Review

Past, present and future of ionic liquid based polymer electrolytes

  • Received: 25 December 2019 Accepted: 19 March 2020 Published: 20 March 2020
  • Polymer electrolyte(PE)s have been playing a major role in almost all modern electrochemical devices. Since their introduction, a great deal of research work has been done to uplift their performance and as a result, there are several milestones in the history of PEs. This review paper is mainly targeting the PEs based on ionic liquids (ILs). The main reason for the emergence of IL based PE is the ever increasing focus on safety issues as well as low ambient temperature of PEs. Desired electrochemical properties, less toxicity and the sound cooperativeness are some features of attraction towards these ILs. With the enormous amount of research work done on the area, it is an absolute necessity to summarize the outcomes and the trends to understand basics of the IL-PEs. In this paper, an introduction on setting up of background for PEs and IL based PEs is presented in section 1 and section 2 is dedicated to the history of PEs. Sections 3 and 4 will address the IL based PEs and their preparation techniques respectively. Properties and their characterization techniques are presented in section 5. Section 6 describes the optimization methods followed by applications and novel approaches in section 7.

    Citation: R. M. L. L. Rathnayake, K. S. Perera, K. P. Vidanapathirana. Past, present and future of ionic liquid based polymer electrolytes[J]. AIMS Energy, 2020, 8(2): 231-251. doi: 10.3934/energy.2020.2.231

    Related Papers:

  • Polymer electrolyte(PE)s have been playing a major role in almost all modern electrochemical devices. Since their introduction, a great deal of research work has been done to uplift their performance and as a result, there are several milestones in the history of PEs. This review paper is mainly targeting the PEs based on ionic liquids (ILs). The main reason for the emergence of IL based PE is the ever increasing focus on safety issues as well as low ambient temperature of PEs. Desired electrochemical properties, less toxicity and the sound cooperativeness are some features of attraction towards these ILs. With the enormous amount of research work done on the area, it is an absolute necessity to summarize the outcomes and the trends to understand basics of the IL-PEs. In this paper, an introduction on setting up of background for PEs and IL based PEs is presented in section 1 and section 2 is dedicated to the history of PEs. Sections 3 and 4 will address the IL based PEs and their preparation techniques respectively. Properties and their characterization techniques are presented in section 5. Section 6 describes the optimization methods followed by applications and novel approaches in section 7.


    加载中


    [1] Liu Z, Li G, Cui T, et al. (2017) A battery super capacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite. J Solid State Electrochem 22: 91-101.
    [2] Singh R, Bhattacharya B, Gupta M, et al. (2017) Electrical and structural properties of ionic liquid doped polymer gel electrolyte for dual energy storage. Int J Hydrogen Energy 42: 14602-14607. doi: 10.1016/j.ijhydene.2017.04.126
    [3] Yan J, Wang J, Liu H, et al. (2012) Rechargeable hybrid aqueous batteries. J Power Sources 216: 222-226. doi: 10.1016/j.jpowsour.2012.05.063
    [4] Wang A, Xu H, Zhou Q, et al. (2017) Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium ion batteries. J Solid State Electrochem 10: 2355-2364.
    [5] Kim GT, Appetecchi GB, Alessandrini F, et al. (2007) Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems: I. Electrochemical characterization. J Power Sources 171: 861-869. doi: 10.1016/j.jpowsour.2007.07.020
    [6] Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14: 589.
    [7] Armand MB, Chabagno JM, Duclot M (1978) Second Intern. Meeting on Solid Electrolytes, St. Andrews, Scotland, 20-22.
    [8] Armand M (1983) Polymer solid electrolytes-an overview. Solid State Ionics 9-10(part 2): 745-754.
    [9] Papke BL, Ratner MA, Shriver DF (1982) Vibrational spectroscopic determination of structure and ion pairing in complexes of poly(ethylene oxide) with lithium salts. J Electrochem Society 129: 1434-1438. doi: 10.1149/1.2124179
    [10] Salleh NS, Aziz SB, Aspanut Z, et al. (2016) Electrical impedance and conduction mechanism analysis of bio polymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 22: 2157-2167. doi: 10.1007/s11581-016-1731-0
    [11] Agrawal RC, Sahu DK, Mahipal YK, et al. (2013) Ion transport property of Mg2+ ion conducting nano composite polymer electrolytes membranes: Study of effect of active/passive filler particle dispersal on conductivity. Indian J Pure App Phys 51: 320-323.
    [12] Malhotra A, Varshney PK (2015) Future prospects of Polymer electrolytes. Int J Sci Res 4/10: 43-45.
    [13] Blonsky PM, Shriver DF, Austin P, et al. (1986) Complex formation and ionic conductivity of polyphosphazene solid electrolytes. Solid State Ionics 18-19: 258-264. doi: 10.1016/0167-2738(86)90123-2
    [14] Vincent CA (1987) Polymer electrolytes. Prog Solid State Chem 17: 145-261. doi: 10.1016/0079-6786(87)90003-3
    [15] Ratner MA, Nitzan A (1989) Conductivity in polymer ionics. Dynamic disorder and correlation. Faraday Discuss Chem Soc 88: 19-42. doi: 10.1039/dc9898800019
    [16] Borjesson L, Martin S, Torell L, et al. (1986) Sequential hypersonic dampings due to fast ion diffusion and structural relaxation in (AgI)x(AgPO3)1-x ionic liquids. Solid State Ionics 18-19: 141-146. doi: 10.1016/0167-2738(86)90101-3
    [17] Watanabe M, Sanui K, Ogata N, et al. (1985) Ionic conductivity and mobility in network polymers from poly(propylene oxide) containing lithium perchlorate. J Appl Phys 57: 123-128. doi: 10.1063/1.335386
    [18] Cameron GG, Ingram MD, Sarmouk K (1990) Conductivity and viscosity of liquid polymer electrolytes plasticized by propylene carbonate and tetrahydrofuran. Eur Polym J 26: 1097-1101. doi: 10.1016/0014-3057(90)90009-S
    [19] Bruce PG, Evans J, Vincent CA (1988) Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics 28-30: 918-922. doi: 10.1016/0167-2738(88)90304-9
    [20] Chatani Y, Okamura S (1987) Crystal structure of poly(ethylene oxide)-sodium iodide complex. Polymer 28: 1815-1820. doi: 10.1016/0032-3861(87)90283-7
    [21] Abbrent S, Plestil J, Hlavata D, et al. (2001) Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42: 1407-1416. doi: 10.1016/S0032-3861(00)00517-6
    [22] Angell CA, Liu C, Sanchez E (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362: 137-139. doi: 10.1038/362137a0
    [23] Quartarone E, Tomasi C, Mustarelli P, et al. (1998) Long-term structural stability of PMMA-based gel polymer electrolytes. Electrochim Acta 43: 1435-1439. doi: 10.1016/S0013-4686(97)10080-9
    [24] Prasadini KW, Perera KS, Vidanapathirana KP (2019) Characterization of an ionic liquid based gel polymer electrolyte for potential applications. J Natl Sci Found Sri Lanka 47: 133-138. doi: 10.4038/jnsfsr.v47i1.8930
    [25] Sanchez C, Belleville P, Popall M, et al. (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Revs 40: 696-753. doi: 10.1039/c0cs00136h
    [26] Forsyth M, Porcarelli L, Wang X, et al. (2019) Innovative electrolytes based on ionic liquids and polymers for next generation solid state batteries. Acc Chem Res 52: 686-694. doi: 10.1021/acs.accounts.8b00566
    [27] Armand M, Endres F, MacFarlane DR, et al. (2010) Ionic-liquid materials for the electrochemical challenges of the future. Mater Sustainable Energy 8: 129-137.
    [28] Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40: 907-925. doi: 10.1039/C0CS00059K
    [29] Ma F, Zhang Z, Yan W, et al. (2019) Solid polymer electrolyte based on polymerized ionic liquid for high performance All solid state lithium ion batteries. ACS Sustainble Chem Eng 7: 4675-4683. doi: 10.1021/acssuschemeng.8b04076
    [30] Sapri MNZM, Ahmed AH, Mahat MM, et al. (2017) Thermal analysis of 1ethyl3methylimmidazoliumtrifluoromethanesulfonate ionic liquid to PEO-NaCF3SO3 polymer electrolyte. Solid State Phenom 268: 338-342. doi: 10.4028/www.scientific.net/SSP.268.338
    [31] Passerini S, Motanino M, et al. (2013) In: Mittal V Editor, Li polymer batteries based on ionic liquids in polymers for energy storage and conversion. John Wiley and Scri Verner Pub, USA.
    [32] Prasanna CMS, Suthanthiraraj SA (2016) Effective influences of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIMTFSI) ionic liquid on the ion transport properties of micro porous zinc ion conducting poly(vinyl chloride)/poly(ethyl methacrylate) blend based polymer electrolytes. J Polym Res 23: 140-157. doi: 10.1007/s10965-016-1043-0
    [33] Zhang S, Sun N, He X, et al. (2006) Physical Properties of Ionic Liquids: Database and Evaluation. J Phys Chem Ref Data 35: 1475-1517. doi: 10.1063/1.2204959
    [34] Yang P, Liu L, Li L, et al. (2014) Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery. Electrochim Acta 115: 454-460. doi: 10.1016/j.electacta.2013.10.202
    [35] Anandan S, Pitchumani S, Muthuraaman B, et al. (2006) Heteropolyacid-impregnated PVDF as a solid polymer electrolyte for dye-sensitized solar cells. Sol Energy Mater Sol Cells 90: 1715-1720. doi: 10.1016/j.solmat.2005.09.005
    [36] Noda A, Hayamizu K, Watanabe M (2001) Pulsed gradient spin echo 1H and 19F NMR ionic diffusion coefficient, viscosity and ionic conductivity of Non chloroaluminate room temperature ionic liquids. J Phys Chem B 105: 4603-4610. doi: 10.1021/jp004132q
    [37] Gerbaldi C, Nair JR, Ahmad S, et al. (2010) UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sources 195: 1706-1713. doi: 10.1016/j.jpowsour.2009.09.047
    [38] Hayes R, Warr GG, Atkin R (2015) Structure and Nanostructure in Ionic Liquids. Chem Rev 115: 6357-6426. doi: 10.1021/cr500411q
    [39] Karunarathne KAJK, Perera KS, Vidanapathirana KP, et al. (2019) Fabrication and evaluation of an electrochemical double layer capacitor with natural graphite electrodes and magnesium trifluoromethane sulfonate based gel polymer electrolyte. J Solid State Electrochem 23: 2165-2171. doi: 10.1007/s10008-019-04309-2
    [40] Kobayashi Y, Shono K, Kobayashi T, et al. (2017) A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte. J Power Sources 341: 257-263. doi: 10.1016/j.jpowsour.2016.12.009
    [41] Syahidah SN, Majid SR (2015) Ionic liquid based polymer gel electrolytes for symmetrical solid state electrical double layer capacitor operated at different operating voltages. Electrochim Acta 175: 184-192. doi: 10.1016/j.electacta.2015.02.215
    [42] Missan HPS, Lalia BS, Karan K, et al. (2010) Polymer-ionic liquid nano-composites electrolytes: Electrical, thermal and morphological properties. Mater Sci Eng: B 175: 143-149. doi: 10.1016/j.mseb.2010.07.017
    [43] Dirican M, Yanilmaz M, Fu K, et al. (2014) Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. J Power Sources 264: 240-247. doi: 10.1016/j.jpowsour.2014.04.102
    [44] Choi JA, Kim SH, Kim DW (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195: 6192-6196. doi: 10.1016/j.jpowsour.2009.11.020
    [45] Rosdi A, Zainol NH, Osman Z (2016) Ionic transport and Electrochemical stability of PVdF-HFP based gel polymer electrolytes. Int Symp Front Appl Phys, 0500031-05000356.
    [46] Gupta H, Balo SL, Singh VK, et al. (2017) Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes. Solid State Ionics 309: 192-199. doi: 10.1016/j.ssi.2017.07.019
    [47] Kim JI, Choi Y, Chung KY, et al. (2017) A structurable gel-polymer electrolyte for sodium ion batteries. Adv Funct Mater 27: 1701768. doi: 10.1002/adfm.201701768
    [48] Gong SD, Huang Y, Cao HJ, et al. (2016) A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sources 307: 624-633. doi: 10.1016/j.jpowsour.2016.01.030
    [49] Aziz SB, Woo TJ, Kadir MFZ, et al. (2018). A conceptual review on polymer electrolytes and ion transport models. J Sci: Adv Mater Devices 3: 1-17. doi: 10.1016/j.jsamd.2018.01.002
    [50] Zarrougui R, Dhahbi M, Lemordant D (2010) Effect of temperature and composition on the transport and thermodynamic properties of binary mixtures of ionic liquid N-Butyl-N-methylpyrrolidinium bis(Trifluoromethanesulfonyl)imide and propylene carbonate. J Solution Chem 39: 921-942. doi: 10.1007/s10953-010-9562-5
    [51] Choudhury NS, Patterson JW (1970) Steady-State chemical potential profiles in solid electrolytes. J Electrochem Soc 117: 1384-1388. doi: 10.1149/1.2407327
    [52] Liew CW, Ramesh S, Ramesh K, et al. (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16: 1869-1875. doi: 10.1007/s10008-012-1651-5
    [53] Weston J, Steele B (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7: 75-79. doi: 10.1016/0167-2738(82)90072-8
    [54] Kumar SR, Aparna Y (2016) Synthesis and characterization of PEO complexed with NaClO4soluble base salt and Nb2O5 Nano filler. Int J Engi Res Sci 2: 16-24.
    [55] Khanmirzaei MH, Ramesh S (2014) Nanocomposite polymer electrolyte based on rice starch/ionic liquid/TiO2 nano particles for solar cell application. Measurement 58: 68-72. doi: 10.1016/j.measurement.2014.08.009
    [56] Li GC, Zhang P, Zhang HP, et al. (2008) A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochem Commun 10: 1883-1885. doi: 10.1016/j.elecom.2008.09.035
    [57] Ortega PFR, Trigueiro JPC, Silva GG, et al. (2016) Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochim Acta 188: 809-817. doi: 10.1016/j.electacta.2015.12.056
    [58] Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196: 1358-1364. doi: 10.1016/j.jpowsour.2010.09.035
    [59] Ngai KS, Ramesh S, Ramesh K, et al. (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22: 1259-1279. doi: 10.1007/s11581-016-1756-4
    [60] Lim JY, Kang DA, Kim NU, et al. (2019) Bicontinuously crosslinked polymer electrolyte membranes with high ion conductivity and mechanical strength. J Membr Sci 589: 117250-117256. doi: 10.1016/j.memsci.2019.117250
    [61] Gong C, Xue Z, Wang X, et al. (2014) Poly(ethylene glycol) grafted multi-walled carbon nanotubes/LiFePO4 composite cathodes for lithium ion batteries. J Power Sources 246: 260-268. doi: 10.1016/j.jpowsour.2013.07.091
    [62] Jiang G, Maeda S, Yang H, et al. (2005) All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes. J Power Sources 141: 143-148. doi: 10.1016/j.jpowsour.2004.09.004
    [63] Wang X (2003) Novel composite polymer electrolytes based on poly(ether-urethane) network polymer and modified montmorillonite. Electrochem Commun 5: 1025-1029. doi: 10.1016/j.elecom.2003.09.018
    [64] Kim SK, Choi SW, Jeon WS, et al. (2012) Cross-Linked benzoxazine-benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature. Macromolecule 45: 1438-1446. doi: 10.1021/ma202694p
    [65] Zhang P, Zhang HP, Li GC, et al. (2008) A novel process to prepare porous membranes comprising SnO2 nanoparticles and P(MMA-AN) as polymer electrolyte. Electrochem Commun 10: 1052-1055. doi: 10.1016/j.elecom.2008.04.037
    [66] Ishikawa M, Sugimoto T, Kikuta M, et al. (2006) Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sources 162: 658-662. doi: 10.1016/j.jpowsour.2006.02.077
    [67] Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181: 416-423. doi: 10.1016/j.ssi.2010.01.025
    [68] Rennie AJR, Ramirez NS, Toressi RM, et al. (2013) Ether bond containing ionic liquids as supercapacitor electrolytes. J Phys Chem Lett 4: 2970-2974. doi: 10.1021/jz4016553
    [69] Song D, Chen Z, Cui P, et al. (2015) NH3-treated WO3 as low-cost and efficient counter electrode for dye-sensitized solar cells. Nanoscale Res Lett 10: 1-6. doi: 10.1186/1556-276X-10-1
    [70] Song D, Cui P, Wang T, et al. (2016) Bunchy TiO2 hierarchical spheres with fast electron transport and large specific surface area for highly efficient dye-sensitized solar cells. Nano Energy 23: 122-128. doi: 10.1016/j.nanoen.2016.03.006
    [71] Zhou Z, Wang Y, Xu D, et al. (2010) Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Sol Energy Mater Sol Cells 94: 2042-2045. doi: 10.1016/j.solmat.2010.06.010
    [72] Singh PK, Bhattacharya B, Mehra RM, et al. (2011) Plasticizer doped ionic liquid incorporated solid polymer electrolytes for photovoltaic application. Curr Appl Phys 11: 616-619. doi: 10.1016/j.cap.2010.10.012
    [73] Luo J, Hu J, Saak W, et al. (2011) Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1,2,4-triazole as high temperature PEMFC electrolytes. J Mater Chem 21: 10426-10436. doi: 10.1039/c0jm04306k
    [74] Díaz M, Ortiz A, Vilas M, et al. (2014) Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes. Int J Hydrogen Energy 39: 3970-3977. doi: 10.1016/j.ijhydene.2013.04.155
    [75] Takegawa A, Murakami M, Kaneko Y, et al. (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79: 85-90. doi: 10.1016/j.carbpol.2009.07.030
    [76] Ning W, Xingxiang Z, Haihui L, et al. (2009) 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76: 482-484. doi: 10.1016/j.carbpol.2008.11.005
    [77] Du Z, Su Y, Qu Y, et al. (2019) A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim Acta 299: 19-26. doi: 10.1016/j.electacta.2018.12.173
    [78] Ye YS, Rick J, Hwang BJ (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1: 2719-2743. doi: 10.1039/C2TA00126H
    [79] Wang X, Girard GM, Zhu H, et al. (2019) Poly(ionic liquid)/electrospun nanofibre composite polymer electrolytes for high energy density and safe Li metal batteries. ACS Appl Energy Mat 2: 6237-6245. doi: 10.1021/acsaem.9b00765
    [80] George A, Brandt A, Tran K, et al. (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17: 1728-1734. doi: 10.1039/C4GC01208A
    [81] Shen SY, Dong RX, Shih PT, et al. (2014) Novel polymer gel electrolyte with organic solvents for quasi-solid-state dye-sensitized solar cells. ACS Appl Mater Interfaces 6: 18489-18496. doi: 10.1021/am505394v
    [82] Lu Q, Fu J, Chen L, et al. (2019) Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries. J Power Sources 414: 31-40. doi: 10.1016/j.jpowsour.2018.12.085
    [83] Yang K, Liao Z, Zhang Z, et al. (2019) Ionic plastic crystal-polymeric ionic liquid solid-state electrolytes with high ionic conductivity for lithium ion batteries. Mater Lett 236: 554-557. doi: 10.1016/j.matlet.2018.11.003
    [84] Li X, Zhang W, Cai J, et al. (2019) Hierarchical nanosheets constructed by integration of bimetallic sulfides into N-Doped carbon: Enhanced diffusion kinetics and cycling stability for sodium storage. Nano Energy 62: 239-249. doi: 10.1016/j.nanoen.2019.05.040
    [85] Li X, Wu G, Liu X, et al. (2017) Orderly integration of porous TiO2 (B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy 31: 1-8. doi: 10.1016/j.nanoen.2016.11.002
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4205) PDF downloads(601) Cited by(7)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog