobilizing enzymes: How to create more suitable biocatalysts. Angew Chem Int Edit 42: 3336-3337. doi: 10.1002/anie.200301664
    [17] Fried DI, Brieler FJ, Froba M (2013) Designing Inorganic Porous Materials for Enzyme Adsorption and Applications in Biocatalysis. Chemcatchem 5: 862-884. doi: 10.1002/cctc.201200640
    [18] Davis ME (2002) Ordered porous materials for emerging applications. Nature 417: 813-821. doi: 10.1038/nature00785
    [19] Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17: 4577-4593. doi: 10.1021/cm0485658
    [20] Hudson S, Magner E, Cooney J, et al. (2005) Methodology for the immobilization of enzymes onto mesoporous materials. J Phys Chem B 109: 19496-19506. doi: 10.1021/jp052102n
    [21] Qiao SZ, Yu CZ, Xing W, et al. (2005) Synthesis and bio-adsorptive properties of large-pore periodic mesoporous organosilica rods. Chem Mater 17: 6172-6176. doi: 10.1021/cm051735b
    [22] Qiao SZ, Djojoputro H, Hu QH, et al. (2006) Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica. Prog Solid State Ch 34: 249-256. doi: 10.1016/j.progsolidstchem.2005.11.023
    [23] Bhattacharyya MS, Hiwale P, Piras M, et al. (2010) Lysozyme Adsorption and Release from Ordered Mesoporous Materials. J Phys Chem C 114: 19928-19934. doi: 10.1021/jp1078218
    [24] Park M, Park SS, Selvaraj M, et al. (2009) Hydrophobic mesoporous materials for immobilization of enzymes. Micropor Mesopor Mat 124: 76-83. doi: 10.1016/j.micromeso.2009.04.032
    [25] Park M, Park SS, Selvaraj M, et al. (2011) Hydrophobic periodic mesoporous organosilicas for the adsorption of cytochrome c. J Porous Mat 18: 217-223. doi: 10.1007/s10934-010-9373-5
    [26] Li CM, Liu J, Shi X, et al. (2007) Periodic mesoporous organosilicas with 1,4- diethylenebenzene in the mesoporous wall: Synthesis, characterization, and bioadsorption properties. J Phys Chem C 111: 10948-10954. doi: 10.1021/jp071093a
    [27] Zhu L, Liu XY, Chen T, et al. (2012) Functionalized periodic mesoporous organosilicas for selective adsorption of proteins. Appl Surf Sci 258: 7126-7134. doi: 10.1016/j.apsusc.2012.04.011
    [28] Shin JH, Park SS, Selvaraj M, et al. (2012) Adsorption of amino acids on periodic mesoporous organosilicas. J Porous Mater 19: 29-35. doi: 10.1007/s10934-010-9443-8
    [29] Wang XQ, Lu DN, Austin R, et al. (2007) Protein refolding assisted by periodic mesoporous organosilicas. Langmuir 23: 5735-5739. doi: 10.1021/la063507h
    [30] Wang PY, Zhao L, Wu R, et al. (2009) Phosphonic Acid Functionalized Periodic Mesoporous Organosilicas and Their Potential Applications in Selective Enrichment of Phosphopeptides. J Phys Chem C 113: 1359-1366. doi: 10.1021/jp8093534
    [31] Wan JJ, Qian K, Zhang J, et al. (2010) Functionalized Periodic Mesoporous Organosilicas for Enhanced and Selective Peptide Enrichment. Langmuir 26: 7444-7450. doi: 10.1021/la9041698
    [32] Qian K, Gu WY, Yuan P, et al. (2012) Enrichment and Detection of Peptides from Biological Systems Using Designed Periodic Mesoporous Organosilica Microspheres. Small 8: 231-236. doi: 10.1002/smll.201101770
    [33] Qian K, Liu F, Yang J, et al. (2012) Pore size-optimized periodic mesoporous organosilicas for the enrichment of peptides and polymers. RSC Adv 3: 14466-14472.
    [34] Gan JR, Zhu J, Yan GQ, et al. (2012) Periodic Mesoporous Organosilica as a Multifunctional Nanodevice for Large-Scale Characterization of Membrane Proteins. Anal Chem 84: 5809-5815. doi: 10.1021/ac301146a
    [35] Shakeri M, Kawakami K (2008) Effect of the structural chemical composition of mesoporous materials on the adsorption and activation of the Rhizopus oryzae lipase-catalyzed transesterification reaction in organic solvent. Catal Commun 10: 165-168. doi: 10.1016/j.catcom.2008.08.012
    [36] Serra E, Diez E, Diaz I, et al. (2010) A comparative study of periodic mesoporous organosilica and different hydrophobic mesoporous silicas for lipase immobilization. Micropor Mesopor Mat132: 487-493.
    [37] Mayoral A, Arenal R, Gascon V, et al. (2013) Designing Functionalized Mesoporous Materials for Enzyme Immobilization: Locating Enzymes by Using Advanced TEM Techniques. Chemcatchem 5: 903-909. doi: 10.1002/cctc.201200737
    [38] Zhou Z, Taylor RNK, Kullmann S, et al. (2011) Mesoporous Organosilicas With Large Cage- Like Pores for High Efficiency Immobilization of Enzymes. Adv Mater 23: 2627-2632. doi: 10.1002/adma.201004054
    [39] Zhou Z, Inayat A, Schwieger W, et al. (2012) Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Micropor Mesopor Mat 154:133-141. doi: 10.1016/j.micromeso.2012.01.003
    [40] Na W, Wei Q, Lan JN, et al. (2010) Effective immobilization of enzyme in glycidoxypropylfunctionalized periodic mesoporous organosilicas (PMOs). Micropor Mesopor Mat 134: 72-78. doi: 10.1016/j.micromeso.2010.05.009
    [41] Nohair B, Phan THT, Vu THN, et al. (2012) Hybrid Periodic Mesoporous Organosilicas (PMOSBA-16): A Support for Immobilization of D-Amino Acid Oxidase and Glutaryl-7-amino Cephalosporanic Acid Acylase Enzymes. J Phys Chem C 116: 10904-10912.
    [42] Guan LY, Di B, Su MX, et al. (2013) Immobilization of beta-glucosidase on bifunctional periodic mesoporous organosilicas. Biotechnol Lett 35: 1323-1330. doi: 10.1007/s10529-013-1208-4
    [43] Hudson S, Cooney J, Hodnett BK, et al. (2007) Chloroperoxidase on periodic mesoporous organosilanes: Immobilization and reuse. Chem Mater 19: 2049-2055. doi: 10.1021/cm070180c
    [44] Lin N, Gao L, Chen Z, et al. (2011) Elevating enzyme activity through the immobilization of horseradish peroxidase onto periodic mesoporous organosilicas. New J Chem 35: 1867-1875. doi: 10.1039/c1nj20311h
    [45] Wan MM, Gao L, Chen Z, et al. (2012) Facile synthesis of new periodic mesoporous organosilica and its performance of immobilizing horseradish peroxidase. Micropor Mesopor Mat 155: 24-33. doi: 10.1016/j.micromeso.2012.01.014
    [46] Ye F, Guo HF, Zhang HJ, et al. (2010) Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomat 6: 2212-2218. doi: 10.1016/j.actbio.2009.12.014
    [47] Hu XL, Yan LS, Xiao HH, et al. (2013) Application of microwave-assisted click chemistry in the preparation of functionalized copolymers for drug conjugation. J Appl Polym Sci 127: 3365-3373. doi: 10.1002/app.37662
    [48] Elia R, Newhide DR, Pedevillano PD, et al. (2013) Silk-hyaluronan-based composite hydrogels: A novel, securable vehicle for drug delivery. J Biomater Appl 27: 749-762. doi: 10.1177/0885328211424516
    [49] Vallet-Regi M (2010) Nanostructured mesoporous silica matrices in nanomedicine. J Intern Med267: 22-43.
    [50] Vallet-Regi M, Ruiz-Hernandez E (2011) Bioceramics: From Bone Regeneration to Cancer Nanomedicine. Adv Mater 23: 5177-5218. doi: 10.1002/adma.201101586
    [51] Vallet-Regi M, Colilla M, Gonzalez B (2011) Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40: 596-607. doi: 10.1039/C0CS00025F
    [52] Lin CX, Qiao SZ, Yu CZ, et al. (2009) Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Micropor Mesopor Mater 117: 213-219. doi: 10.1016/j.micromeso.2008.06.023
    [53] Kao HM, Chung CH, Saikia D, et al. (2012) Highly Carboxylic-Acid-Functionalized Ethane- Bridged Periodic Mesoporous Organosilicas: Synthesis, Characterization, and Adsorption Properties. Chem Asian J 7: 2111-2117. doi: 10.1002/asia.201200244
    [54] Wu HY, Shieh FK, Kao HM, et al. (2013) Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids. Chem Eur J 19: 6358-6367. doi: 10.1002/chem.201204400
    [55] Parambadath S, Rana VK, Zhao DY, et al. (2011) N,N '-diureylenepiperazine-bridged periodic mesoporous organosilica for controlled drug delivery. Micropor Mesopor Mater 141: 94-101. doi: 10.1016/j.micromeso.2010.10.051
    [56] Parambadath S, Rana VK, Moorthy S, et al. (2011) Periodic mesoporous organosilicas with coexistence of diurea and sulfanilamide as an effective drug delivery carrier. J Solid State Chem184: 1208-1215.
    [57] Moorthy MS, Park SS, Fuping D, et al. (2012) Step-up synthesis of amidoxime-functionalised periodic mesoporous organosilicas with an amphoteric ligand in the framework for drug delivery. J Mater Chem 22: 9100-9108. doi: 10.1039/c2jm16341a
    [58] Djojoputro H, Zhou XF, Qiao SZ, et al. (2006) Periodic mesoporous organosilica hollow spheres with tunable wall thickness. J Am Chem Soc 128: 6320-6321. doi: 10.1021/ja0607537
    [59] El Haskouri J, de Zarate DO, Guillem C, et al. (2002) Hierarchical porous nanosized organosilicas. Chem Mater 14: 4502-4504. doi: 10.1021/cm025650b
    [60] Cho EB, Kim D, Jaroniec M (2009) Preparation of mesoporous benzene-silica nanoparticles. Micropor Mesopor Mater 120: 252-256. doi: 10.1016/j.micromeso.2008.11.011
    [61] Li J, Wei Y, Deng YH, et al. (2010) An unusual example of morphology controlled periodic mesoporous organosilica single crystals. J Mater Chem 20: 6460-6463. doi: 10.1039/c0jm00663g
    [62] Urata C, Yamada H, Wakabayashi R, et al. (2011) Aqueous Colloidal Mesoporous Nanoparticles with Ethenylene-Bridged Silsesquioxane Frameworks. J Am Chem Soc 133: 8102-8105. doi: 10.1021/ja201779d
    [63] Guan BY, Cui Y, Ren ZY, et al. (2012) Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures. Nanoscale 4: 6588-6596. doi: 10.1039/c2nr31662e
    [64] Moorthy MS, Kim MJ, Bae JH, et al. (2013) Multifunctional Periodic Mesoporous Organosilicas for Biomolecule Recognition, Biomedical Applications in Cancer Therapy, and Metal Adsorption. Eur J Inorg Chem: 3028-3038.
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6661) PDF downloads(1309) Cited by(17)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog