Research article

Evaluating the Impacts of Climate Change on Soil Erosion Rates in Central Mexico

  • Received: 04 March 2017 Accepted: 20 July 2017 Published: 27 July 2017
  • Although water-eroded soil (WES) resulting from human activities has been recognized as the leading global cause of land degradation, the soil erosion risks from climate change are not clear. Studies have reported that WES is the second most significant cause of soil loss in Mexico, and its future trajectory has not been sufficiently evaluated. The aims of this study are to 1) determine the impacts of climate change on WES and its distribution for the State of Aguascalientes, Mexico, and to 2) compare the present and future soil loss rates for the study unit (SU). The State of Aguascalientes is located in the “Region del Bajio.” The impact of climate change on WES was evaluated using the near-future divided world scenario (A2) presented in the IPCC Fourth Assessment Report. Daily temperature and precipitation data from 18 weather stations were downscaled to model historic laminar water erosion (HLWE) and changes therein in the A2 near-future scenario for 2010–2039 (LWEScA2). Due to future changes in mean annual rainfall (MAR) levels, a change in the LWEScA2 of between 1.6 and 8.9% could result in average soil losses up to 475.4 t ha-1 yr-1, representing a loss of slightly more than a 30-mm layer of mountain soil per year. The risk zones, classified as class 4 for LWE, are located to western of the State in part of municipalities of Calvillo, Jesus María, San José de Gracia y Cosio, where there are typical hills and falls with soil very sensitive to rain erosion.

    Citation: Santos Martínez-Santiago, Armando López-Santos, Guillermo González-Cervantes, Gerardo Esquivel-Arriaga. Evaluating the Impacts of Climate Change on Soil Erosion Rates in Central Mexico[J]. AIMS Geosciences, 2017, 3(3): 327-351. doi: 10.3934/geosci.2017.3.327

    Related Papers:

  • Although water-eroded soil (WES) resulting from human activities has been recognized as the leading global cause of land degradation, the soil erosion risks from climate change are not clear. Studies have reported that WES is the second most significant cause of soil loss in Mexico, and its future trajectory has not been sufficiently evaluated. The aims of this study are to 1) determine the impacts of climate change on WES and its distribution for the State of Aguascalientes, Mexico, and to 2) compare the present and future soil loss rates for the study unit (SU). The State of Aguascalientes is located in the “Region del Bajio.” The impact of climate change on WES was evaluated using the near-future divided world scenario (A2) presented in the IPCC Fourth Assessment Report. Daily temperature and precipitation data from 18 weather stations were downscaled to model historic laminar water erosion (HLWE) and changes therein in the A2 near-future scenario for 2010–2039 (LWEScA2). Due to future changes in mean annual rainfall (MAR) levels, a change in the LWEScA2 of between 1.6 and 8.9% could result in average soil losses up to 475.4 t ha-1 yr-1, representing a loss of slightly more than a 30-mm layer of mountain soil per year. The risk zones, classified as class 4 for LWE, are located to western of the State in part of municipalities of Calvillo, Jesus María, San José de Gracia y Cosio, where there are typical hills and falls with soil very sensitive to rain erosion.


    加载中
    [1] Sun W, Shao Q, Liu, J, et al. (2014) Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 121: 151-163. doi: 10.1016/j.catena.2014.05.009
    [2] Stavi I, Lal R (2015) Achieving zero net land degradation. J AridEnviron 112: 44-51.
    [3] Zhao Q, Li D, Zhuo M, et al. (2015) Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope. Stoch Environ Res Risk Assess 29: 609-621. doi: 10.1007/s00477-014-0896-1
    [4] Wang Y, Zhang JH, Zhang ZH, et al. (2016) Impact of tillage erosion on water erosion in a hilly landscape. Sci Total Environ 551-552: 522-532. doi: 10.1016/j.scitotenv.2016.02.045
    [5] UNCCD (2013) Economic assessment of desertification, sustainable land management and resilience of arid, semi-arid and dry sub-humid areas. 1 Eds., Global Risk Forum GRF Davos & United Nations Convention to Combat Desertification.
    [6] Ferreira V, Panagopoulos T (2014) Seasonality of soil erosion under mediterranean conditions at the Alqueva dam watershed. Environ Manage 54: 67-83. doi: 10.1007/s00267-014-0281-3
    [7] López-Santos A (2016) Neutralizar la degradación de las tierras, una aspiración global. ¿es posible lograrlo en México? Terra Latinoamericana 34: 239-249.
    [8] Nielsen UN, Ball BA (2015) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global ChangeBiol 21: 1407-1421. doi: 10.1111/gcb.12789
    [9] Polyakov VO, Nearing MA, Stone JJ, et al. (2016) Quantifying decadal-scale erosion rates and their short-term variability on ecological sites in a semi-arid environment. Catena 137: 501-507. doi: 10.1016/j.catena.2015.10.023
    [10] Gao X, Xie Y, Liu G, et al. (2014) Effects of soil erosion on soybean yield as estimated by simulating gradually eroded soil profiles. Soil Tillage Res 45: 126-134.
    [11] Nkonya E, Gerber N, Baumgarther P, et al. (2011) The economics of land degradation. Toward an integrated global assessment. 1 Eds., Peter Lang International Verlag der Wissnschaften, serie 66.
    [12] Gnacadja L (2012) Zero net degradation. A sustainable development goal for Rio+20. 1 Eds., United Nations Convention to Combat Desertification. Available from: http://www.unccd.int/Lists/SiteDocumentLibrary/Publications/ZNLD%20Summary%20final.pdf.
    [13] Garrido A, Cotler H (2010) Degradación de suelos en las cuencas hidrográficas de México. In Cotler H, et al, Las Cuencas Hidrográficas de México. 1 Eds., Secretaría del Medio Ambiente y Recursos Naturales: 104-107.
    [14] SEMARNAT (2011) Estrategia nacional de manejo sustentable de tierras. 1 Eds., Secretaría de Medio Ambiente y Recursos Naturales: 160.
    [15] CONAFOR-UACh (2013) Línea base nacional de degradación de tierras y desertificación. Informe final. Comisión Nacional Forestal & Universidad Autónoma Chapingo: 161.
    [16] SEMARNAT-INECC (2012) Quinta Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. 1 Eds., Secretaría de Medio Ambiente y Recursos Naturales & Instituto Nacional de Ecología y Cambio Climático: 441.
    [17] Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12: 519-539. doi: 10.1002/ldr.472
    [18] Cotler AH (2003) Características y manejo de suelos en ecosistemas templados de montaña. Instituto Nacional de Ecología, in Sánchez O., E. Vega, E. Peters y O. Monroy-Vilchis Publishers, Conservación de ecosistemas templados de montaña en México. 1 Eds. INE-SEMARNAT, Mexico, 153-161.
    [19] IMAE (2005) Programa Estratégico Forestal del Estado de Aguascalientes, Visión 2030. 1 Esd., Instituto del Medio Ambiente del Estado de Aguascalientes. Avalilable from: http://www.conafor.gob.mx:8080/documentos/download.aspx?articulo=174.
    [20] SEMARNAT (2008) Informe de la situación del medio ambiente en México. Compendio de estadísticas ambientales. Secretaría de Medio Ambiente y Recursos Naturales. 1 Eds., Secretaría de Medio Ambiente y Recursos Naturales: 380.
    [21] Pacheco-Martínez J, Cabral-Cano E, Wdowinski S, et al (2015) Application of InSAR and gravimetry for land subsidence hazard zoning in Aguascalientes, Mexico. Remote Sens 7: 17035-17050. doi: 10.3390/rs71215868
    [22] Aranada-Gómez JJ (1989) Geología preliminar del graben de Aguascalientes. Rev. Mex Cienc Geol 8: 22-32.
    [23] Cardona MA, Colmenero JAR, Valderrábano MLA (2007) La erosión hídrica del suelo en un contexto ambiental en el Estado de Tlaxcala, México. Ciencia Ergo Sum-UAEM 14: 317-326.
    [24] Montes-León MA, Uribe-Alcantara EM, García-Celis E (2011) Mapa de erosión potencial. Tecnología y Ciencias del Agua 2: 5-17.
    [25] Jang Ch, Shin Y, Kum D, et al. (2015) Assessment of soil loss in South Korea based on land-cover type. Stoch Environ Res Risk Assess 29: 2127-2141. doi: 10.1007/s00477-015-1027-3
    [26] Zhang L, Bai KZ, Man J, et al. (2016) Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China. Nat Hazards 80: 1213-1230. doi: 10.1007/s11069-015-2019-9
    [27] Chaplot V. (2007) Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. J Hydrol 337: 159-171. doi: 10.1016/j.jhydrol.2007.01.026
    [28] Bera A. (2017). Estimation of soil loss by USLE model using GIS and remote sensing techniques: a case study of Muhuri River Basin, Tripura, India. Eurasian J Soil Sci 6: 206-215. doi: 10.18393/ejss.288350
    [29] Moss RH, Edmonds J. A, Hibbard KA (2010) The next generation of scenarios for climate change research and assessment. Nature 463: 747-756. doi: 10.1038/nature08823
    [30] DOF (2013) Ley General de Cambio Climático. Cámara de Diputados. Available from: http://www.diputados.gob.mx/LeyesBiblio/pdf/LGCC_010616.pdf.
    [31] Conde AAC, Gay GGC (2008) Guía para la generación de escenarios de cambio climático a escala regional. Centro de Ciencias de la Atmósfera-UNAM. Available from: http://www.atmosfera.unam.mx/cclimat/Taller_CCA_INE_dic08/Guia_escenarios.pdf.
    [32] IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 996.
    [33] Conde C, Estrada F, Martínez B, et al. (2011) Regional climate change scenarios for México. Atmósfera 24: 125-140.
    [34] INEGI (2012) Anuario estadístico y geográfico de Aguascalientes 2015. Available from: http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825076115.
    [35] INEGI (2007) Conjuntos de datos vectoriales de la serie IV de Uso de Suelo y Vegetación para la cobertura de Aguascalientes, México, escala 1:250 000. Available from: http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/Default.aspx.
    [36] SEDESOL-INE (1998) Ordenamiento ecológico del territorio. Memoria técnica metodológica. 1 Eds., Secretaria de Desarrollo Social & Instituto Nacional de Ecología: 66.
    [37] López-Santos A, Pinto JE, Ramírez EML, et al. (2013) Modeling of the potential impact of climatic change using two environmental indicators in northern Mexico. Atmósfera 26: 479-498.
    [38] López-Santos A, Martinez-Santiago S (2015) Use of two indicators for the socio-environmental risk analysis of Northern Mexico under three climate change scenarios. Air Qual Atmos Health 8: 331-345.
    [39] Ortiz-Solorio CA (1987) Elementos de agrometeorología cuantittiva con aplicaciones en la República Mexicana. 1 Eds., Universidad Autónoma Chapingo: 327.
    [40] Monterroso RAI, Conde AC, Rosales DG, et al. (2011) Assessing current and potential rainfed maize suitable under climate change scenarios in Mexico. Atmósfera 21: 53-67.
    [41] UNCCD (2012) Desertification, a visual syntesis. 1 Eds., Christina Stuhberg & Otto Simonett Yukie Hori. United Nations Convention to Combat Desertification & Zoi Environment Network. Available from: http://www.unccd.int/Lists/SiteDocumentLibrary/Publications/Desertification-EN.pdf.
    [42] Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. A guide to conservation planning. USDA Agricultural Handbook, vol 537.
    [43] Morgan RPC (2005) Soil erosion and conservation. 3 Eds., Blakwel Publishing. National Soil Resources Institute, Cranfield University: 312.
    [44] IUSS-WG-WRB (2015) World reference base for soil resources 2014. International soil, update 2015 classification system for naming soils and creating legends for soil maps. World soil resources Reports No. 106. Roma, FAO: 203.
    [45] INEGI (2004) Guía para la interpretación de cartografía. Edafología, serie I. 1 Eds., Instituto Nacional de Estadística, Geografía e Informática: 27.
    [46] INEGI (2007) Conjunto de datos vectoriales de la serie II de Edafología para la cobertura de Aguascalientes, escala 1:250,000. Available from: http://www.inegi.org.mx/geo/contenidos/recnat/edafologia/vectorial_serieii.aspx.
    [47] INEGI (2011) Guía para la interpretación de cartografía. Edafología, serie II. Instituto Nacional de Estadística, Geografía e Informática: 32.
    [48] INEGI (2002) Conjuntos de datos vectoriales de Uso de Suelos y Vegetación serie III, para la cobertura de Aguascalientes, México, escala 1:250,000. Available from: http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/inf_e1m.aspx.
    [49] INEGI (2014) Continuos de elevación del territorio mexicano 3.0. Datos de Relieve continental. Available from: http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/descarga.aspx.
    [50] Karaca F (2012) Determination of air quality zones in Turkey. JAPCA J Air Waste Ma 62: 408-419. doi: 10.1080/10473289.2012.655883
    [51] Magaña VO, Vázquez JL, Pérez JL, et al. (2003) Impact of El Niño on precipitation in Mexico. Geofís Int 42: 313-330.
    [52] Magaña RVO, Zermeño D, Neri C (2012) Cimate change scenarios and potential impacts on water availability in northern Mexico. Clim Res 51: 171-184. doi: 10.3354/cr01080
    [53] Peralta-Hernández AR, Barba-Martínez LR, Magaña-Rueda VO, et al. (2008) Temporal and spatial behaivor of temperatura and precipitation during the canicula (mindsummer drought under El Niño conditions) in central Mexico. Atmósfera 21: 256-280.
    [54] Peralta-Hernádez AR, Barba-Martinez LR (2009) The risk of early frost in central Mexico under El Niño conditions. Atmósfera 22: 111-123.
    [55] Pavia EG, Graef F, Reyes J (2006) PDO-ENSO effects in the climate of Mexico. J Clim 19: 6433-6438. doi: 10.1175/JCLI4045.1
    [56] Jiao JY, Wang Z, Zhao G, et al. (2014) Changes in sediment discharge in a sediment-rich region of the Yellow River from 1955 to 2010: implications for further soil erosion control. J Arid Land 6: 540-549. doi: 10.1007/s40333-014-0006-8
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4728) PDF downloads(1041) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog