Review Special Issues

Non-autonomous consequences of cell death and other perks of being metazoan

  • Received: 10 November 2014 Accepted: 26 January 2015 Published: 05 February 2015
  • Drosophila melanogaster remains a foremost genetic model to study basic cell biological processes in the context of multi-cellular development. In such context, the behavior of one cell can influence another. Non-autonomous signaling among cells occurs throughout metazoan development and disease, and is too vast to be covered by a single review. I will focus here on non-autonomous signaling events that occur in response to cell death in the larval epithelia and affect the life-death decision of surviving cells. I will summarize the use of Drosophila to study cell death-induced proliferation, apoptosis-induced apoptosis, and apoptosis-induced survival signaling. Key insights from Drosophila will be discussed in the context of analogous processes in mammalian development and cancer biology.

    Citation: Tin Tin Su. Non-autonomous consequences of cell death and other perks of being metazoan[J]. AIMS Genetics, 2015, 2(1): 54-69. doi: 10.3934/genet.2015.1.54

    Related Papers:

  • Drosophila melanogaster remains a foremost genetic model to study basic cell biological processes in the context of multi-cellular development. In such context, the behavior of one cell can influence another. Non-autonomous signaling among cells occurs throughout metazoan development and disease, and is too vast to be covered by a single review. I will focus here on non-autonomous signaling events that occur in response to cell death in the larval epithelia and affect the life-death decision of surviving cells. I will summarize the use of Drosophila to study cell death-induced proliferation, apoptosis-induced apoptosis, and apoptosis-induced survival signaling. Key insights from Drosophila will be discussed in the context of analogous processes in mammalian development and cancer biology.


    加载中
    [1] Haynie JL, Bryant PJ (1977) The Effects of X-rays on the Proliferation Dynamics of Cels in the Imaginal Wing Disc of Drosophila melanogaster. Wilhelm Roux's Archives 183: 85-100. doi: 10.1007/BF00848779
    [2] James AA, Bryant PJ (1981) A quantitative study of cell death and mitotic inhibition in gamma-irradiated imaginal wing discs of Drosophila melanogaster. Radiat Res 87: 552-564. doi: 10.2307/3575520
    [3] Milan M, Campuzano S, Garcia-Bellido A (1997) Developmental parameters of cell death in the wing disc of Drosophila. P Natl Acad Sci USA 94: 5691-5696. doi: 10.1073/pnas.94.11.5691
    [4] Meier P, Silke J, Leevers SJ, et al. (2000) The Drosophila caspase DRONC is regulated by DIAP1. EMBO J 19: 598-611. doi: 10.1093/emboj/19.4.598
    [5] Mollereau B, Perez-Garijo A, Bergmann A, et al. (2013) Compensatory proliferation and apoptosis-induced proliferation: a need for clarification. Cell Death Differ 20: 181. doi: 10.1038/cdd.2012.82
    [6] Martin FA, Perez-Garijo A, Morata G (2009) Apoptosis in Drosophila: compensatory proliferation and undead cells. Int J Dev Biol 53: 1341-1347. doi: 10.1387/ijdb.072447fm
    [7] Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131: 5591-5598. doi: 10.1242/dev.01432
    [8] Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7: 491-501. doi: 10.1016/j.devcel.2004.08.019
    [9] Callus BA, Vaux DL (2007) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14: 73-78. doi: 10.1038/sj.cdd.4402034
    [10] Hadley C (2003) What doesn't kill you makes you stronger. A new model for risk assessment may not only revolutionize the field of toxicology, but also have vast implications for risk assessment. EMBO Rep 4: 924-926.
    [11] Miyachi Y (2000) Acute mild hypothermia caused by a low dose of X-irradiation induces a protective effect against mid-lethal doses of X-rays, and a low level concentration of ozone may act as a radiomimetic. Brit J Radiol 73: 298-304. doi: 10.1259/bjr.73.867.10817047
    [12] Kondo S (1988) Altruistic cell suicide in relation to radiation hormesis. Int J Radiat Biol Relat Stud Phys Chem Med 53: 95-102. doi: 10.1080/09553008814550461
    [13] Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14: 1262-1266. doi: 10.1016/j.cub.2004.06.015
    [14] McEwen DG, Peifer M (2005) Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNK-induced apoptosis. Development 132: 3935-3946. doi: 10.1242/dev.01949
    [15] Garcia-Bellido A, Ripoll P, Morata G (1973) Developmental compartmentalisation of the wing disk of Drosophila. Nat New Biol 245: 251-253.
    [16] Perez-Garijo A, Shlevkov E, Morata G (2009) The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136: 1169-1177. doi: 10.1242/dev.034017
    [17] Martin-Blanco E, Gampel A, Ring J, et al. (1998) puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Gene Dev 12: 557-570. doi: 10.1101/gad.12.4.557
    [18] Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14: 399-410. doi: 10.1016/j.devcel.2008.01.003
    [19] Kondo S, Senoo-Matsuda N, Hiromi Y, et al. (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26: 7258-7268. doi: 10.1128/MCB.00183-06
    [20] Wichmann A, Jaklevic B, Su TT (2006) Ionizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. P Natl Acad Sci USA 103: 9952-9957. doi: 10.1073/pnas.0510528103
    [21] Wells BS, Johnston LA (2012) Maintenance of imaginal disc plasticity and regenerative potential in Drosophila by p53. Dev Biol 361: 263-276. doi: 10.1016/j.ydbio.2011.10.012
    [22] Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16: 1606-1615. doi: 10.1016/j.cub.2006.07.046
    [23] Dichtel-Danjoy ML, Ma D, Dourlen P, et al. (2013) Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation. Cell Death Differ 20: 108-116. doi: 10.1038/cdd.2012.100
    [24] Wylie A, Lu WJ, D'Brot A, et al. (2014) p53 activity is selectively licensed in the Drosophila stem cell compartment. eLife 3: e01530.
    [25] Shlevkov E, Morata G (2012) A dp53/JNK-dependant feedback amplification loop is essential for the apoptotic response to stress in Drosophila. Cell Death Differ 19: 451-460. doi: 10.1038/cdd.2011.113
    [26] Lee TV, Fan Y, Wang S, et al. (2011) Drosophila IAP1-mediated ubiquitylation controls activation of the initiator caspase DRONC independent of protein degradation. PLoS Genet 7: e1002261. doi: 10.1371/journal.pgen.1002261
    [27] Martin FA, Herrera SC, Morata G (2009) Cell competition, growth and size control in the Drosophila wing imaginal disc. Development 136: 3747-3756. doi: 10.1242/dev.038406
    [28] Fan Y, Wang S, Hernandez J, et al. (2014) Genetic models of apoptosis-induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in Drosophila. PLoS Genet 10: e1004131. doi: 10.1371/journal.pgen.1004131
    [29] Schubiger M, Sustar A, Schubiger G (2010) Regeneration and transdetermination: the role of wingless and its regulation. Dev Biol 347: 315-324. doi: 10.1016/j.ydbio.2010.08.034
    [30] Smith-Bolton RK, Worley MI, Kanda H, et al. (2009) Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16: 797-809. doi: 10.1016/j.devcel.2009.04.015
    [31] Staley BK, Irvine KD (2012) Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 241: 3-15. doi: 10.1002/dvdy.22723
    [32] Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Gene Dev 27: 355-371. doi: 10.1101/gad.210773.112
    [33] Grusche FA, Degoutin JL, Richardson HE, et al. (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350: 255-266. doi: 10.1016/j.ydbio.2010.11.020
    [34] Sun G, Irvine KD (2011) Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev Biol 350: 139-151. doi: 10.1016/j.ydbio.2010.11.036
    [35] Grusche FA, Richardson HE, Harvey KF (2010) Upstream regulation of the hippo size control pathway. Curr Biol 20: R574-582. doi: 10.1016/j.cub.2010.05.023
    [36] Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463: 545-548. doi: 10.1038/nature08702
    [37] Jezowska B, Fernandez BG, Amandio AR, et al. (2011) A dual function of Drosophila capping protein on DE-cadherin maintains epithelial integrity and prevents JNK-mediated apoptosis. Dev Biol 360: 143-159. doi: 10.1016/j.ydbio.2011.09.016
    [38] Kagey JD, Brown JA, Moberg KH (2012) Regulation of Yorkie activity in Drosophila imaginal discs by the Hedgehog receptor gene patched. Mech Develop 129: 339-349. doi: 10.1016/j.mod.2012.05.007
    [39] Christiansen AE, Ding T, Fan Y, et al. (2013) Non-cell autonomous control of apoptosis by ligand-independent Hedgehog signaling in Drosophila. Cell Death Differ 20: 302-311. doi: 10.1038/cdd.2012.126
    [40] Christiansen AE, Ding T, Bergmann A (2012) Ligand-independent activation of the Hedgehog pathway displays non-cell autonomous proliferation during eye development in Drosophila. Mech Develop 129: 98-108. doi: 10.1016/j.mod.2012.05.009
    [41] Herrera SC, Martin R, Morata G (2013) Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 9: e1003446. doi: 10.1371/journal.pgen.1003446
    [42] Bergantinos C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137: 1169-1179. doi: 10.1242/dev.045559
    [43] Li F, Huang Q, Chen J, et al. (2010) Apoptotic cells activate the ""phoenix rising"" pathway to promote wound healing and tissue regeneration. Sci Signal 3: ra13.
    [44] Li X, Wang Z, Ma Q, et al. (2014) Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res 20: 4326-4338. doi: 10.1158/1078-0432.CCR-13-3426
    [45] Huang Q, Li F, Liu X, et al. (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17: 860-866. doi: 10.1038/nm.2385
    [46] Sun Y, Campisi J, Higano C, et al. (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18: 1359-1368. doi: 10.1038/nm.2890
    [47] Perez-Garijo A, Fuchs Y, Steller H (2013) Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. eLife 2: e01004.
    [48] Bilak A, Uyetake L, Su TT (2014) Dying cells protect survivors from radiation-induced cell death in Drosophila. PLoS Genet 10: e1004220. doi: 10.1371/journal.pgen.1004220
    [49] Brennecke J, Hipfner DR, Stark A, et al. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25-36. doi: 10.1016/S0092-8674(03)00231-9
    [50] Mothersill C, Seymour C (2006) Radiation-induced bystander effects: evidence for an adaptive response to low dose exposures? Dose Response 4: 283-290. doi: 10.2203/dose-response.06-111.Mothersill
    [51] Mothersill C, Seymour CB (2006) Radiation-induced bystander effects and the DNA paradigm: an ""out of field"" perspective. Mutat Res 597: 5-10. doi: 10.1016/j.mrfmmm.2005.10.011
    [52] Mothersill C, Stamato TD, Perez ML, et al. (2000) Involvement of energy metabolism in the production of 'bystander effects' by radiation. Brit J Cancer 82: 1740-1746. doi: 10.1054/bjoc.2000.1109
    [53] Singh H, Saroya R, Smith R, et al. (2011) Radiation induced bystander effects in mice given low doses of radiation in vivo. Dose Response 9: 225-242. doi: 10.2203/dose-response.09-062.Singh
    [54] van Deursen JM (2014) The role of senescent cells in ageing. Nature 509: 439-446. doi: 10.1038/nature13193
    [55] Rodgers JT, King KY, Brett JO, et al. (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510: 393-396.
    [56] Taylor RC, Berendzen KM, Dillin A (2014) Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat Rev Mol Cell Bio 15: 211-217. doi: 10.1038/nrm3752
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9850) PDF downloads(1411) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog