
AIMS Energy, 2020, 8(2): 179213. doi: 10.3934/energy.2020.2.179
Research article Topical Section
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Applying Johansen VECM cointegration approach to propose a forecast model of photovoltaic power output plant in Reunion Island
1 LE^{2}P—EnergyLab, University of Reunion Island, 97744 SaintDenis, France
2 LCOMS, University of Lorraine, 57070 Metz, France
Received: , Accepted: , Published:
Topical Section: Solar Energy
References
1. Selosse S, Garabedian S, Ricci O, et al. (2018) The renewable energy revolution of reunion island. Renewable Sustainable Energy Rev 89: 99105.
2. OmuboPepple VB, IsraelCookey C, Alaminokuma GI (2009) Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur J Sci Res 35: 173180.
3. Laronde R, Charki A, Bigaud D (2010) Reliability of photovoltaic modules based on climatic measurement data. International Metrology Conference CAFMET, 16.
4. Wan C, Zhao J, Song Y, et al. (2015) Photovoltaic and solar power forecasting for smart grid energy management. CSEE J Power Energy Syst 1: 3846.
5. Antonanzas J, Osorio N, Escobar R, et al. (2016) Review of photovoltaic power forecasting. Sol Energy 136: 78111.
6. Sobri S, KoohiKamali S, Abd Rahim N (2018) Solar photovoltaic generation forecasting methods: A review. Energy Convers Manage 156: 459497.
7. AlSabounchi AM (1998) Effect of ambient temperature on the demanded energy of solar sells at different inclinations. Renewable Energy 14: 149155.
8. Chandra S, Agrawal S, Chauhan DS (2018) Effect of ambient temperature and wind speed on performance ratio of polycrystalline solar photovoltaic module: An experimental analysis. Int Energy J 18: 171180.
9. Amajama J, Ogbulezie JC, Akonjom NA, et al. (2016) Impact of wind on the output of photovoltaic panel and solar illuminance/intensity. Int J Eng Res Gen Sci, 4.
10. Kaldellis JK, Kapsali M, Kavadias KA (2014) Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renewable Energy 66: 612624.
11. Ketjoy N, Konyu M (2014) Study of dust effect on photovoltaic module for photovoltaic power plant. Energy Procedia 52: 431437.
12. Barbieri F, Rajakaruna S, Ghosh A (2017) Very shortterm photovoltaic power forecasting with cloud modeling: A review. Renewable Sustainable Energy Rev 75: 242263.
13. Li Y, Sub Y, Shu L (2014) An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy 66: 7889.
14. Raza MQ, Nadarajah M, Ekanayake C (2016) On recent advances in PV output power forecast. Sol Energy 136: 125144.
15. Zamo M, Mestre O, Arbogast P, et al. (2014) A benchmark of statistical regression methods for shortterm forecasting of photovoltaic electricity production, part I: Deterministic forecast of hourly production. Sol Energy 105: 792803.
16. Zamo M, Mestre O, Arbogast P, et al. (2014) A benchmark of statistical regression methods for shortterm forecasting of photovoltaic electricity production. Part II: Probabilistic forecast of daily production. Sol Energy 105: 804816.
17. AlSkaif T, Dev S, Visser L, et al. (2020) A systematic analysis of meteorological variables for PV output power estimation. Renewable Energy 153: 1222.
18. Gujarati DN (2004) Basic of econometric. The McGrawHill Econometrics, Fourth Edition, Fourth Companies.
19. Enders W (1995) Applied economic time series. Wiley Series in Probability and Statistics.
20. Bacher P, Madsen H, Nielsen H (2009) Online shortterm solar power forecasting. Sol Energy 83: 17721783.
21. Li Y, Shu Y (2014) An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy 66: 7889.
22. Chu Y, Urguhart B, Gohari S, et al. (2015) Shortterm reforecasting of power output from a 48MWe solar PV plant. Sol Energy 112: 6877.
23. Bessa R, Trindade A, Silva C, et al. (2015) Probabilistic solar power forecasting in smart grids using distributed information. Int J Electr Power Energy Syst 72: 1623.
24. Pedro H, Coimbra C (2012) Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol Energy 86: 20172028.
25. Bouzerdoum M, Mellit A, Massi Pavan A (2013) A hybrid model (SARIMASVM) for shortterm power forecasting of a smallscale gridconnected photovoltaic plant. Sol Energy 98: 226235.
26. Jing H, Korolkiewicz M, Agrawal M, et al. (2013) Forecasting solar radiation on an hourly time scale using Coupled AutoRegressive and Dynamical System (CARDS) model. Sol Energy 87: 136149.
27. Zamo M, Mestre O, Arbogast P, et al. (2014) A benchmark of statistical regression methods for shortterm forecasting of photovoltaic electricity production, part I: Deterministic forecast of hourly production. Sol Energy 105: 792803.
28. Kostylev V, Pavlovski A (2011) Solar power forecasting performance towards industry standards. 1^{st} International Workshop on the Integration of Solar Power into Power Systems, Denmark.
29. Das UK, Soon Tey K, Seyedmahmoudian M, et al. (2018) Forecasting of photovoltaic power generation and model optimization: A review. Renewable Sustainable Energy Rev 81: 912928.
30. Diagne M, David M, Lauret P, et al. (2013) Review of solar irradiance forecasting methods and a proposition for smallscale insular grids. Renewable Sustainable Energy Rev 27: 6576.
31. Ramenah H, Casin P, Ba M, et al. (2018) Accurate determination of parameters relationship for photovoltaic power output by augmented dickey fuller and engle granger method. AIMS Energy 6: 1948.
32. Marcinkiewicz E (2014) Some aspects of application of VECM analysis for modeling causal relationships between spot and futures prices. Optimum Stud Ekon 71: 114125.
33. Andrei D, Andrei L (2015) Vector error correction model in explaining the association of some macroeconomic variables in Romania. Procedia Econ finance 22: 568576.
34. Katircioglu ST (2009) Revisiting the tourismledgrowth hypothesis for Turkey using the bounds test and Johansen approach for cointegration. Tourism Manage 30: 1720.
35. Skoplaki E, Palyvos JA (2009) Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable Energy 34: 2329.
36. Dubey S, Sarvaiya JN, Seshadri B (2013) Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the worldA Review. Energy Procedia 33: 311321.
37. Luo Y, Zhang L, Liu Z, et al. (2017) Performance analysis of a selfadaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China. Energy 140: 584600.
38. Amajama J, Oku DE (2016) Wind versus UHF Radio signal. Int J Sci Eng Technol Res 5: 583585.
39. Qasem H, Betts TR, Müllejans H, et al. (2014) Application dustinduced shading on photovoltaic modules. Photovolt Res 22: 218226.
40. Jalil A, Rao NH (2019) Chapter 8Time series analysis (Stationarity, Cointegration, and Causality). Özcan B, Öztürk I, Éds. Environmental Kuznets Curve (EKC), Academic Press, 8599.
41. Granger CWJ, Weiss AA (1983) Time series analysis of errorcorrection. Karlin S, Amemiya T, Goodman LA, Éds. Studies in Econometrics, Time Series, and Multivariate Statistics, Academic Press, 255278.
42. Mills TC (2019) Chapter 14Error correction, spurious regressions, and cointegration. Mills TC, Ed. Applied Time Series Analysis, Academic Press, 233253.
43. Davinson R, MacKinnon JG (2009) Econometric Theory and Methods, Oxford University Press.
44. Hassani H, Yeganegi MR (2019) Sum of squared ACF and the LjungBox statistics. Phys A: Stat Mech Appl 520: 8186.
45. Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65: 297303.
46. Hoffman JIE (2015) Chapter 6Normal distribution. Hoffman JIE, Ed. Biostatistics for Medical and Biomedical Practitioners, Academic Press, 101119.
47. Johansen S (1988) Statistical analysis of cointegration vectors. J Econ Dyn Control 12: 231254.
48. Johansen S (1991) Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models. Econometrica 59: 15511580.
49. Johansen S (1995) LikelihoodBased Inference in Cointegrated Vector Autoregressive Models. New York: Oxford University Press.
50. Fu T, Tang X, Cai Z, et al. (2020) Correlation research of phase angle variation and coating performance by means of Pearson's correlation coefficient. Prog Org Coat 139: 105459.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)