Citation: James Bland, Gabriel da Silva. A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman[J]. AIMS Environmental Science, 2014, 1(1): 12-25. doi: 10.3934/environsci.2013.1.12
[1] |
Hou Z, Bennett CA, Klein MT, et al. (2010) Approaches and software tools for modeling lignin pyrolysis. Energy Fuels 24: 58-67. doi: 10.1021/ef900488k
![]() |
[2] |
Klein MT, Virk PS (2008) Modeling of lignin thermolysis. Energy Fuels 22: 2175-2182. doi: 10.1021/ef800285f
![]() |
[3] |
Britt PF, Kidder MK, Buchanan AC (2007) Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers. Energy Fuels 21: 3102-3108. doi: 10.1021/ef700354y
![]() |
[4] | Beste A, Buchanan AC (2009) Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. J Org Chem 74: 2837-2841. |
[5] |
Beste A, Buchanan AC (2011) Kinetic analysis of the phenyl-shift reaction in b-O-4 lignin model compounds: A computational study. J Org Chem 76: 2195-2203. doi: 10.1021/jo2000385
![]() |
[6] | Dorrestijn E, Pugin R, Nogales VC, et al. (1997) Thermal decomposition of chroman. Reactivity of o-quinone methide. J Org Chem 62: 4804-4810. |
[7] |
Bao JP, Zhu CS, Ma AL (2009) The relationship between methylated chromans and maturity of organic matter in the source rocks from Jianghan hypersaline basin. Sci China Ser D – Earth Sci 52: 34-41. doi: 10.1007/s11430-009-5018-4
![]() |
[8] |
Paul GC, Gajewski JJ (1993) o-Benzoquinone methide: An intermediate in the gas-phase pyrolysis of chroman. J Org Chem 58: 5060-5062. doi: 10.1021/jo00071a013
![]() |
[9] |
Dorrestijn E, Mulder P (1998) The automation of a reactor flow system with online GC analysis. J Anal App Pyrolysis 44: 167-179. doi: 10.1016/S0165-2370(97)00084-3
![]() |
[10] | da Silva G, Bozzelli JW (2007) Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one). J Phys Chem A 111: 7987-7994. |
[11] | Dorrestijn E, Mulder P (1999) The radical-induced decomposition of 2-methoxyphenol. J Chem Soc, Perkin Trans 2: 777-780. |
[12] |
Britt PF, Buchanan AC, Cooney MJ, et al. (2000) Flash vacuum pyrolysis of methoxy-substituted lignin model compounds. J Org Chem 65: 1376-1389. doi: 10.1021/jo991479k
![]() |
[13] | da Silva G, Chen CC, Bozzelli JW (2007) Toluene combustion: Reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction. J Phys Chem A 111: 8663-8676. |
[14] |
Prendergast MB, Cooper PA, Kirk BB, et al. (2013) Hydroxyl radical formation in the gas phase oxidation of distonic 2-methylphenyl radical cations. Phys Chem Chem Phys 15: 20577-20584. doi: 10.1039/c3cp53690d
![]() |
[15] |
da Silva G, Bozzelli JW (2009) Benzoxyl radical decomposition kinetics: Formation of benzaldehyde + H, phenyl + CH2O, and benzene + HCO. J Phys Chem A 113: 6979-6986. doi: 10.1021/jp902458d
![]() |
[16] |
da Silva G, Bozzelli JW (2009) Kinetic modeling of the benzyl + HO2 reaction. Proc Comb Inst 32: 287-294. doi: 10.1016/j.proci.2008.05.040
![]() |
[17] |
da Silva G, Hamdan MR, Bozzelli JW (2009) Oxidation of the benzyl radical: Mechanism, thermochemistry, and kinetics for the reactions of benzyl hydroperoxide. J Chem Theory Comput 5: 3185-3194. doi: 10.1021/ct900352f
![]() |
[18] |
da Silva G, Bozzelli JW (2010) On the reactivity of methylbenzenes. Comb Flame 157: 2175-2183. doi: 10.1016/j.combustflame.2010.06.001
![]() |
[19] |
Wentrup C, Muller P (1973) One-step synthesis of fulvene and fulvenallene: Thermolysis of alpha-coumaranone, phthalide, and benzocyclopropene. Tetrahedron Lett 14: 2915-2918. doi: 10.1016/S0040-4039(01)96281-1
![]() |
[20] |
Hosoya T, Kawamoto H, Saka S (2009) Role of methoxyl group in char formation from lignin-related compounds. J Anal Appl Pyrolysis 84: 79-83. doi: 10.1016/j.jaap.2008.10.024
![]() |
[21] |
Curtiss LA, Redfern PC, Raghavachari K, et al. (2001) Gaussian-3X (G3X) theory: Use of improved geometries, zero-point energies, and Hartree-Fock basis sets. J Chem Phys 114: 108-117. doi: 10.1063/1.1321305
![]() |
[22] |
Zheng J, Zhao Y, Truhlar DG (2009) The DBH24/08 database and its use to assess electornic structure model chemistries for chemical reaction barrier heights. J Chem Theory Comput 5: 808-821. doi: 10.1021/ct800568m
![]() |
[23] | da Silva G (2013) G3X-K theory: A composite theoretical method for thermochemical kinetics. Chem. Phys Lett chem Phys let 558: 109-113. |
[24] | Frisch MJ, et al., Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004. |
[25] |
da Silva G, Moore EE, Bozzelli JW (2009) Decomposition of methylbenzyl radicals in the pyrolysis and oxidation of xylenes. J Phys Chem A 113: 10264-10278. doi: 10.1021/jp905722t
![]() |
[26] | Mokrushin V, Bedanov V, Tsang W, et al. (2006) ChemRate, Version 1.5.2, National Institute of Standards and Testing, Gaithersburg, MD. |
[27] |
da Silva G, Dlugogorski BZ, Kennedy EM (2007) Elementary reaction step model of the N-nitrosation of ammonia. Int J Chem Kinet 39: 645-656. doi: 10.1002/kin.20280
![]() |
[28] |
da Silva G, Kennedy EM, Dlugogorski BZ (2007) Nucleophilic reactivity of aniline derivatives towards the nitroso group. J Phys Org Chem 20: 167-179. doi: 10.1002/poc.1142
![]() |
[29] | Schraa, GJ, Arends IWCE, Mulder P (1994) Thermal decomposition of 2,3-dihydro-1,4-benzodioxin and 1,2-dimethoxybenzene. J Chem Soc Perkin Trans 2: 189-197. |
[30] |
Gaynor BJ, Gilbert RG, King KD, Harman PJ (1981) Kinetic study of the thermal isomerization of fulvene. Aust J Chem 34: 449-452. doi: 10.1071/CH9810449
![]() |
[31] |
Melius CF, Miller JA, Evleth EM (1992) Unimolecular reaction mechanisms involving C3H4, C4H4, and C6H6 hydrocarbon species. Symp (Int) Comb 24: 621-628. doi: 10.1016/S0082-0784(06)80076-7
![]() |
[32] | Miller JA, Klippenstein SJ (2003) The recombination of propargyl radicals and other reactions on a C6H6 potential. J Phys Chem A 107: 7783-7799. |
[33] |
Soorkia S, Trevitt AJ, Selby TM, et al. (2010) Reaction of the C2H radical with 1-butyne (C4H6): Low-temperature kinetics and isomer-specific product detection. J Phys Chem A 114: 3340-3354. doi: 10.1021/jp911132r
![]() |