
AIMS Geosciences, 2016, 2(1): 4563. doi: 10.3934/geosci.2016.1.45.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Direct Reconstruction of Threedimensional Glacier Bedrock and Surface Elevation from Free Surface Velocity
1 Applied Mechanics and Fluid Dynamics, University of Bayreuth, Universitätsstr, 95440 Bayreuth, Germany
2 Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
Received: , Accepted: , Published:
Special Issues: Inversion methods and strategies to integrate multidisciplinary geophysical data
Keywords: Glacier; Inverse problem; Bedrock reconstruction; ShallowIceApproximation
Citation: C. Heining, M. Sellier. Direct Reconstruction of Threedimensional Glacier Bedrock and Surface Elevation from Free Surface Velocity. AIMS Geosciences, 2016, 2(1): 4563. doi: 10.3934/geosci.2016.1.45
References:
 1. Lythe, MB, Vaughan, DG (2001) BEDMAP: a new icethickness and and subglacial topographic model of Antarctica. J Geophys ResEarth 106: 1133511351.
 2. Le Brocq, AM, Payne, AJ, Vieli, A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst Sci Data 2: 247–260.
 3. Pattyn, F, Schoof, C, Perichon, L, et al. (2012) Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. The Cryosphere 6: 573588.
 4. Huss, M, Farinotti, D (2014) A highresolution bedrock map for the Antarctic peninsula. The Crysophere 8: 12611273.
 5. Huybrechts, P, Payne, T (1996) The EISMINT benchmarks for testing icesheet models. Annals Glaciol 23: 112.
 6. Le Meur, E, Gagliardini, O, Zwinger, T, et al. (2004) Glacier ﬂow modelling: a comparison of the Shallow Ice Approximation and the fullStokes solution. CR Phys 5: 709722.
 7. Kirchner, N, Hutter, K, Jakobsson, M, et al. (2011) Capabilities and limitations of numerical ice sheet models: a discussion for Earthscientists and modelers. Quaternary Sci Rev 30(2526): 36913704.
 8. Ahlkrona, J, Kirchner, N, Lötstedt, P (2013) Accuracy of the zeroth and secondorder shallowice approximation  numerical and theoretical results. Geosci Model Dev 6(6): 21352152.
 9. Engl, HW, Hanke, M, Neubauer, A (2000) Regularization of inverse problems. Kluwer.
 10. Sellier, M, Gessese, A, Heining, C (2012) Analytical and numerical bedrock reconstruction in glacier ﬂows from free surface elevation data. Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics (ICTAM2012), Beijing, China.
 11. Gessese, A, Heining, C, Sellier, M, et al. (2015) Direct reconstruction of glacier bedrock from known free surface data using the onedimensional shallow ice approximation. Geomorphology 228: 356371.
 12. Gudmundsson, GH (2003) Transmission of basal variability to a glacier surface. J Geophys Res 108: No. B5.
 13. Thorsteinsson, T, Raymond, CF, Gudmundsson, GH, et al. (2003) Bed topography and lubrication inferred from surface measurements on fastflowing ice streams. J Glaciol 49(167): 481490.
 14. Rasmussen, LA (1988) Bed topography and massbalance distribution of Columbia glacier, Alaska, USA, determined from sequential aerialphotography. J Glaciol 34(117): 208216.
 15. McNabb, RW, Hock, R, O'Neel, S, et al. (2012) Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. J Glaciol 58(212): 11511164.
 16. Fastook, JL, Henry, HB, Terence JH (1995) Derived bedrock elevations, strain rates and stresses from measured surface elevations and velocitiesJakobshavnsIsbrae, Greenland. J Glaciol 41(137): 161173.
 17. Warner, RC, Budd, WF (2000) Derivation of ice thickness and bedrock topography in datagap regions over Antarctica. Ann Glaciol 31(1): 191197.
 18. Farinotti, D, Huss, M, Bauder, A, et al. (2009) A method to estimate ice volume and icethickness distribution of alpine glaciers. J Glaciol 55(191): 422430.
 19. Huss, M, Farinotti, D (2012) Distributed ice thickness and volume of all glaciers around the globe. J Geophys ResEarth 20032012: 117.F4.
 20. Glen, JW (1955) The creep of polycrystalline ice. P Roy Soc AMath Phys 228(1175): 519538.
 21. Gantayat, P, Kulkarni, AV, Srinivasan, J (2014) Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier. India, J Glaciol 60(220): 277282.
 22. Michel, L, Picasso, M, Farinotti, D, et al. (2013) Estimating the ice thickness of mountain glaciers with an inverse approach using surface topography and massbalance. Inverse Probl 29(3): 035002.
 23. Michel, L, Picasso, M, Farinotti, D, et al. (2014) Estimating the ice thickness of shallow glaciers from surface topography and massbalance data with a shape optimization algorithm. Comput Geosci 66: 182199.
 24. MichelGriesser, L, Picasso, M, Farinotti, D, et al. (2014) Bedrock topography reconstruction of glaciers from surface topography and mass–balance data. Comput Geosci 18(6): 969988.
 25. Morlighem, M, Rignot, E, Seroussi, H, et al. (2011) A mass conservation approach for mapping glacier ice thickness, Geophys Res Lett 38.19.
 26. Habermann, M, Maxwell, D, Truffer, M (2012) Reconstruction of basal properties in ice sheets using iterative inverse methods. J Glaciol 58(210): 795807.
 27. Goldberg, DN, Heimbach, P (2013) Parameter and state estimation with a timedependent adjoint marine ice sheet model. The Cryosphere 7(6): 16591678.
 28. van Pelt, WJJ, Oelermans, J, Reijmer, CH, et al. (2013) An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere Discussions 7: 9871006.
 29. Bueler, E, Brown, J (2009) Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. J Geophys Res: ResEarth (2003–2012) 114(F3).
 30. Winkelmann, R, Martin, MA, Haseloff, M, et al. (2011) The Potsdam Parallel Ice Sheet Model (PISMPIK)–Part 1: Model description. The Cryosphere 5(3): 715726.
 31. Martin, N, Monnier, J (2015) Inverse rheometry and basal properties inference for pseudoplastic geophysical flows. Eur J Mech B  Fluids 50: 110126.
 32. Golledge, NR, Marsh, OJ, Rack, W, et al. (2014) Basal conditions of two transantarctic maountain outlet glaciers from observationconstrained diagnostic modelling. J Glaciol 60(223): 855866.
 33. Sellier, M (2016) Inverse problems in free surface flows: a review. Acta Mech 227: 913935.
 34. Hutter, K. (1983) Theoretical Glacieology. D. Reidel Publishing Company, Dordrecht.
 35. Gessese, A. (2013) Algorithm for bed topography reconstruction in geophysical flows, PhD Thesis, University of Canterbury, 2013. url: http://www.ir.canterbury.ac.nz/bitstream/handle/10092/8673/Thesis_fulltext.pdf?sequence=1&isAllowed=y
This article has been cited by:
 1. J Monnier, PE des Boscs, Inference of the bottom properties in shallow ice approximation models, Inverse Problems, 2017, 33, 11, 115001, 10.1088/13616420/aa7b92
 2. A. J. M. ALBehadili, M. Sellier, R. Nokes, M. MoyersGonzalez, P. H. Geoghegan, Rheometry based on free surface velocity, Inverse Problems in Science and Engineering, 2018, 1, 10.1080/17415977.2018.1509965
 3. Jérôme Monnier, Jiamin Zhu, Inference of the bottom topography in anisothermal mildlysheared shallow ice flows, Computer Methods in Applied Mechanics and Engineering, 2019, 10.1016/j.cma.2019.01.003
Reader Comments
Copyright Info: 2016, M. Sellier, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *