
This paper reviews the theoretical aspects and the practical issues of different types of geophysical integration approaches. Moreover it shows how these approaches can be combined and optimized into the same platform. We discuss both cooperative modeling and Simultaneous Joint Inversion (SJI) as complementary methods for integration of multi-domain geophysical data: these data can be collected at surface (seismic, electromagnetic, gravity) as well as in borehole (composite well logs). The main intrinsic difficulties of any SJI approach are the high computational requirements, the non-uniqueness of the final models, the proper choice of the relations between the different geophysical domains, the quantitative evaluation of reliability indicators. In order to face efficiently all these problems we propose and describe here a “systemic approach”: the algorithms of modeling and SJI are merged with an integration architecture that permits the selection of workflows and links between different algorithms, the management of data and models coming from different domains, the smart visualization of partial and final results. This Quantitative Integration System (QUIS) has been implemented into a complex software and hardware platform, comprising many advanced codes working in cooperation and running on powerful computer clusters. The paper is divided into two main parts. First we discuss the theoretical formulation of SJI and the key concepts of the QUIS platform. In the second part we present a synthetic SJI test and a case history of QUIS application to a real exploration problem.
Citation: Dell’Aversana Paolo, Bernasconi Giancarlo, Chiappa Fabio. A Global Integration Platform for Optimizing Cooperative Modeling and Simultaneous Joint Inversion of Multi-domain Geophysical Data[J]. AIMS Geosciences, 2016, 2(1): 1-31. doi: 10.3934/geosci.2016.1.1
[1] | Miyuki Koiso . Stable anisotropic capillary hypersurfaces in a wedge. Mathematics in Engineering, 2023, 5(2): 1-22. doi: 10.3934/mine.2023029 |
[2] | Daniela De Silva, Ovidiu Savin . Uniform density estimates and $ \Gamma $-convergence for the Alt-Phillips functional of negative powers. Mathematics in Engineering, 2023, 5(5): 1-27. doi: 10.3934/mine.2023086 |
[3] | Ko-Shin Chen, Cyrill Muratov, Xiaodong Yan . Layered solutions for a nonlocal Ginzburg-Landau model with periodic modulation. Mathematics in Engineering, 2023, 5(5): 1-52. doi: 10.3934/mine.2023090 |
[4] | Giovanni Di Fratta, Alberto Fiorenza, Valeriy Slastikov . On symmetry of energy minimizing harmonic-type maps on cylindrical surfaces. Mathematics in Engineering, 2023, 5(3): 1-38. doi: 10.3934/mine.2023056 |
[5] | Fausto Ferrari, Nicolò Forcillo . A new glance to the Alt-Caffarelli-Friedman monotonicity formula. Mathematics in Engineering, 2020, 2(4): 657-679. doi: 10.3934/mine.2020030 |
[6] | Manuel Friedrich . Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials. Mathematics in Engineering, 2020, 2(1): 75-100. doi: 10.3934/mine.2020005 |
[7] | Morteza Fotouhi, Andreas Minne, Henrik Shahgholian, Georg S. Weiss . Remarks on the decay/growth rate of solutions to elliptic free boundary problems of obstacle type. Mathematics in Engineering, 2020, 2(4): 698-708. doi: 10.3934/mine.2020032 |
[8] | Paolo Maria Mariano, Domenico Mucci . Equilibrium of thin shells under large strains without through-the-thickness shear and self-penetration of matter. Mathematics in Engineering, 2023, 5(6): 1-21. doi: 10.3934/mine.2023092 |
[9] | Giacomo Canevari, Arghir Zarnescu . Polydispersity and surface energy strength in nematic colloids. Mathematics in Engineering, 2020, 2(2): 290-312. doi: 10.3934/mine.2020015 |
[10] | Filippo Gazzola, Gianmarco Sperone . Remarks on radial symmetry and monotonicity for solutions of semilinear higher order elliptic equations. Mathematics in Engineering, 2022, 4(5): 1-24. doi: 10.3934/mine.2022040 |
This paper reviews the theoretical aspects and the practical issues of different types of geophysical integration approaches. Moreover it shows how these approaches can be combined and optimized into the same platform. We discuss both cooperative modeling and Simultaneous Joint Inversion (SJI) as complementary methods for integration of multi-domain geophysical data: these data can be collected at surface (seismic, electromagnetic, gravity) as well as in borehole (composite well logs). The main intrinsic difficulties of any SJI approach are the high computational requirements, the non-uniqueness of the final models, the proper choice of the relations between the different geophysical domains, the quantitative evaluation of reliability indicators. In order to face efficiently all these problems we propose and describe here a “systemic approach”: the algorithms of modeling and SJI are merged with an integration architecture that permits the selection of workflows and links between different algorithms, the management of data and models coming from different domains, the smart visualization of partial and final results. This Quantitative Integration System (QUIS) has been implemented into a complex software and hardware platform, comprising many advanced codes working in cooperation and running on powerful computer clusters. The paper is divided into two main parts. First we discuss the theoretical formulation of SJI and the key concepts of the QUIS platform. In the second part we present a synthetic SJI test and a case history of QUIS application to a real exploration problem.
Rectifying curves have been studied a lot in three-dimensional Euclidean space. Rectifying curve whose definition and equivalent definitions are provided in [1]. Chen and Dillen revealed the relationship between the center point of the spatial curve and the rectifying curve in [2]. Rectifying curves have many properties in Euclidean space [3]. In four-dimensional Euclidean space, İşbilir and Tosun [4] studied rectifying curves. Many scholars studied the properties of multiple curves in three-dimensional Minkowski space [5,6]. There have also been studies about rectifying curves, such as three-dimensional Minkowski space [7,8], three-dimensional hyperbolic space [9], and three-dimensional spheres [10]. There is a new article about rectifying curves [11]. These are all valuable geometric information obtained by analyzing the curvature and the torsion of the regular rectifying curve and the Frenet-Serret formula. If the curve has singularities, then other methods need to be used for research. The definition of framed curves has been given in [12]. Framed curves are spatial curves that have moving frames. The framed base curve may have singularities. Next, the rectifying curve was studied by the adapted frame in [13].
Inspired by the above work, we study non-lightlike framed rectifying curves. We define the non-lightlike framed rectifying curves, study the construction of the non-lightlike framed rectifying curves, and obtain valuable geometric information.
In Section 2, we review the basic knowledge of non-lightlike framed curves. In Section 3, the non-lightlike framed rectifying curves are defined and their equivalent definitions are given. In Section 4, a method for constructing non-lightlike framed rectifying curves is provided, and examples of regular curves and singular curves are also provided. In Section 5, we define non-lightlike framed helices to obtain the relationship between them and non-lightlike framed rectifying curves. The centrodes of non-lightlike framed rectifying curves are also studied.
All maps and manifolds considered here are differentiable of class $ C^\infty $.
Let $ \mathbb{R}_1^3 $ be Minkowski 3-space with the pseudo scalar product $ \langle, \rangle, $ the pseudo vector product $ \wedge $, and the norm $ ||\quad || $. The pseudo scalar product is equipped with the signature $ (-, +, +) $.
For any nonzero vector $ \mathit{\boldsymbol{a}}\in\mathbb{R}_1^3 $, it is called spacelike, timelike, or lightlike if $ \langle\mathit{\boldsymbol{a}}, \mathit{\boldsymbol{a}}\rangle $ is positive, negative, or zero, respectively. We say the regular curve $ \gamma:I \rightarrow \mathbb{R}_1^3 $ is spacelike, timelike, or lightlike if the vector $ \gamma^{'}(t) $ is spacelike, timelike or lightlike for all $ t\in I $, respectively. For $ {\mathit{\boldsymbol{n}}} \in \mathbb{R}_1^3\backslash\{\mathit{\boldsymbol{0}}\} $, define a set $ P = \{\mathit{\boldsymbol{a}}\in\mathbb{R}_1^3|\langle\mathit{\boldsymbol{a}}, \mathit{\boldsymbol{n}}\rangle = 0\} $. It is obvious that $ P $ is a plane in $ \mathbb{R}_1^3 $. The vector $ \mathit{\boldsymbol{n}} $ is called the pseudo normal vector of the plane $ P $. The plane $ P $ is called spacelike, timelike, or lightlike if the vector $ \mathit{\boldsymbol{n}} $ is timelike, spacelike, or lightlike, respectively.
There are three pseudo spheres in $ \mathbb{R}_1^3 $:
$ S_1^2 = \{\mathit{\boldsymbol{a}}\in\mathbb{R}_1^3|\langle\mathit{\boldsymbol{a}},\mathit{\boldsymbol{a}}\rangle = 1\}, $ |
$ LC^{*} = \{\mathit{\boldsymbol{a}}\in\mathbb{R}_1^3\backslash\{\mathit{\boldsymbol{0}}\}|\langle\mathit{\boldsymbol{a}},\mathit{\boldsymbol{a}}\rangle = 0\} $ |
and
$ H_0^2 = \{\mathit{\boldsymbol{a}}\in\mathbb{R}_1^3|\langle\mathit{\boldsymbol{a}},\mathit{\boldsymbol{a}}\rangle = -1\}. $ |
We call them de Sitter 2-space, (open) lightcone, and hyperbolic 2-space, respectively. Let $ \Delta = \{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)\in\mathbb{R}_1^3\times\mathbb{R}_1^3|\langle\boldsymbol{\beta}_1, \boldsymbol{\beta}_2\rangle = 0, ||\boldsymbol{\beta}_1|| = 1, ||\boldsymbol{\beta}_2|| = 1\} $ and $ \gamma:I \rightarrow \mathbb{R}_1^3 $ be a non-lightlike curve.
Definition 2.1. We call $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ a non-lightlike framed curve if $ \langle\gamma^{'}(t), \mathit{\boldsymbol{\beta}}_1(t)\rangle = 0 $, $ \langle\gamma^{'}(t), \mathit{\boldsymbol{\beta}}_2(t)\rangle = 0 $ for any $ t\in I $. We call $ \gamma:I \rightarrow \mathbb{R}_1^3 $ a non-lightlike framed base curve if there exists $ (\mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2):I \rightarrow \Delta $ such that $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2) $ is a non-lightlike framed curve.
Define $ \boldsymbol{\mu}(t) = \mathit{\boldsymbol{\beta}}_1(t)\wedge\mathit{\boldsymbol{\beta}}_2(t) $. There exists a function $ \alpha : I \rightarrow \mathbb{R} $ satisfying $ \gamma^{'}(t) = \alpha(t)\boldsymbol{\mu}(t) $. $ \{\mathit{\boldsymbol{\beta}}_1(t), \mathit{\boldsymbol{\beta}}_2(t), \boldsymbol{\mu}(t)\} $ is a moving frame along $ \gamma. $ Frenet-type formulas are
$ (β′1(t)β′2(t)μ′(t))=(0l1(t)l2(t)σl1(t)0l3(t)−σδl2(t)δl3(t)0)(β1(t)β2(t)μ(t)), $
|
$ \gamma^{'}(t) = \alpha(t)\boldsymbol{\mu}(t), $ |
where
$ σ=⟨μ(t),μ(t)⟩,δ=⟨β1(t),β1(t)⟩,l1(t)=−σδ⟨β′1(t),β2(t)⟩,l2(t)=σ⟨β′1(t),μ(t)⟩,l3(t)=σ⟨β′2(t),μ(t)⟩,α(t)=σ⟨γ′(t),μ(t)⟩. $
|
$ (l_1, l_2, l_3, \alpha): I \rightarrow \mathbb{R}^4 $ is called the curvature of $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2) $. If $ \boldsymbol{\mu}(t) $ is spacelike (timelike), we call $ \gamma $ a spacelike (timelike) framed base curve.
We know $ t_0 $ is a singular point of $ \gamma $ if and only if $ \alpha(t_0) = 0 $.
Proposition 2.2. $ \gamma:I \rightarrow \mathbb{R}_1^3 $ is a non-lightlike regular curve, and $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve. The relations between the curvature $ (l_1, l_2, l_3, \alpha) $ of $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2) $ and the curvature $ \kappa $ and the torsion $ \tau $ of $ \gamma $ are
$ (|\alpha|\kappa)(t) = \sqrt{ |l_2^2-\sigma l_3^2|(t)}, $ |
$ (-\delta\alpha(l_2^2-\sigma l_3^2)\tau)(t) = (l_2^{'}l_3-l_3^{'}l_2+\sigma l_1l_2^2-l_1l_3^2)(t). $ |
We assume $ l_2^2(t)\neq\sigma l_3^2(t) $ and denote $ \varepsilon = {\rm sgn}(l_2^2-\sigma l_3^2)(t) $.
Definition 2.3. $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve, and its curvature is $ (l_1, l_2, l_3, \alpha) $. Let
$ (¯β1(t)¯β2(t))=1√ε(l22−σl23)(t)(εl2(t)−εσl3(t)−l3(t)l2(t))(β1(t)β2(t)). $
|
We call $ \overline{\mathit{\boldsymbol{\beta}}}_1 $ direction the principal normal direction of $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2) $ and $ \overline{\mathit{\boldsymbol{\beta}}}_2 $ direction the binormal direction of $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2) $.
We have $ \boldsymbol{\mu}(t) = \overline{\mathit{\boldsymbol{\beta}}}_1(t) \wedge \overline{\mathit{\boldsymbol{\beta}}}_2(t) $. $ \{\overline{\mathit{\boldsymbol{\beta}}}_1(t), \overline{\mathit{\boldsymbol{\beta}}}_2(t), \boldsymbol{\mu}(t)\} $ is called the Frenet-type frame along $ \gamma $. Frenet-type formulas are
$ (¯β′1(t)¯β′2(t)μ′(t))=(0L1(t)L2(t)σL1(t)00−σεδL2(t)00)(¯β1(t)¯β2(t)μ(t)), $
|
$ \gamma^{'}(t) = \alpha(t)\boldsymbol{\mu}(t), $ |
where
$ L1(t)=ε(l′2l3−l′3l2l22−σl23(t)+σl1(t)),L2(t)=√ε(l22(t)−σl23(t)). $
|
Then $ (L_1, L_2, 0, \alpha) $ is the curvature of $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $.
Remark 2.4. $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve, and its curvature is $ (l_1, l_2, 0, \alpha) $. If $ l_2(t) > 0 $, then $ \overline{\mathit{\boldsymbol{\beta}}}_1(t) = \mathit{\boldsymbol{\beta}}_1(t) $ and $ \overline{\mathit{\boldsymbol{\beta}}}_2(t) = \mathit{\boldsymbol{\beta}}_2(t) $. If $ l_2(t) < 0 $, then $ \overline{\mathit{\boldsymbol{\beta}}}_1(t) = -\mathit{\boldsymbol{\beta}}_1(t) $ and $ \overline{\mathit{\boldsymbol{\beta}}}_2(t) = -\mathit{\boldsymbol{\beta}}_2(t). $
In this article, we only study the non-lightlike framed curve $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $ and its frame is the Frenet-type frame $ \{\overline{\mathit{\boldsymbol{\beta}}}_1(t), \overline{\mathit{\boldsymbol{\beta}}}_2(t), \mathit{\boldsymbol{\mu}}(t)\} $.
Remark 2.5. $ \gamma:I \rightarrow \mathbb{R}_1^3 $ is a non-lightlike regular curve and $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve. Let $ l_3 = 0 $ be in Proposition 2.2. We have the relations among the curvature $ \kappa $, the torsion $ \tau $ of $ \gamma $ and the curvature $ (L_1, L_2, 0, \alpha) $ of $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $ are
$ \kappa(t) = \dfrac{L_2}{|\alpha|}(t), \tau(t) = -\sigma\delta \dfrac{L_1}{\alpha}(t) $ |
For a non-lightlike framed curve $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $, the rectifying plane of $ \gamma $ at $ t_0 $ is the plane through $ \gamma(t_0) $ and spanned by $ \overline{\mathit{\boldsymbol{\beta}}}_2(t_0) $ and $ \mathit{\boldsymbol{\mu}}(t_0) $.
Definition 3.1. $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve. We call $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $ a non-lightlike framed rectifying curve if $ \gamma $ satisfies
$ \gamma(t) = (\psi\boldsymbol{\mu}+\phi\overline{\mathit{\boldsymbol{\beta}}}_2)(t) $ |
for two functions $ \psi(t), \phi(t): I \rightarrow \mathbb{R} $. $ \gamma $ is called a base curve of a non-lightlike framed rectifying curve (Figure 1).
We call $ f(t) = \langle\gamma(t), \gamma(t)\rangle $ the distance squared function of a non-lightlike framed curve $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $.
Theorem 3.2. $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve. The following statements are equivalent.
(1) $ \langle\gamma(t), \boldsymbol{\mu}(t)\rangle^{'} = \sigma\alpha(t). $
(2) The distance squared function satisfies
$ f(t) = \sigma\langle\gamma(t),\boldsymbol{\mu}(t)\rangle^2-\phi^2\sigma\varepsilon\delta. $ |
(3) $ \langle\gamma(t), \overline{\mathit{\boldsymbol{\beta}}}_2(t)\rangle = \phi\varepsilon\delta, \; \phi \in \mathbb{R}\backslash\{0\}. $
(4) $ \gamma(t) $ is a base curve of a non-lightlike framed rectifying curve.
Proof. Let $ \gamma(t) $ be a base curve of a non-lightlike framed rectifying curve. We know there exist two functions $ \psi(t) $ and $ \phi(t) $ such that
$ γ(t)=(ψμ+ϕ¯β2)(t). $
|
(3.1) |
According to the Frenet-type formulas and deriving (3.1), we have
$ (αμ)(t)=(ψ′μ+(−σεδψL2+σϕL1)¯β1+ϕ′¯β2)(t). $
|
Then
$ ψ′(t)=α(t),(σεδψL2)(t)=(σϕL1)(t),ϕ′(t)=0. $
|
(3.2) |
From the first equation of (3.2), we obtain $ \langle\gamma, \mathit{\boldsymbol{\mu}}\rangle^{'}(t) = \sigma\psi^{'}(t) = \sigma\alpha(t) $. This proves the statement (1).
By (3.1) and (3.2), we can obtain that
$ \langle\gamma,\gamma\rangle(t) = (\sigma\psi^2-\phi^2\sigma\varepsilon\delta)(t) = (\sigma\langle\gamma,\boldsymbol{\mu}\rangle^2-\phi^2\sigma\varepsilon\delta)(t), $ |
If $ \phi = 0 $, then $ \psi(t) = 0 $ and $ \gamma(t) $ is a point. So $ \phi\neq0 $. This proves statements (2) and (3).
Conversely, we assume the statement (1) holds, then
$ \langle\gamma,\boldsymbol{\mu}\rangle^{'}(t) = (\langle\alpha\boldsymbol{\mu},\boldsymbol{\mu}\rangle+\langle\gamma,-\sigma\varepsilon\delta L_2\overline{\mathit{\boldsymbol{\beta}}}_1\rangle)(t) = \sigma\alpha(t). $ |
By assumption, we obtain $ \langle\gamma(t), \overline{\mathit{\boldsymbol{\beta}}}_1(t)\rangle = 0 $. So $ \gamma(t) $ is a base curve of a non-lightlike framed rectifying curve.
If the statement (2) holds, then
$ \langle\gamma,\gamma\rangle(t) = (\sigma\langle\gamma,\mathit{\boldsymbol{\mu}}\rangle^2-\phi^2\sigma\varepsilon\delta)(t). $ |
Then,
$ 2\langle\gamma,\alpha\boldsymbol{\mu}\rangle(t) = (2\sigma\langle\gamma,\boldsymbol{\mu}\rangle\sigma\alpha +\langle\gamma,-\sigma\varepsilon\delta L_2\overline{\mathit{\boldsymbol{\beta}}}_1\rangle )(t). $ |
So we get $ \langle\gamma(t), \overline{\mathit{\boldsymbol{\beta}}}_1(t)\rangle = 0. \; \gamma(t) $ is a base curve of a non-lightlike framed rectifying curve.
If the statement (3) holds, $ \langle\gamma(t), \overline{\mathit{\boldsymbol{\beta}}}_2(t)\rangle = \phi\sigma\varepsilon\delta. $ By taking the derivative, we have
$ (\langle\alpha\boldsymbol{\mu},\overline{\mathit{\boldsymbol{\beta}}}_2\rangle+\langle\gamma,\sigma L_1\overline{\mathit{\boldsymbol{\beta}}}_1\rangle)(t) = 0. $ |
So $ \langle\gamma(t), \overline{\mathit{\boldsymbol{\beta}}}_1(t)\rangle = 0. \; \gamma(t) $ is a base curve of a non-lightlike framed rectifying curve.
Remark 3.3. $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $ is a non-lightlike framed rectifying curve. If the base curve of a non-lightlike framed rectifying curve $ \gamma $ is singular at $ t_0 $, then from Eq (3.2) and the statement (2) in Theorem 3.2, we have
$ \dfrac{L_1}{L_2}(t) = \dfrac{\sigma\delta\psi}{\phi}(t), \left(\dfrac{L_1}{L_2}(t)\right)^{'} = \dfrac{\sigma\delta\alpha}{\phi}(t). $ |
So $ \left(\dfrac{L_1(t_0)}{L_2(t_0)}\right)^{'} = 0 $. Moreover, we know
$ f^{'}(t) = (2\alpha\langle\gamma,\boldsymbol{\mu}\rangle)(t). $ |
So $ f^{'}(t_0) = 0 $.
Theorem 4.1. $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed rectifying curve. $ \gamma(t) $ is a base curve of a non-lightlike framed rectifying curve if and only if $ \gamma(t) $ can be expressed as one of the following two equations
$ \gamma(t) = \rho(\sec(\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M))\mathit{\boldsymbol{y}}(t), $ |
where $ M $ is a constant, $ \rho \in \mathbb{R}\backslash\{0\} $ and $ \mathit{\boldsymbol{y}}(t) $ is a spacelike framed base curve on $ S_1^2 $. Or
$ \gamma(t) = 2\phi\dfrac{\mathrm{e}^{\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+\tfrac{1}{2}M}}{|1-\mathrm{e}^{2\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M}|}\mathit{\boldsymbol{y}}(t), $ |
where $ M $ is a constant, $ \phi \in \mathbb{R}\backslash\{0\} $ and $ \mathit{\boldsymbol{y}}(t) $ is a spacelike (timelike) framed base curve on $ H_0^2 $ ($ S_1^2 $).
Proof. First, we prove the first equation. Let $ \gamma(t) $ be a base curve of a spacelike framed rectifying curve, which has a spacelike rectifying plane. So $ \langle\gamma, \gamma\rangle(t) = (\psi^2(t)+\rho^2)(t) $, where $ \rho \in \mathbb{R}\backslash\{{0}\} $. Let $ \mathit{\boldsymbol{y}}(t) = \left(\dfrac{1}{({\psi}^2+\rho^2)^{\tfrac{1}{2}}}\gamma\right)(t) $ be a spacelike framed base curve on $ S_1^2 $. We have
$ \gamma^{'}(t) = \left(\dfrac{\psi\alpha}{(\psi^2+\rho^2)^{\tfrac{1}{2}}}\mathit{\boldsymbol{y}}+(\psi^2+\rho^2)^{\tfrac{1}{2}}\mathit{\boldsymbol{y}}^{'}\right)(t). $ |
Since $ \gamma^{'}(t) = \alpha(t)\boldsymbol{\mu}(t) $ and $ \mathit{\boldsymbol{y}}^{'}(t) $ is orthogonal to $ \mathit{\boldsymbol{y}}(t) $, we can obtain
$ \langle\gamma^{'},\gamma^{'}\rangle(t) = \left(\dfrac{\psi^2\alpha^2} {\psi^2+\rho^2}+(\psi^2+\rho^2)\langle {\mathit{\boldsymbol{y}}}^{'},{\mathit{\boldsymbol{y}}}^{'}\rangle\right)(t). $ |
So
$ ||\mathit{\boldsymbol{y}}^{'}(t)|| = \left(\dfrac{|\rho\alpha|}{\psi^2+\rho^2}\right)(t). $ |
We only consider $ \rho\alpha(t)\geq0 $, and it is similar for $ \rho\alpha(t)\leq0 $. Then
$ \int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M = \arctan \dfrac{\psi(t)}{\rho}. $ |
That is
$ \psi(t) = \rho \tan(\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M). $ |
So
$ \gamma(t) = \rho(\sec(\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M))\mathit{\boldsymbol{y}}(t). $ |
Conversely, let $ ({\mathit{\boldsymbol{y}}}, \boldsymbol{\beta}_{y_1}, \boldsymbol{\beta}_{y_2}) $ be a spacelike framed curve and $ \gamma(t) $ be defined by
$ \gamma(t) = \rho(\sec(\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M))\mathit{\boldsymbol{y}}(t). $ |
Let $ \overline{\psi}(t) = \rho(\tan^2(\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M)) $ and $ \overline{\alpha}(t) = \overline{\psi}^{'}(t) $. Then
$ \gamma(t) = \left((\overline{\psi}^2+\rho^2)^{\tfrac{1}{2}}\mathit{\boldsymbol{y}}\right)(t), $ |
$ \gamma^{'}(t) = \left(\dfrac{\overline{\psi}\overline{\alpha}}{(\overline{\psi}^2+\rho^2)^{\tfrac{1}{2}}}\mathit{\boldsymbol{y}} +(\overline{\psi}^2+\rho^2)^{\tfrac{1}{2}}\mathit{\boldsymbol{y}}^{'}\right)(t). $ |
Since $ \mathit{\boldsymbol{y}}(t) $ is also a spacelike framed curve, we define that $ \mathit{\boldsymbol{y}}^{'}(t) = \psi(t)\boldsymbol{\mu}_{y}(t) $, where $ \boldsymbol{\mu}_{y}(t) = \mathit{\boldsymbol{\beta}}_{y_1}(t) \wedge\mathit{\boldsymbol{\beta}}_{y_2}(t) $. We can obtain
$ \int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M = \arctan \dfrac{\overline{\psi}(t)}{\rho} $ |
and
$ ||\mathit{\boldsymbol{y}}^{'}(t)|| = \left(\dfrac{|\rho\overline{\alpha}|}{\overline{\psi}^2+\rho^2}\right)(t). $ |
Therefore, we denote that $ \mathit{\boldsymbol{y}}^{'}(t) = \left(\dfrac{\rho\overline{\alpha}}{\overline{\psi}^2+\rho^2}\boldsymbol{\mu}_{y}\right)(t) $. That is $ y(t) = \left(\dfrac{\rho\overline{\alpha}}{\overline{\psi}^2(t)+\rho^2}\right)(t) $. Then we have
$ \gamma^{'}(t) = \left(\overline{\alpha}\dfrac{\overline{\psi}}{(\overline{\psi}^2+\rho^2)^{\tfrac{1}{2}}}\mathit{\boldsymbol{y}}+ \dfrac{\rho}{(\overline{\psi}^2+\rho^2)^{\tfrac{1}{2}}}\boldsymbol{\mu}_{y}\right)(t) = (\overline{\alpha}\boldsymbol{\mu})(t). $ |
Hence, we can calculate that $ \langle\gamma, \mathit{\boldsymbol{\mu}}\rangle^2(t) = \overline{\psi}(t) $. Since $ \langle\gamma, \gamma\rangle(t) = (\overline{\psi}^2+\rho^2)(t) $, we have
$ \langle\gamma,\gamma\rangle(t) = (\langle\gamma,\mathit{\boldsymbol{\mu}}\rangle^2+\rho^2)(t). $ |
It indicates that the function satisfies the statement (2) in Theorem 3.2. So $ \gamma(t) $ is a base curve of a spacelike framed rectifying curve.
Next we prove the second equation. Let $ \gamma(t) $ be the base curve of a spacelike framed rectifying curve, which has a timelike rectifying plane and a spacelike position vector. (We only prove this case, and the proof for other cases is similar to it.) So $ \langle\gamma, \gamma\rangle(t) = (\psi^2-\phi^2)(t) $, where $ \phi \in \mathbb{R}\backslash\{{0}\} $. Let $ \mathit{\boldsymbol{y}}(t) = \left(\dfrac{1}{({\psi}^2-\phi^2)^{\tfrac{1}{2}}}\gamma\right)(t) $ be a spacelike framed base curve on $ S_1^2 $. We have
$ \gamma^{'}(t) = \left(\dfrac{-\psi\alpha}{(\psi^2-\phi^2)^{\tfrac{1}{2}}}\mathit{\boldsymbol{y}}+(\psi^2-\phi^2)^{\tfrac{1}{2}}\mathit{\boldsymbol{y}}^{'}\right)(t), $ |
Since $ \gamma^{'}(t) = (\alpha\boldsymbol{\mu})(t) $ and $ \mathit{\boldsymbol{y}}^{'}(t) $ is orthogonal to $ \mathit{\boldsymbol{y}}(t) $,
$ \langle\gamma^{'},\gamma^{'}\rangle(t) = \alpha^2(t) = \left(\dfrac{-\psi^2\alpha^2} {\psi^2-\phi^2}+(\psi^2-\phi^2)\langle {\mathit{\boldsymbol{y}}}^{'},{\mathit{\boldsymbol{y}}}^{'}\rangle\right)(t). $ |
So
$ ||\mathit{\boldsymbol{y}}^{'}(t)|| = \left|\dfrac{\phi\alpha}{\psi(t)^2-\phi^2}\right|(t) $ |
and
$ \int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M = \dfrac{1}{2}\ln\left|\dfrac{\psi(t)-\phi}{\psi(t)+\phi}\right|. $ |
Then,
$ \psi(t) = \phi\dfrac{1+\mathrm{e}^{2\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M}}{1-\mathrm{e}^{2\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M}}. $ |
So
$ \gamma(t) = 2\phi\dfrac{\mathrm{e}^{\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+\tfrac{1}{2}M}}{|1-\mathrm{e}^{2\int||\mathit{\boldsymbol{y}}^{'}(t)||{\rm d}t+M}|}\mathit{\boldsymbol{y}}(t). $ |
Conversely, we can obtain the proof of this section by referring to the proof of the first equation.
Remark 4.2. If $ \gamma(t) $ is a base curve of a spacelike framed rectifying curve, which has a timelike rectifying plane and a lightlike position vector, then $ \langle \gamma(t), \gamma(t)\rangle = 0 $. That means $ \psi^2(t) = \phi^2 $, $ \alpha(t) = 0 $, then $ \gamma(t) $ is a point. So $ \gamma(t) $ does not exist.
Example 4.3. Let $ {\mathit{\boldsymbol{y}}}_1(t) = \left(-\dfrac{\sqrt{3}}{2}, \dfrac{\sqrt{7}}{2}\cos2t, \dfrac{\sqrt{7}}{2}\sin2t\right), t\in\left(-\dfrac{\pi}{2\sqrt{3}}, \dfrac{\pi}{2\sqrt{3}}\right) $ be a curve on $ S_1^2 $. We have $ ||\mathit{\boldsymbol{y}}_1^{'}(t)|| = \sqrt{7} $. Let $ \rho = 1 $ and $ M = 0 $. We have the curve
$ \gamma_1(t) = (\sec\sqrt{7}t)\left(-\dfrac{\sqrt{3}}{2},\dfrac{\sqrt{7}}{2}\cos2t,\dfrac{\sqrt{7}}{2}\sin2t\right) $ |
is a base curve of a non-lightlike framed rectifying curve in $ \mathbb{R}_1^3 $ (Figure 2).
Example 4.4. Let $ \mathit{\boldsymbol{y}}_2(t) = (\sinh t^2, \cosh t^2, 0), t\in\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right) $ be a curve on $ S_1^2 $. We have $ ||\mathit{\boldsymbol{y}}_2^{'}(t)|| = 2|t| $. Let $ \rho = 1 $ and $ M = 0 $. We have the curve
$ \gamma_2(t) = \sec t^2(\sinh t^2,\cosh t^2,0) $ |
is a base curve of a non-lightlike framed rectifying curve with a singular point $ \mathbb{R}_1^3 $ (Figure 3).
Definition 5.1. $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve. $ \gamma $ is called a non-lightlike framed helix if there exists a fixed unit vector $ \boldsymbol{\eta} $ satisfying
$ \langle\boldsymbol{\mu}(t),\boldsymbol\eta\rangle = p, $ |
where $ p \in \mathbb{R}\backslash\{0\} $.
Remark 5.2. For a non-lightlike framed curve $ (\gamma, \mathit{\boldsymbol{\beta}}_1, \mathit{\boldsymbol{\beta}}_2) $, we can also call $ \gamma $ a non-lightlike framed helix if there exists a fixed unit vector $ \boldsymbol{\eta} $ satisfying
$ \langle\boldsymbol{\mu}(t),\boldsymbol\eta\rangle = p, $ |
where $ p \in \mathbb{R}\backslash\{0\} $.
$ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve with the curvature $ (L_1, L_2, 0, \alpha) $. $ \gamma $ is a non-lightlike framed helix. We consider the ratio $ \dfrac{L_1(t)}{L_2(t)} $.
Since
$ \langle\mathit{\boldsymbol{\mu}},\boldsymbol\eta\rangle^{'}(t) = (\langle-\sigma\varepsilon\delta L_2\overline{\mathit{\boldsymbol{\beta}}}_1,\boldsymbol\eta\rangle(t) = 0. $ |
Then
$ ⟨¯β1(t),η⟩=0. $
|
(5.1) |
$ \mathit{\boldsymbol{\eta}} $ is located in the plane, and the plane has basis vectors $ \boldsymbol{\mu}(t) $ and $ \overline{\mathit{\boldsymbol{\beta}}}_2(t) $. Since $ \langle\boldsymbol{\mu}(t), \mathit{\boldsymbol{\eta}}\rangle = p $, we have $ \langle\overline{\mathit{\boldsymbol{\beta}}}_2(t), \mathit{\boldsymbol{\eta}}\rangle $ is a constant, denoted by $ p_1 $. If $ p_1 = 0 $, then $ \boldsymbol{\mu}(t) = \dfrac{\sigma}{p}\mathit{\boldsymbol{\eta}} $. At this point, $ \gamma $ is a segment of a straight line. So we always assume $ p_1\neq0 $. We take the derivative of (5.1), so
$ \langle L_2\boldsymbol{\mu}+L_1\overline{\mathit{\boldsymbol{\beta}}}_2,\mathit{\boldsymbol{\eta}}\rangle(t) = 0. $ |
Then
$ \dfrac{L_1}{L_2}(t) = -\dfrac{p}{p_1}. $ |
By Theorem 3.2, we can obtain $ \gamma(t) $ is a base curve of the non-lightlike framed rectifying curve if and only if
$ \dfrac{L_1}{L_2}(t) = c_1\int{\alpha(t)}{\rm d}t+c_2, $ |
where $ c_1, c_2 \in \mathbb{R} $, $ c_1\neq0 $.
Proposition 5.3. $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve and its curvature is $ (L_1, L_2, 0, \alpha) $. The curvature satisfies $ \left(\dfrac{L_1(t)}{L_2(t)}\right)^{'} = c_1\alpha(t). $
(1) If $ c_1 = 0 $, then $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $ is a non-lightlike framed helix.
(2) If $ c_1\neq0 $, then $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $ is a non-lightlike framed rectifying curve.
Definition 5.4. $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve and its curvature is $ (L_1, L_2, 0, \alpha) $. We call $ {\mathit{\boldsymbol{d}}}(t) $ the centrode of $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $ if
$ {\mathit{\boldsymbol{d}}}(t) = (L_1\boldsymbol{\mu}+L_2\overline{\mathit{\boldsymbol{\beta}}}_2)(t). $ |
Proposition 5.5. $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2):I \rightarrow \mathbb{R}_1^3\times\Delta $ is a non-lightlike framed curve, and its curvature is $ (L_1, L_2, 0, \alpha) $. Where $ L_1(t) $ is a nonzero constant and $ L_2(t) $ is a nonconstant function.
(1) Let $ {\mathit{\boldsymbol{d}}}(t) = (L_1\boldsymbol{\mu}+L_2\overline{\mathit{\boldsymbol{\beta}}}_2)(t) $ be the centrode of $ (\gamma, \overline{\mathit{\boldsymbol{\beta}}}_1, \overline{\mathit{\boldsymbol{\beta}}}_2) $. Then $ \mathit{\boldsymbol{d}}(t) $ is a base curve of a non-lightlike framed rectifying curve.
(2) The base curve of any non-lightlike framed rectifying curve in $ \mathbb{R}_1^3 $ is the centrode of some non-lightlike framed curve.
Future research could extend the concept of non-lightlike framed rectifying curves to high-dimensional Minkowski space or it could study lightlike framed rectifying curves. This provides assistance in studying the properties and classification of higher-dimensional non-lightlike framed rectifying curves.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the National Natural Science Foundation of China (Grant No. 11671070).
The authors declare that there is no conflict of interest.
[1] |
Abubakar A., Li M., Pan G., Liu J., Habashy T.M. (2011) Joint MT and CSEM data inversion using a multiplicative cost function approach. Geophysics 76: F203-F214. doi: 10.1190/1.3560898
![]() |
[2] |
Colombo D., De Stefano (2007) M., Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data. The Leading Edge 26: 326-331. doi: 10.1190/1.2715057
![]() |
[3] | Colombo D., Mantovani M., DeStefano M., Garrad D., Al Lawati H. (2007) Simultaneous Joint Inversion of Seismic and Gravity data for long offset Pre-Stack Depth Migration in Northern Oman, CSEG, Calgary. |
[4] |
Commer M., Newman G.A. (2009) Three-dimensional controlled-source electromagnetic andmagnetotelluric joint inversion. Geophys. J. Int 178: 1305-1316. doi: 10.1111/j.1365-246X.2009.04216.x
![]() |
[5] |
Constable S., Srnka L. (2007) An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 72: WA3-WA12. doi: 10.1190/1.2432483
![]() |
[6] | Dell’Aversana P., Zanoletti F. (2010) Spectral analysis of marine CSEM data symmetry. First Break 28: 44-51. |
[7] |
Dell’Aversana P., Bernasconi G., Miotti F., Rovetta D. (2011) Joint inversion of rock properties from sonic, resistivity and density well-log measurements. Geophysical Prospecting 59: 1144-1154. doi: 10.1111/j.1365-2478.2011.00996.x
![]() |
[8] | Dell’Aversana P., Colombo S., Ciurlo B., Leutscher J., Seldal J. (2012) CSEM data interpretation constrained by seismic and gravity data. An application in a complex geological setting. First Break 30: 35-44. |
[9] | Dell’Aversana P. (2014) Integrated Geophysical Models: Combining Rock Physics with Seismic, Electromagnetic and Gravity Data. EAGE Publications . |
[10] |
DeStefano M., Golfré Andreasi F., Re S., Virgilio M., Snyder F.F. (2011) Multiple-domain, simultaneous joint inversion of geophysical data with application to subsalt imaging. Geophysics 76: R69. doi: 10.1190/1.3554652
![]() |
[11] | Eidesmo T., Ellingsrud S., MacGregor L.M., Constable S., Sinha M.C., Johansen S., Kong F.N., Westerdah H. (2002) Sea bed logging, a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break 20: 144-152. |
[12] |
Gallardo L.A., Meju M.A. (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. GEOPHYSICAL RESEARCH LETTERS 30: 1658. doi: 10.1029/2003GL017370
![]() |
[13] | Gallardo L.A., Meju M.A. (2004) Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. J. geophys 109. |
[14] |
Gallardo L.A., Meju M.A. (2007) Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophys. J. Int. 169: 1261-1272. doi: 10.1111/j.1365-246X.2007.03366.x
![]() |
[15] |
Haber E., Oldenburg D.W (1997) Joint inversion: a structural approach. Inverse Problems 13: 63-77. doi: 10.1088/0266-5611/13/1/006
![]() |
[16] |
Hu W., Abubakar A., Habashy T.M. (2009) Joint electromagnetic and seismic inversion using structural constraints. Geophysics 74: R99-R109. doi: 10.1190/1.3246586
![]() |
[17] | Jin J. (2002) The Finite Element Method in Electromagnetics. John Wiley&Sons . |
[18] | Kennett B.L.N. (1983) Seismic wave propagation in stratified media. Cambridge University Press . |
[19] |
Liang L., Abubakar A., Habashy T.M. (2011) Estimating petrophysical parameters and average mud-filtrate invasion rates using joint inversion of induction logging and pressure transient data. Geophysics 76: E21-E34. doi: 10.1190/1.3541963
![]() |
[20] |
Moorkamp M., Heincke B., Jegen M., Roberts A.W., Hobbs R.W. (2011) A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophys. J. Int 184: 477-493. doi: 10.1111/j.1365-246X.2010.04856.x
![]() |
[21] | Raymer L.L., Hunt E.R., Gardner J.S. (1980) An improved sonic transit time to porosity transform. 21st Annual Logging Symposium. Transactions of the Society of Professional Well Log Analysts P546. |
[22] | Schön J.H. (2011) Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Elsevier . |
[23] | Tarantola A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics . |
[24] |
Thomson W.T. (1950) Transmission of Elastic Waves through a Stratified Solid medium. Jour. Appl. Phys. 21: 89-93. doi: 10.1063/1.1699629
![]() |
[25] |
Vozoff K., Jupp D.L.B. (1975) Joint Inversion of Geophysical Data. Geophys. J 42: 977-991. doi: 10.1111/j.1365-246X.1975.tb06462.x
![]() |
1. | Klaus Deckelnick, Marco Doemeland, Hans-Christoph Grunau, Boundary value problems for a special Helfrich functional for surfaces of revolution: existence and asymptotic behaviour, 2021, 60, 0944-2669, 10.1007/s00526-020-01875-6 | |
2. | L. De Luca, M. Ponsiglione, Variational models in elasticity, 2021, 3, 2640-3501, 1, 10.3934/mine.2021015 | |
3. | Marco Pozzetta, On the Plateau–Douglas problem for the Willmore energy of surfaces with planar boundary curves, 2021, 27, 1292-8119, S2, 10.1051/cocv/2020049 | |
4. | Anthony Gruber, Magdalena Toda, Hung Tran, Stationary surfaces with boundaries, 2022, 62, 0232-704X, 305, 10.1007/s10455-022-09850-4 | |
5. | Manuel Schlierf, On the convergence of the Willmore flow with Dirichlet boundary conditions, 2024, 241, 0362546X, 113475, 10.1016/j.na.2023.113475 | |
6. | Anna Kubin, Luca Lussardi, Marco Morandotti, Direct Minimization of the Canham–Helfrich Energy on Generalized Gauss Graphs, 2024, 34, 1050-6926, 10.1007/s12220-024-01564-2 | |
7. | Manuel Schlierf, Global existence for the Willmore flow with boundary via Simon’s Li–Yau inequality, 2025, 1864-8258, 10.1515/acv-2024-0018 |