Review Special Issues

Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals

  • Received: 03 November 2014 Accepted: 01 March 2015 Published: 04 March 2015
  • In females, X chromosome inactivation (XCI) ensures transcriptional silencing of one of the two Xs (either in a random or imprinted fashion) in somatic cells. Comparing this silencing between species has offered insight into different mechanisms of X inactivation, providing clues into the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a common theme in XCI of therian mammals (eutherian and marsupial). Eutherian X inactivation is regulated by the noncoding RNA product of XIST, within a cis-acting master control region called the X inactivation center (XIC). Marsupials XCI is XIST independent. Instead, XCI is controlled by the long-noncoding RNA Rsx, which appears to be a functional analog of the eutherian XIST gene, insofar that its transcript coats the inactive X and represses activity of genes in cis. In this review we discuss XCI in eutherians, and contrast imprinted X inactivation in mouse and marsupials. We provide particular focus on the evolution of genomic elements that confer the unique epigenetic features that characterize the inactive X chromosome.

    Citation: Shafagh A. Waters, Paul D. Waters. Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals[J]. AIMS Genetics, 2015, 2(2): 110-126. doi: 10.3934/genet.2015.2.110

    Related Papers:

  • In females, X chromosome inactivation (XCI) ensures transcriptional silencing of one of the two Xs (either in a random or imprinted fashion) in somatic cells. Comparing this silencing between species has offered insight into different mechanisms of X inactivation, providing clues into the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a common theme in XCI of therian mammals (eutherian and marsupial). Eutherian X inactivation is regulated by the noncoding RNA product of XIST, within a cis-acting master control region called the X inactivation center (XIC). Marsupials XCI is XIST independent. Instead, XCI is controlled by the long-noncoding RNA Rsx, which appears to be a functional analog of the eutherian XIST gene, insofar that its transcript coats the inactive X and represses activity of genes in cis. In this review we discuss XCI in eutherians, and contrast imprinted X inactivation in mouse and marsupials. We provide particular focus on the evolution of genomic elements that confer the unique epigenetic features that characterize the inactive X chromosome.


    加载中
    [1] Cortez D, Marin R, Toledo-Flores D, et al. (2014) Origins and functional evolution of Y chromosomes across mammals. Nature 508: 488-493. doi: 10.1038/nature13151
    [2] Graves JA (2006) Sex chromosome specialization and degeneration in mammals. Cell 124: 901-914. doi: 10.1016/j.cell.2006.02.024
    [3] Charlesworth B (1991) The evolution of sex chromosomes. Science 251: 1030-1033. doi: 10.1126/science.1998119
    [4] Graves JAM (1995) The origin and function of the mammalian Y chromosome and Y-borne - An evolving understanding. Bioessays 17: 311-320. doi: 10.1002/bies.950170407
    [5] Grützner F, Rens W, Tsend-Ayush E, et al. (2004) In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432: 913-917. doi: 10.1038/nature03021
    [6] Veyrunes F, Waters PD, Miethke P, et al. (2008) Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18: 965-973 doi: 10.1101/gr.7101908
    [7] Rens W, O'Brien PC, Grutzner F, et al. (2007) The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol 8: R243. doi: 10.1186/gb-2007-8-11-r243
    [8] Mori MA, Lapunzina P, Delicado A, et al. (2004) A prenatally diagnosed patient with full monosomy 21: ultrasound, cytogenetic, clinical, molecular, and necropsy findings. Am J Med Genet A 127A: 69-73. doi: 10.1002/ajmg.a.20622
    [9] Ohno S (1967) Sex Chromosomes and Sex-linked Genes. New York: Springer-Verlag.
    [10] Mank JE (2013) Sex chromosome dosage compensation: definitely not for everyone. Trends Genet 29: 677-683. doi: 10.1016/j.tig.2013.07.005
    [11] Julien P, Brawand D, Soumillon M, et al. (2012) Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol 10: e1001328. doi: 10.1371/journal.pbio.1001328
    [12] Pessia E, Engelstadter J, Marais GA (2014) The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis? Cell Mol Life Sci 71: 1383-1394. doi: 10.1007/s00018-013-1499-6
    [13] Deng X, Hiatt JB, Nguyen DK, et al. (2011) Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat Genet 43: 1179-1185. doi: 10.1038/ng.948
    [14] Kharchenko PV, Xi R, Park PJ (2011) Evidence for dosage compensation between the X chromosome and autosomes in mammals. Nat Genet 43: 1167-1169. doi: 10.1038/ng.991
    [15] Lin F, Xing K, Zhang J, et al. (2012) Expression reduction in mammalian X chromosome evolution refutes Ohno's hypothesis of dosage compensation. Proc Natl Acad Sci U S A 109: 11752-11757. doi: 10.1073/pnas.1201816109
    [16] Lin H, Halsall JA, Antczak P, et al. (2011) Relative overexpression of X-linked genes in mouse embryonic stem cells is consistent with Ohno's hypothesis. Nat Genet 43: 1169-1170. doi: 10.1038/ng.992
    [17] Pessia E, Makino T, Bailly-Bechet M, et al. (2012) Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci U S A 109: 5346-5351. doi: 10.1073/pnas.1116763109
    [18] Yildirim E, Sadreyev RI, Pinter SF, et al. (2012) X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription. Nat Struct Mol Biol 19: 56-61.
    [19] Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190: 372-373. doi: 10.1038/190372a0
    [20] Al Nadaf S, Waters PD, Koina E, et al. (2010) Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic. Genome Biol 11: R122. doi: 10.1186/gb-2010-11-12-r122
    [21] Chaumeil J, Waters PD, Koina E, et al. (2011) Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals. PLoS One 6: e19040. doi: 10.1371/journal.pone.0019040
    [22] Grant J, Mahadevaiah SK, Khil P, et al. (2012) Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487: 254-258. doi: 10.1038/nature11171
    [23] Rens W, Wallduck MS, Lovell FL, et al. (2010) Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc Natl Acad Sci U S A 107: 17657-17662. doi: 10.1073/pnas.0910322107
    [24] Sharman GB (1971) Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230: 231-232. doi: 10.1038/230231a0
    [25] Wang X, Douglas KC, Vandeberg JL, et al. (2014) Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res 24: 70-83. doi: 10.1101/gr.161919.113
    [26] Franco MJ, Sciurano RB, Solari AJ (2007) Protein immunolocalization supports the presence of identical mechanisms of XY body formation in eutherians and marsupials. Chromosome Res 15: 815-824. doi: 10.1007/s10577-007-1165-7
    [27] Hornecker JL, Samollow PB, Robinson ES, et al. (2007) Meiotic sex chromosome inactivation in the marsupial Monodelphis domestica. Genesis 45: 696-708. doi: 10.1002/dvg.20345
    [28] Namekawa SH, VandeBerg JL, McCarrey JR, et al. (2007) Sex chromosome silencing in the marsupial male germ line. Proc Natl Acad Sci U S A 104: 9730-9735. doi: 10.1073/pnas.0700323104
    [29] Payer B, Lee JT, Namekawa SH (2011) X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet 130: 265-280. doi: 10.1007/s00439-011-1024-7
    [30] Turner JM (2007) Meiotic sex chromosome inactivation. Development 134: 1823-1831. doi: 10.1242/dev.000018
    [31] Mahadevaiah SK, Royo H, Vandeberg JL, et al. (2009) Key Features of the X Inactivation Process Are Conserved between Marsupials and Eutherians. Curr Biol 19: 1478-1484. doi: 10.1016/j.cub.2009.07.041
    [32] Namekawa SH, Park PJ, Zhang LF, et al. (2006) Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16: 660-667. doi: 10.1016/j.cub.2006.01.066
    [33] Namekawa SH, Payer B, Huynh KD, et al. (2010) Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30: 3187-3205. doi: 10.1128/MCB.00227-10
    [34] Kalantry S, Purushothaman S, Bowen RB, et al. (2009) Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460: 647-651.
    [35] Okamoto I, Arnaud D, Le Baccon P, et al. (2005) Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438: 369-373. doi: 10.1038/nature04155
    [36] Patrat C, Okamoto I, Diabangouaya P, et al. (2009) Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc Natl Acad Sci U S A 106: 5198-5203. doi: 10.1073/pnas.0810683106
    [37] Heard E, Disteche CM (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20: 1848-1867. doi: 10.1101/gad.1422906
    [38] Huynh KD, Lee JT (2001) Imprinted X inactivation in eutherians: a model of gametic execution and zygotic relaxation. Curr Opin Cell Biol 13: 690-697. doi: 10.1016/S0955-0674(00)00272-6
    [39] Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256: 640-642. doi: 10.1038/256640a0
    [40] Okamoto I, Heard E (2009) Lessons from comparative analysis of X-chromosome inactivation in mammals. Chromosome Res 17: 659-669. doi: 10.1007/s10577-009-9057-7
    [41] Latham KE (2005) X chromosome imprinting and inactivation in preimplantation mammalian embryos. Trends Genet 21: 120-127. doi: 10.1016/j.tig.2004.12.003
    [42] Mak W, Nesterova TB, de Napoles M, et al. (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303: 666-669. doi: 10.1126/science.1092674
    [43] Wake N, Takagi N, Sasaki M (1976) Non-random inactivation of X chromosome in the rat yolk sac. Nature 262: 580-581. doi: 10.1038/262580a0
    [44] Dindot SV, Farin PW, Farin CE, et al. (2004) Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol Reprod 71: 470-478. doi: 10.1095/biolreprod.103.025775
    [45] Xue F, Tian XC, Du F, et al. (2002) Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet 31: 216-220. doi: 10.1038/ng900
    [46] Moreira de Mello JC, de Araujo ES, Stabellini R, et al. (2010) Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLoS One 5: e10947. doi: 10.1371/journal.pone.0010947
    [47] Okamoto I, Patrat C, Thepot D, et al. (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472: 370-374. doi: 10.1038/nature09872
    [48] Cooper DW, VandeBerg JL, Sharman GB, et al. (1971) Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation. Nat New Biol 230: 155-157. doi: 10.1038/newbio230155a0
    [49] Graves JA (1967) DNA synthesis in chromosomes of cultured leucocytes from two marsupial species. Exp Cell Res 46: 37-57. doi: 10.1016/0014-4827(67)90407-7
    [50] Hansen RS, Canfield TK, Fjeld AD, et al. (1996) Role of late replication timing in the silencing of X-linked genes. Hum Mol Genet 5: 1345-1353. doi: 10.1093/hmg/5.9.1345
    [51] Priest JH, Heady JE, Priest RE (1967) Delayed onset of replication of human X chromosomes. J Cell Biol 35: 483-487. doi: 10.1083/jcb.35.2.483
    [52] Schmidt M, Migeon BR (1990) Asynchronous replication of homologous loci on human active and inactive X chromosomes. Proc Natl Acad Sci U S A 87: 3685-3689. doi: 10.1073/pnas.87.10.3685
    [53] Taylor JH (1960) Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J Biophys Biochem Cytol 7: 455-464. doi: 10.1083/jcb.7.3.455
    [54] Torchia BS, Call LM, Migeon BR (1994) DNA replication analysis of FMR1, XIST, and factor 8C loci by FISH shows nontranscribed X-linked genes replicate late. Am J Hum Genet 55: 96-104.
    [55] Basu R, Zhang LF (2011) X chromosome inactivation: a silence that needs to be broken. Genesis 49: 821-834. doi: 10.1002/dvg.20792
    [56] Kaslow DC, Migeon BR (1987) DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proc Natl Acad Sci U S A 84: 6210-6214. doi: 10.1073/pnas.84.17.6210
    [57] Disteche CM, Filippova GN, Tsuchiya KD (2002) Escape from X inactivation. Cytogenet Genome Res 99: 36-43. doi: 10.1159/000071572
    [58] Berletch JB, Yang F, Disteche CM (2010) Escape from X inactivation in mice and humans. Genome Biol 11: 213. doi: 10.1186/gb-2010-11-6-213
    [59] Yang F, Babak T, Shendure J, et al. (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20: 614-622. doi: 10.1101/gr.103200.109
    [60] Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434: 400-404. doi: 10.1038/nature03479
    [61] Brown CJ, Greally JM (2003) A stain upon the silence: genes escaping X inactivation. Trends Genet 19: 432-438. doi: 10.1016/S0168-9525(03)00177-X
    [62] Disteche CM (1995) Escape from X inactivation in human and mouse. Trends Genet 11: 17-22. doi: 10.1016/S0168-9525(00)88981-7
    [63] Calabrese JM, Sun W, Song L, et al. (2012) Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151: 951-963. doi: 10.1016/j.cell.2012.10.037
    [64] Merzouk S, Deuve JL, Dubois A, et al. (2014) Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells. Epigenetics Chromatin 7: 11. doi: 10.1186/1756-8935-7-11
    [65] Plath K, Fang J, Mlynarczyk-Evans SK, et al. (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131-135. doi: 10.1126/science.1084274
    [66] Okamoto I, Otte AP, Allis CD, et al. (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303: 644-649. doi: 10.1126/science.1092727
    [67] Senner CE, Krueger F, Oxley D, et al. (2012) DNA methylation profiles define stem cell identity and reveal a tight embryonic-extraembryonic lineage boundary. Stem Cells 30: 2732-2745. doi: 10.1002/stem.1249
    [68] Deakin JE (2013) Marsupial X chromosome inactivation: Past, present and future. Aust J Zool 61: 69-77. doi: 10.1071/ZO12108
    [69] Deakin JE, Graves JA, Rens W (2012) The evolution of marsupial and monotreme chromosomes. Cytogenet Genome Res 137: 113-129. doi: 10.1159/000339433
    [70] Kohlmaier A, Savarese F, Lachner M, et al. (2004) A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2: E171. doi: 10.1371/journal.pbio.0020171
    [71] Chureau C, Prissette M, Bourdet A, et al. (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12: 894-908.
    [72] Davidow LS, Breen M, Duke SE, et al. (2007) The search for a marsupial XIC reveals a break with vertebrate synteny. Chromosome Res 15: 137-146. doi: 10.1007/s10577-007-1121-6
    [73] Duret L, Chureau C, Samain S, et al. (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312: 1653-1655. doi: 10.1126/science.1126316
    [74] Kolesnikov NN, Elisafenko EA (2010) Exon-intron structure of the Xist gene in elephant, armadillo, and the ancestor of placental mammals. Genetika 46: 1379-1385.
    [75] Hore TA, Koina E, Wakefield MJ, et al. (2007) The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res 15: 147-161. doi: 10.1007/s10577-007-1119-0
    [76] Elisaphenko EA, Kolesnikov NN, Shevchenko AI, et al. (2008) A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS One 3: e2521. doi: 10.1371/journal.pone.0002521
    [77] Shevchenko AI, Zakharova IS, Elisaphenko EA, et al. (2007) Genes flanking Xist in mouse and human are separated on the X chromosome in American marsupials. Chromosome Res 15: 127-136. doi: 10.1007/s10577-006-1115-9
    [78] Yen ZC, Meyer IM, Karalic S, et al. (2007) A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics 90: 453-463. doi: 10.1016/j.ygeno.2007.07.002
    [79] Brown CJ, Baldry SE (1996) Evidence that heteronuclear proteins interact with XIST RNA in vitro. Somat Cell Mol Genet 22: 403-417. doi: 10.1007/BF02369896
    [80] Brown CJ, Hendrich BD, Rupert JL, et al. (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71: 527-542. doi: 10.1016/0092-8674(92)90520-M
    [81] Hendrich BD, Plenge RM, Willard HF (1997) Identification and characterization of the human XIST gene promoter: implications for models of X chromosome inactivation. Nucleic Acids Res 25: 2661-2671. doi: 10.1093/nar/25.13.2661
    [82] Maenner S, Blaud M, Fouillen L, et al. (2010) 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 8: e1000276. doi: 10.1371/journal.pbio.1000276
    [83] Nesterova TB, Slobodyanyuk SY, Elisaphenko EA, et al. (2001) Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res 11: 833-849. doi: 10.1101/gr.174901
    [84] Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30: 167-174. doi: 10.1038/ng820
    [85] Kolesnikov NN, Elisafenko EA (2010) Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse. Genetika 46: 1386-1391.
    [86] Hong YK, Ontiveros SD, Strauss WM (2000) A revision of the human XIST gene organization and structural comparison with mouse Xist. Mamm Genome 11: 220-224. doi: 10.1007/s003350010040
    [87] Hong YK, Ontiveros SD, Chen C, et al. (1999) A new structure for the murine Xist gene and its relationship to chromosome choice/counting during X-chromosome inactivation. Proc Natl Acad Sci U S A 96: 6829-6834. doi: 10.1073/pnas.96.12.6829
    [88] Norris DP, Patel D, Kay GF, et al. (1994) Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77: 41-51. doi: 10.1016/0092-8674(94)90233-X
    [89] Brockdorff N, Ashworth A, Kay GF, et al. (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71: 515-526. doi: 10.1016/0092-8674(92)90519-I
    [90] Clemson CM, McNeil JA, Willard HF, et al. (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132: 259-275. doi: 10.1083/jcb.132.3.259
    [91] Waterston RH, Lindblad-Toh K, Birney E, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520-562. doi: 10.1038/nature01262
    [92] Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80: 133-137. doi: 10.1159/000014969
    [93] Mikkelsen TS, Ku M, Jaffe DB, et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553-560. doi: 10.1038/nature06008
    [94] Tattermusch A, Brockdorff N (2011) A scaffold for X chromosome inactivation. Hum Genet 130: 247-253. doi: 10.1007/s00439-011-1027-4
    [95] Chaumeil J, Le Baccon P, Wutz A, et al. (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20: 2223-2237. doi: 10.1101/gad.380906
    [96] Chow JC, Ciaudo C, Fazzari MJ, et al. (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956-969. doi: 10.1016/j.cell.2010.04.042
    [97] Pullirsch D, Hartel R, Kishimoto H, et al. (2010) The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137: 935-943. doi: 10.1242/dev.035956
    [98] Rasmussen TP, Mastrangelo MA, Eden A, et al. (2000) Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J Cell Biol 150: 1189-1198. doi: 10.1083/jcb.150.5.1189
    [99] Perche PY, Vourc'h C, Konecny L, et al. (2000) Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10: 1531-1534. doi: 10.1016/S0960-9822(00)00832-0
    [100] Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393: 599-601. doi: 10.1038/31275
    [101] Pehrson JR, Fuji RN (1998) Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res 26: 2837-2842. doi: 10.1093/nar/26.12.2837
    [102] Lee JT (2000) Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103: 17-27. doi: 10.1016/S0092-8674(00)00101-X
    [103] Sado T, Hoki Y, Sasaki H (2005) Tsix silences Xist through modification of chromatin structure. Dev Cell 9: 159-165. doi: 10.1016/j.devcel.2005.05.015
    [104] Sado T, Wang Z, Sasaki H, et al. (2001) Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128: 1275-1286.
    [105] Navarro P, Pichard S, Ciaudo C, et al. (2005) Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev 19: 1474-1484. doi: 10.1101/gad.341105
    [106] Ohhata T, Hoki Y, Sasaki H, et al. (2008) Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135: 227-235.
    [107] Stavropoulos N, Lu N, Lee JT (2001) A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc Natl Acad Sci U S A 98: 10232-10237. doi: 10.1073/pnas.171243598
    [108] Shevchenko AI, Malakhova AA, Elisaphenko EA, et al. (2011) Variability of sequence surrounding the Xist gene in rodents suggests taxon-specific regulation of X chromosome inactivation. PLoS One 6: e22771. doi: 10.1371/journal.pone.0022771
    [109] Horvath JE, Sheedy CB, Merrett SL, et al. (2011) Comparative analysis of the primate X-inactivation center region and reconstruction of the ancestral primate XIST locus. Genome Res 21: 850-862. doi: 10.1101/gr.111849.110
    [110] Migeon BR, Chowdhury AK, Dunston JA, et al. (2001) Identification of TSIX, encoding an RNA antisense to human XIST, reveals differences from its murine counterpart: implications for X inactivation. Am J Hum Genet 69: 951-960. doi: 10.1086/324022
    [111] Chureau C, Chantalat S, Romito A, et al. (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20: 705-718. doi: 10.1093/hmg/ddq516
    [112] Kobayashi S, Totoki Y, Soma M, et al. (2013) Identification of an imprinted gene cluster in the X-inactivation center. PLoS One 8: e71222. doi: 10.1371/journal.pone.0071222
    [113] Soma M, Fujihara Y, Okabe M, et al. (2014) Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos. Sci Rep 4: 5181.
    [114] Chow JC, Hall LL, Clemson CM, et al. (2003) Characterization of expression at the human XIST locus in somatic, embryonal carcinoma, and transgenic cell lines. Genomics 82: 309-322. doi: 10.1016/S0888-7543(03)00170-8
    [115] Johnston CM, Newall AE, Brockdorff N, et al. (2002) Enox, a novel gene that maps 10 kb upstream of Xist and partially escapes X inactivation. Genomics 80: 236-244. doi: 10.1006/geno.2002.6819
    [116] Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143: 390-403. doi: 10.1016/j.cell.2010.09.049
    [117] Sun S, Del Rosario BC, Szanto A, et al. (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153: 1537-1551. doi: 10.1016/j.cell.2013.05.028
    [118] Caley DP, Pink RC, Trujillano D, et al. (2010) Long noncoding RNAs, chromatin, and development. ScientificWorldJournal 10: 90-102. doi: 10.1100/tsw.2010.7
    [119] Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 22: 1-5. doi: 10.1016/j.tig.2005.10.003
    [120] Vallot C, Huret C, Lesecque Y, et al. (2013) XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet 45: 239-241. doi: 10.1038/ng.2530
    [121] Deakin JE, Koina E, Waters PD, et al. (2008) Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model mammals. Chromosome Res 16: 1159-1175. doi: 10.1007/s10577-008-1266-y
    [122] Raudsepp T, Lee EJ, Kata SR, et al. (2004) Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. Proc Natl Acad Sci U S A 101: 2386-2391. doi: 10.1073/pnas.0308513100
    [123] Rodriguez Delgado CL, Waters PD, Gilbert C, et al. (2009) Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years. Chromosome Res 17: 917-926. doi: 10.1007/s10577-009-9079-1
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6147) PDF downloads(1285) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog