Loading [Contrib]/a11y/accessibility-menu.js
Research article

A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman

  • Received: 11 November 2013 Accepted: 19 December 2013 Published: 19 December 2013
  • The pyrolysis of woody biomass, including the lignin component, is emerging as a potential technology for the production of renewable fuels and commodity chemicals. Here we describe the construction and implementation of an elementary chemical kinetic model for pyrolysis of the lignin model compound chroman and its reaction intermediate ortho-quinone methide (o-QM). The model is developed using both experimental and theoretical data, and represents a hybrid approach to kinetic modeling that has the potential to provide molecular level insight into reaction pathways and intermediates while accurately describing reaction rates and product formation. The kinetic model developed here can replicate all known aspects of chroman pyrolysis, and provides new information on elementary reaction steps. Chroman pyrolysis is found to proceed via an initial retro-Diels–Alder reaction to form o-QM + ethene (C2H4), followed by dissociation of o-QM to the C6H6 isomers benzene and fulvene (+ CO). At temperatures of around 1000–1200 K and above fulvene rapidly isomerizes to benzene, where an activation energy of around 270 kJ mol-1 is required to reproduce experimental observations. A new G3SX level energy surface for the isomerization of fulvene to benzene supports this result. Our modeling also suggests that thermal decomposition of fulvene may be important at around 950 K and above. This study demonstrates that theoretical protocols can provide a significant contribution to the development of kinetic models for biomass pyrolysis by elucidating reaction mechanisms, intermediates, and products, and also by supplying realistic rate coefficients and thermochemical properties.

    Citation: James Bland, Gabriel da Silva. A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman[J]. AIMS Environmental Science, 2014, 1(1): 12-25. doi: 10.3934/environsci.2013.1.12

    Related Papers:

    [1] Alberto Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira . Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical Biosciences and Engineering, 2013, 10(3): 649-665. doi: 10.3934/mbe.2013.10.649
    [2] Yuqian Mei, Debao Guan, Xinyu Tong, Qian Liu, Mingcheng Hu, Guangxin Chen, Caijuan Li . Association of cerebral infarction with vertebral arterial fenestration using non-Newtonian hemodynamic evaluation. Mathematical Biosciences and Engineering, 2022, 19(7): 7076-7090. doi: 10.3934/mbe.2022334
    [3] Yan Wang, Yonghui Qiao, Yankai Mao, Chenyang Jiang, Jianren Fan, Kun Luo . Numerical prediction of thrombosis risk in left atrium under atrial fibrillation. Mathematical Biosciences and Engineering, 2020, 17(3): 2348-2360. doi: 10.3934/mbe.2020125
    [4] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199
    [5] B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371
    [6] Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444
    [7] Huu Thuan Nguyen, Tu Anh Do, Benoît Cosson . Numerical simulation of submerged flow bridge scour under dam-break flow using multi-phase SPH method. Mathematical Biosciences and Engineering, 2019, 16(5): 5395-5418. doi: 10.3934/mbe.2019269
    [8] Meiyuan Du, Chi Zhang, Sheng Xie, Fang Pu, Da Zhang, Deyu Li . Investigation on aortic hemodynamics based on physics-informed neural network. Mathematical Biosciences and Engineering, 2023, 20(7): 11545-11567. doi: 10.3934/mbe.2023512
    [9] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [10] Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira . Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences and Engineering, 2017, 14(1): 179-193. doi: 10.3934/mbe.2017012
  • The pyrolysis of woody biomass, including the lignin component, is emerging as a potential technology for the production of renewable fuels and commodity chemicals. Here we describe the construction and implementation of an elementary chemical kinetic model for pyrolysis of the lignin model compound chroman and its reaction intermediate ortho-quinone methide (o-QM). The model is developed using both experimental and theoretical data, and represents a hybrid approach to kinetic modeling that has the potential to provide molecular level insight into reaction pathways and intermediates while accurately describing reaction rates and product formation. The kinetic model developed here can replicate all known aspects of chroman pyrolysis, and provides new information on elementary reaction steps. Chroman pyrolysis is found to proceed via an initial retro-Diels–Alder reaction to form o-QM + ethene (C2H4), followed by dissociation of o-QM to the C6H6 isomers benzene and fulvene (+ CO). At temperatures of around 1000–1200 K and above fulvene rapidly isomerizes to benzene, where an activation energy of around 270 kJ mol-1 is required to reproduce experimental observations. A new G3SX level energy surface for the isomerization of fulvene to benzene supports this result. Our modeling also suggests that thermal decomposition of fulvene may be important at around 950 K and above. This study demonstrates that theoretical protocols can provide a significant contribution to the development of kinetic models for biomass pyrolysis by elucidating reaction mechanisms, intermediates, and products, and also by supplying realistic rate coefficients and thermochemical properties.


    [1] Hou Z, Bennett CA, Klein MT, et al. (2010) Approaches and software tools for modeling lignin pyrolysis. Energy Fuels 24: 58-67. doi: 10.1021/ef900488k
    [2] Klein MT, Virk PS (2008) Modeling of lignin thermolysis. Energy Fuels 22: 2175-2182. doi: 10.1021/ef800285f
    [3] Britt PF, Kidder MK, Buchanan AC (2007) Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers. Energy Fuels 21: 3102-3108. doi: 10.1021/ef700354y
    [4] Beste A, Buchanan AC (2009) Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. J Org Chem 74: 2837-2841.
    [5] Beste A, Buchanan AC (2011) Kinetic analysis of the phenyl-shift reaction in b-O-4 lignin model compounds: A computational study. J Org Chem 76: 2195-2203. doi: 10.1021/jo2000385
    [6] Dorrestijn E, Pugin R, Nogales VC, et al. (1997) Thermal decomposition of chroman. Reactivity of o-quinone methide. J Org Chem 62: 4804-4810.
    [7] Bao JP, Zhu CS, Ma AL (2009) The relationship between methylated chromans and maturity of organic matter in the source rocks from Jianghan hypersaline basin. Sci China Ser D – Earth Sci 52: 34-41. doi: 10.1007/s11430-009-5018-4
    [8] Paul GC, Gajewski JJ (1993) o-Benzoquinone methide: An intermediate in the gas-phase pyrolysis of chroman. J Org Chem 58: 5060-5062. doi: 10.1021/jo00071a013
    [9] Dorrestijn E, Mulder P (1998) The automation of a reactor flow system with online GC analysis. J Anal App Pyrolysis 44: 167-179. doi: 10.1016/S0165-2370(97)00084-3
    [10] da Silva G, Bozzelli JW (2007) Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one). J Phys Chem A 111: 7987-7994.
    [11] Dorrestijn E, Mulder P (1999) The radical-induced decomposition of 2-methoxyphenol. J Chem Soc, Perkin Trans 2: 777-780.
    [12] Britt PF, Buchanan AC, Cooney MJ, et al. (2000) Flash vacuum pyrolysis of methoxy-substituted lignin model compounds. J Org Chem 65: 1376-1389. doi: 10.1021/jo991479k
    [13] da Silva G, Chen CC, Bozzelli JW (2007) Toluene combustion: Reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction. J Phys Chem A 111: 8663-8676.
    [14] Prendergast MB, Cooper PA, Kirk BB, et al. (2013) Hydroxyl radical formation in the gas phase oxidation of distonic 2-methylphenyl radical cations. Phys Chem Chem Phys 15: 20577-20584. doi: 10.1039/c3cp53690d
    [15] da Silva G, Bozzelli JW (2009) Benzoxyl radical decomposition kinetics: Formation of benzaldehyde + H, phenyl + CH2O, and benzene + HCO. J Phys Chem A 113: 6979-6986. doi: 10.1021/jp902458d
    [16] da Silva G, Bozzelli JW (2009) Kinetic modeling of the benzyl + HO2 reaction. Proc Comb Inst 32: 287-294. doi: 10.1016/j.proci.2008.05.040
    [17] da Silva G, Hamdan MR, Bozzelli JW (2009) Oxidation of the benzyl radical: Mechanism, thermochemistry, and kinetics for the reactions of benzyl hydroperoxide. J Chem Theory Comput 5: 3185-3194. doi: 10.1021/ct900352f
    [18] da Silva G, Bozzelli JW (2010) On the reactivity of methylbenzenes. Comb Flame 157: 2175-2183. doi: 10.1016/j.combustflame.2010.06.001
    [19] Wentrup C, Muller P (1973) One-step synthesis of fulvene and fulvenallene: Thermolysis of alpha-coumaranone, phthalide, and benzocyclopropene. Tetrahedron Lett 14: 2915-2918. doi: 10.1016/S0040-4039(01)96281-1
    [20] Hosoya T, Kawamoto H, Saka S (2009) Role of methoxyl group in char formation from lignin-related compounds. J Anal Appl Pyrolysis 84: 79-83. doi: 10.1016/j.jaap.2008.10.024
    [21] Curtiss LA, Redfern PC, Raghavachari K, et al. (2001) Gaussian-3X (G3X) theory: Use of improved geometries, zero-point energies, and Hartree-Fock basis sets. J Chem Phys 114: 108-117. doi: 10.1063/1.1321305
    [22] Zheng J, Zhao Y, Truhlar DG (2009) The DBH24/08 database and its use to assess electornic structure model chemistries for chemical reaction barrier heights. J Chem Theory Comput 5: 808-821. doi: 10.1021/ct800568m
    [23] da Silva G (2013) G3X-K theory: A composite theoretical method for thermochemical kinetics. Chem. Phys Lett chem Phys let 558: 109-113.
    [24] Frisch MJ, et al., Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004.
    [25] da Silva G, Moore EE, Bozzelli JW (2009) Decomposition of methylbenzyl radicals in the pyrolysis and oxidation of xylenes. J Phys Chem A 113: 10264-10278. doi: 10.1021/jp905722t
    [26] Mokrushin V, Bedanov V, Tsang W, et al. (2006) ChemRate, Version 1.5.2, National Institute of Standards and Testing, Gaithersburg, MD.
    [27] da Silva G, Dlugogorski BZ, Kennedy EM (2007) Elementary reaction step model of the N-nitrosation of ammonia. Int J Chem Kinet 39: 645-656. doi: 10.1002/kin.20280
    [28] da Silva G, Kennedy EM, Dlugogorski BZ (2007) Nucleophilic reactivity of aniline derivatives towards the nitroso group. J Phys Org Chem 20: 167-179. doi: 10.1002/poc.1142
    [29] Schraa, GJ, Arends IWCE, Mulder P (1994) Thermal decomposition of 2,3-dihydro-1,4-benzodioxin and 1,2-dimethoxybenzene. J Chem Soc Perkin Trans 2: 189-197.
    [30] Gaynor BJ, Gilbert RG, King KD, Harman PJ (1981) Kinetic study of the thermal isomerization of fulvene. Aust J Chem 34: 449-452. doi: 10.1071/CH9810449
    [31] Melius CF, Miller JA, Evleth EM (1992) Unimolecular reaction mechanisms involving C3H4, C4H4, and C6H6 hydrocarbon species. Symp (Int) Comb 24: 621-628. doi: 10.1016/S0082-0784(06)80076-7
    [32] Miller JA, Klippenstein SJ (2003) The recombination of propargyl radicals and other reactions on a C6H6 potential. J Phys Chem A 107: 7783-7799.
    [33] Soorkia S, Trevitt AJ, Selby TM, et al. (2010) Reaction of the C2H radical with 1-butyne (C4H6): Low-temperature kinetics and isomer-specific product detection. J Phys Chem A 114: 3340-3354. doi: 10.1021/jp911132r
  • This article has been cited by:

    1. Julia Mikhal, Bernard J. Geurts, Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms, 2013, 67, 0303-6812, 1847, 10.1007/s00285-012-0627-5
    2. Øyvind Evju, Kristian Valen-Sendstad, Kent-André Mardal, A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions, 2013, 46, 00219290, 2802, 10.1016/j.jbiomech.2013.09.004
    3. Telma Guerra, Jorge Tiago, Adélia Sequeira, Optimal control in blood flow simulations, 2014, 64, 00207462, 57, 10.1016/j.ijnonlinmec.2014.04.005
    4. Jorge Tiago, Numerical simulations for the stabilization and estimation problem of a semilinear partial differential equation, 2015, 98, 01689274, 18, 10.1016/j.apnum.2015.08.003
    5. Julia Mikhal, Bernard J. Geurts, Immersed boundary method for pulsatile transitional flow in realistic cerebral aneurysms, 2014, 91, 00457930, 144, 10.1016/j.compfluid.2013.12.009
    6. J. Pavlova, A. Fasano, J. Janela, A. Sequeira, Numerical validation of a synthetic cell-based model of blood coagulation, 2015, 380, 00225193, 367, 10.1016/j.jtbi.2015.06.004
    7. S. V. Sindeev, S. V. Frolov, Modeling the hemodynamics of the cardiovascular system with cerebral aneurysm, 2017, 9, 2070-0482, 108, 10.1134/S2070048217010148
    8. Adélia Sequeira, Jorge Tiago, Telma Guerra, 2018, Chapter 3, 978-3-319-91091-8, 27, 10.1007/978-3-319-91092-5_3
    9. Hernán G. Morales, Odile Bonnefous, Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics, 2015, 48, 00219290, 585, 10.1016/j.jbiomech.2015.01.016
    10. N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, V. Volpert, Vitaly Volpert, Mathematical modelling of atherosclerosis, 2019, 14, 0973-5348, 603, 10.1051/mmnp/2019050
    11. J. Tiago, T. Guerra, A. Sequeira, A velocity tracking approach for the data assimilation problem in blood flow simulations, 2017, 33, 20407939, e2856, 10.1002/cnm.2856
    12. O. Kafi, A. Sequeira, 2019, Chapter 17, 978-3-030-23432-4, 255, 10.1007/978-3-030-23433-1_17
    13. A.M. Robertson, P.N. Watton, Computational Fluid Dynamics in Aneurysm Research: Critical Reflections, Future Directions, 2012, 33, 0195-6108, 992, 10.3174/ajnr.A3192
    14. Olivia Miraucourt, Stéphanie Salmon, Marcela Szopos, Marc Thiriet, Blood flow in the cerebral venous system: modeling and simulation, 2017, 20, 1025-5842, 471, 10.1080/10255842.2016.1247833
    15. Alexandru M. Morega, Cristina Savastru, Mihaela Morega, 2013, Numerical simulation of flow dynamics in the Brachial-Ulnar-Radial arterial system, 978-1-4799-2373-1, 1, 10.1109/EHB.2013.6707352
    16. Ziya Isiksacan, Mohammad Asghari, Caglar Elbuken, A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics, 2017, 21, 1613-4982, 10.1007/s10404-017-1878-7
    17. S. Boujena, O. Kafi, N. El Khatib, A. Sequeira, V. Volpert, A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery, 2014, 9, 0973-5348, 46, 10.1051/mmnp/20149605
    18. Zhibin Zhou, Xi Chen, Xue Zhou, Xiaoyu Yang, Dihan Lu, Wenbin Kang, Xia Feng, Effects of Intraoperative Gelatin on Blood Viscosity and Oxygenation Balance, 2019, 34, 10899472, 1274, 10.1016/j.jopan.2019.05.136
    19. L Achab, Numerical simulations of the pulsatile blood flow in narrowing small vessels using different rheological models, 2019, 1294, 1742-6588, 022028, 10.1088/1742-6596/1294/2/022028
    20. S. V. FROLOV, S. V. SINDEEV, D. LIEPSCH, A. BALASSO, P. ARNOLD, J. S. KIRSCHKE, S. PROTHMANN, A. YU. POTLOV, NEWTONIAN AND NON-NEWTONIAN BLOOD FLOW AT A 90∘-BIFURCATION OF THE CEREBRAL ARTERY: A COMPARATIVE STUDY OF FLUID VISCOSITY MODELS, 2018, 18, 0219-5194, 1850043, 10.1142/S0219519418500434
    21. Denesh Sooriamoorthy, Audrey Li-Huey Wee, Anandan Shanmugam, Khor Jeen Ghee, Pei Cheng Ooi, Marwan Nafea, 2020, A Study on the Effect of Electrical Parameters of Zero-Dimensional Cardiovascular System on Aortic Waveform, 978-1-7281-9317-5, 374, 10.1109/SCOReD50371.2020.9250931
    22. J. Mikhal, D.J. Kroon, C.H. Slump, B.J. Geurts, Flow prediction in cerebral aneurysms based on geometry reconstruction from 3D rotational angiography, 2013, 29, 20407939, 777, 10.1002/cnm.2558
    23. Frank Weichert, Lars Walczak, Denis Fisseler, Tobias Opfermann, Mudassar Razzaq, Raphael Münster, Stefan Turek, Iris Grunwald, Christian Roth, Christian Veith, Mathias Wagner, Simulation of Intra-Aneurysmal Blood Flow by Different Numerical Methods, 2013, 2013, 1748-670X, 1, 10.1155/2013/527654
    24. J. Tiago, A. Gambaruto, A. Sequeira, A. Sequeira, V. Volpert, Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data, 2014, 9, 0973-5348, 98, 10.1051/mmnp/20149608
    25. H.G. Morales, O. Bonnefous, 2017, 9780128110188, 253, 10.1016/B978-0-12-811018-8.00010-2
    26. D Liepsch, S Sindeev, S Frolov, An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm, 2018, 1084, 1742-6588, 012001, 10.1088/1742-6596/1084/1/012001
    27. S. Ramalho, A. Moura, A.M. Gambaruto, A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm, 2012, 28, 20407939, 697, 10.1002/cnm.2461
    28. Isaac Perez-Raya, Mojtaba F. Fathi, Ahmadreza Baghaie, Raphael Sacho, Roshan M. D’Souza, Modeling and Reducing the Effect of Geometric Uncertainties in Intracranial Aneurysms with Polynomial Chaos Expansion, Data Decomposition, and 4D-Flow MRI, 2021, 1869-408X, 10.1007/s13239-020-00511-w
    29. A.J. Geers, I. Larrabide, H.G. Morales, A.F. Frangi, Approximating hemodynamics of cerebral aneurysms with steady flow simulations, 2014, 47, 00219290, 178, 10.1016/j.jbiomech.2013.09.033
    30. Alexandru Morega, Mihaela Morega, Alin Dobre, 2021, 9780128178973, 1, 10.1016/B978-0-12-817897-3.00001-4
    31. Susana Ramalho, Alexandra B. Moura, Alberto M. Gambaruto, Adélia Sequeira, 2013, Chapter 6, 978-1-4614-4177-9, 149, 10.1007/978-1-4614-4178-6_6
    32. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms, 2013, 10, 1551-0018, 649, 10.3934/mbe.2013.10.649
    33. Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira, Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery, 2017, 14, 1551-0018, 179, 10.3934/mbe.2017012
    34. L. John, P. Pustějovská, O. Steinbach, On the influence of the wall shear stress vector form on hemodynamic indicators, 2017, 18, 1432-9360, 113, 10.1007/s00791-017-0277-7
    35. Ali Sarrami-Foroushani, Toni Lassila, Alejandro F. Frangi, Virtual endovascular treatment of intracranial aneurysms: models and uncertainty, 2017, 9, 19395094, e1385, 10.1002/wsbm.1385
    36. J.M.C. Pereira, J.P. Serra e Moura, A.R. Ervilha, J.C.F. Pereira, On the uncertainty quantification of blood flow viscosity models, 2013, 101, 00092509, 253, 10.1016/j.ces.2013.05.033
    37. T. Bodnár, M. Pires, J. Janela, A. Sequeira, V. Volpert, Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model, 2014, 9, 0973-5348, 117, 10.1051/mmnp/20149609
    38. Khalid M Saqr, Computational fluid dynamics simulations of cerebral aneurysm using Newtonian, power-law and quasi-mechanistic blood viscosity models, 2020, 234, 0954-4119, 711, 10.1177/0954411920917531
    39. S. Boujena, N. El Khatib, O. Kafi, Generalized Navier–Stokes equations with non-standard conditions for blood flow in atherosclerotic artery, 2016, 95, 0003-6811, 1645, 10.1080/00036811.2015.1068297
    40. Vahid Goodarzi Ardakani, Xin Tu, Alberto M. Gambaruto, Iolanda Velho, Jorge Tiago, Adélia Sequeira, Ricardo Pereira, Near-Wall Flow in Cerebral Aneurysms, 2019, 4, 2311-5521, 89, 10.3390/fluids4020089
    41. A. Sequeira, T. Bodnár, A. Sequeira, V. Volpert, Blood Coagulation Simulations using a Viscoelastic Model, 2014, 9, 0973-5348, 34, 10.1051/mmnp/20149604
    42. Masoud Ahmadi, Reza Ansari, Computational simulation of an artery narrowed by plaque using 3D FSI method: influence of the plaque angle, non-Newtonian properties of the blood flow and the hyperelastic artery models, 2019, 5, 2057-1976, 045037, 10.1088/2057-1976/ab323f
    43. Zineb Mimouni, The Rheological Behavior of Human Blood—Comparison of Two Models, 2016, 06, 2164-5388, 29, 10.4236/ojbiphy.2016.62004
    44. Yang Zhang, Junjie Fan, Yunxia Xiu, Luyao Zhang, Guangxin Chen, Jinyu Fan, Xiao Lin, Chen Ding, Mingming Feng, Ruliang Wang, Yang Liu, Numerical simulation flow dynamics of an intracranial aneurysm, 2022, 33, 09592989, 123, 10.3233/BME-211270
    45. Richard Schussnig, Douglas R.Q. Pacheco, Thomas-Peter Fries, Robust stabilised finite element solvers for generalised Newtonian fluid flows, 2021, 442, 00219991, 110436, 10.1016/j.jcp.2021.110436
    46. Yuya Uchiyama, Soichiro Fujimura, Hiroyuki Takao, Takashi Suzuki, Motoharu Hayakawa, Toshihiro Ishibashi, Kostadin Karagiozov, Koji Fukudome, Yuichi Murayama, Makoto Yamamoto, Hemodynamic Investigation of the Effectiveness of a Two Overlapping Flow Diverter Configuration for Cerebral Aneurysm Treatment, 2021, 8, 2306-5354, 143, 10.3390/bioengineering8100143
    47. Yuya Uchiyama, Soichiro Fujimura, Hiroyuki Takao, Takashi Suzuki, Toshihiro Ishibashi, Katharina Otani, Kostadin Karagiozov, Koji Fukudome, Hideki Yamamoto, Makoto Yamamoto, Yuichi Murayama, Role of patient-specific blood properties in computational fluid dynamics simulation of flow diverter deployed cerebral aneurysms, 2022, 30, 09287329, 839, 10.3233/THC-213216
    48. Yunfei Ling, Torsten Schenkel, Jiguo Tang, Hongtao Liu, Computational fluid dynamics investigation on aortic hemodynamics in double aortic arch before and after ligation surgery, 2022, 141, 00219290, 111231, 10.1016/j.jbiomech.2022.111231
    49. Augusto Fava Sanches, Suprosanna Shit, Yigit Özpeynirci, Thomas Liebig, CFD to Quantify Idealized Intra-Aneurysmal Blood Flow in Response to Regular and Flow Diverter Stent Treatment, 2022, 7, 2311-5521, 254, 10.3390/fluids7080254
    50. Vahid Goodarzi Ardakani, Alberto M. Gambaruto, Goncalo Silva, Ricardo Pereira, A porosity model for medical image segmentation of vessels, 2022, 38, 2040-7939, 10.1002/cnm.3580
    51. Kevin Richter, Tristan Probst, Anna Hundertmark, Pepe Eulzer, Kai Lawonn, Longitudinal wall shear stress evaluation using centerline projection approach in the numerical simulations of the patient-based carotid artery, 2023, 1025-5842, 1, 10.1080/10255842.2023.2185478
    52. O. Kafi, A numerical 3D fluid-structure interaction model for blood flow in an atherosclerotic carotid artery, 2023, 10, 23129794, 825, 10.23939/mmc2023.03.825
    53. Nader El Khatib, Oualid Kafi, Diana Oliveira, Adélia Sequeira, Jorge Tiago, A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery, 2023, 18, 0973-5348, 26, 10.1051/mmnp/2023014
    54. Pablo Jeken-Rico, Aurèle Goetz, Philippe Meliga, Aurélien Larcher, Yigit Özpeynirci, Elie Hachem, Evaluating the Impact of Domain Boundaries on Hemodynamics in Intracranial Aneurysms within the Circle of Willis, 2023, 9, 2311-5521, 1, 10.3390/fluids9010001
    55. Iolanda Velho, Jorge Tiago, Ricardo Pereira, Adélia Sequeira, 2024, Chapter 16, 978-3-031-53739-4, 301, 10.1007/978-3-031-53740-0_16
    56. Abdulgaphur Athani, Nik Nazri Nik Ghazali, Irfan Anjum Badruddin, Abdullah Y. Usmani, Mohammad Amir, Digamber Singh, Sanan H. Khan, Image-Based Hemodynamic and Rheological Study of Patient’s Diseased Arterial Vasculatures Using Computational Fluid Dynamics (CFD) and Fluid–Structure Interactions (FSI) Analysis: A review, 2024, 1134-3060, 10.1007/s11831-024-10193-5
    57. H. PAHLAVANI, I. B. OZDEMIR, INTERACTIONS BETWEEN NON-NEWTONIAN BLOOD FLOW AND DEFORMABLE WALLS OF A PATIENT-SPECIFIC ANEURYSM, 2025, 0219-5194, 10.1142/S0219519425500125
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6550) PDF downloads(1135) Cited by(9)

Article outline

Figures and Tables

Figures(11)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog