Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Survey of Properties of Key Single and Mixture Halide Salts for Potential Application as High Temperature Heat Transfer Fluids for Concentrated Solar Thermal Power Systems

1 Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA;
2 Visiting Researcher, on leave from Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 31040, R.O.C.

Special Issues: Studies on high temperature heat transfer fluid for concentrated solar thermal power systems

In order to obtain high energy efficiency in a concentrated solar thermal power plant, more and more high concentration ratio to solar radiation are applied to collect high temperature thermal energy in modern solar power technologies. This incurs the need of a heat transfer fluid being able to work at more and more high temperatures to carry the heat from solar concentrators to a power plant. To develop the third generation heat transfer fluids targeting at a high working temperature at least 800 ℃, a research team from University of Arizona, Georgia Institute of Technology, and Arizona State University proposed to use eutectic halide salts mixtures in order to obtain the desired properties of low melting point, low vapor pressure, great stability at temperatures at least 800 ℃, low corrosion, and favorable thermal and transport properties. In this paper, a survey of the available thermal and transport properties of single and eutectic mixture of several key halide salts is conducted, providing information of great significance to researchers for heat transfer fluid development.
  Article Metrics

Keywords CSP; Heat transfer fluid; Molten salts; Ionic and covalent halide salts; Properties

Citation: Chao-Jen Li, Peiwen Li, Kai Wang, Edgar Emir Molina. Survey of Properties of Key Single and Mixture Halide Salts for Potential Application as High Temperature Heat Transfer Fluids for Concentrated Solar Thermal Power Systems. AIMS Energy, 2014, 2(2): 133-157. doi: 10.3934/energy.2014.2.133


  • 1. Dincer I, Rosen M (2002) Thermal energy storage: systems and applications: John Wiley & Sons.
  • 2. Badcock J, Lenzen M (2010) Subsidies for electricity-generating technologies: A review. Energy Policy 38: 5038-5047.    
  • 3. Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sust Energ Rev 14: 312-322.    
  • 4. Solangi K H, Islam M R, Saidur R, Rahim N A, et al. (2011) A review on global solar energy policy. Renew Sust Energ Rev 15: 2149-2163.    
  • 5. Therminol VP-1 heat transfer fluid by Solutia. (1999) Technical Bulletin 7239115B, Solutia, Inc.
  • 6. Dowtherm A heat transfer fluid. (1997) Form No. 176-1337-397 AMS, Dow Chemical Company.
  • 7. Wang J, Xie H, Xin Z, et al. (2010) Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Solar Energy 84: 339-344.    
  • 8. Kolb G J (2008) Conceptual design of an advanced trough utilizing a molten salt working fluid. Las Vegas Nevada: SolarPACES.
  • 9. Kelly B, Price H, Brosseau D, et al. (2007) Adopting nitrate/nitrite salt mixtures as the heat transport fluid in parabolic trough power plants. American Society of Mechanical Engineers conference. pp. 1033-1040.
  • 10. Reilly H, Kolb G (2001) Evaluation of Molten Salt Power Tower Technology Based on Experience at Solar Two. SAND: Sandia National Laboratories, 2001-3674.
  • 11. Wendelin T (2006) Parabolic Trough VSHOT Optical Characterization in 2005–2006, NREL, <www.nrel.gov/docs/fy06osti/40024.pdf>.
  • 12. Diver R B, Andraka C, Rawlinson S (2001) The advanced dish development system project. ASME Proceedings of Solar Forum, Washington D.C.
  • 13. Becker M (1980). Comparison of heat transfer fluids for use in solar thermal power stations. Electr Pow Syst Res 3: 139-150.    
  • 14. Kearney D (2004) Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy 29: 861-870.    
  • 15. Blake D M (2002) New Heat Transfer and Storage Fluids for Parabolic Trough Solar Thermal Electric Plants. Proceedings of the 11th SolarPACES International Symposium On concentrating Solar Power and Chemical Energy Technologies. Zurich, Switzerland.
  • 16. Zalba B (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Therm Eng 23: 251-283.    
  • 17. Kenisarin M M (2010) High-temperature phase change materials for thermal energy storage. Renew Sust Energ Rev 14: 955-970.    
  • 18. Gil A, Medrano M, Martorell I, et al. (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew Sust Energ Rev 14: 31-55.    
  • 19. Medrano M, Gil A, Martorell I, et al. (2010) State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renew Sust Energ Rev 14: 56-72.    
  • 20. Pacheco J E (2002) Final test and evaluation results from the solar-two project. Sandia National Laboratories. SAND2002-0120.
  • 21. Mar R W, Kramer C M (1981) Pressure–temperature–composition relationships for heated draw salt systems. Sol Energ Mat 5: 71-79.    
  • 22. Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29: 883-893.    
  • 23. http://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=19S.
  • 24. Geyer M, Herrmann U, Sevilla A, el al. (2006) Dispatchable solar electricity for summerly peak loads from the solar thermal projects andasol-1 and andasol-2. Seville, Spain: Solar millennium, SolarPACES.
  • 25. Steinmann W D (2007) Development of thermal energy storage. Freiburg (Germany): Workshop of the European Solar Thermal Technology Platform.
  • 26. Herrmann U (2002) Survey of thermal energy storage for parabolic trough power plants. J Sol Energ Eng 124: 145–152.
  • 27. Badger Energy Corp (1981) Design, handling, operation and maintenance procedures for Hitec molten salt. Sandia National Laboratories, SAND81-8179.
  • 28. Kolb G J (2008) Conceptual design of an advanced trough utilizing a molten salt working fluid. Presented at SolarPACES Symposium, Las Vegas, Nevada.
  • 29. Raade J W, Padowitz D (2001) Development of Molten Salt Heat Transfer Fluid With Low Melting Point and High Thermal Stability. J Sol Energ Eng 133: 031013.
  • 30. Herrmann U, Kearney D W (2002) Survey of thermal storage for parabolic trough power plants. J Sol Energ Eng, 124: 145-152.    
  • 31. Janz G J (1981) Physical properties data compilations relevant to energy storage. NSRDS-NBS 61. Parts I, II, and IV.
  • 32. .Bradshaw R W, Siegel N P (2009) Development of molten nitrate salt mixtures for concentrating solar power systems. SolarPACES, Berlin.
  • 33. Foster M (2002) Theoretical investigation of the system SnOx/Sn for the thermochemical storage of solar energy. Proceedings of the 11th SolarPACES. International Symposium on Concentrated Solar Power and Chemical Energy Technologies.
  • 34. Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29: 883-93.    
  • 35. Brosseau D A, Hlava P F, Kelly M J (2004) Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems Used in Parabolic Trough Power Plants. Sandia National Laboratories, Albuquerque, NM and Livermore, CA, Technical Report No. SAND2004-3207.
  • 36. Kearney D, Herrmann U, Nava P, et al. (2003) Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energ–T ASME 125: 170-176.    
  • 37. Pacheco J E, Showalter S K, Kolb W J (2001) Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants. ASME Proceedings of Solar Forum Solar Energy: The Power to Choose, Washington, DC, April 21-25.
  • 38. Bradshaw R W (2010) Viscosity of Multi-Component Molten Nitrate Salts—Liquidus to 200 ℃. Sandia National Laboratory, Livermore, CA, Technical Report No. SAND2010-1129.
  • 39. St Laurent S J, Kolb W J, Pacheco J E (2000) Thermocline Thermal Storage Tests for Large-Scale Solar Thermal Power Plants. Sandia National Laboratory, Albuquerque, NM, Technical Report No. SAND2000-2059C.
  • 40. Bauer T, Laing D, Tamme R (2011) Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications. Molten Salts Chemistry and Technology, MS9, Trondheim, Norway, June 5-9.
  • 41. Bradshaw R W, Siegel N P (2008) Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems, ASME Proceedings of Energy Sustainability (ES2008), Jacksonville, FL, August 10–14, ASME Paper No. ES2008-54174.
  • 42. Flueckiger S, Yang Z, Garimella S V (2011) An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage. Appl Energ 88: 2098-2105.    
  • 43. Judith C Gomez1, Nicolas Calvet, Anne K. Starace, et al. (2013) Ca(NO3)2—NaNO3—KNO3 Molten Salt Mixtures for Direct Thermal Energy Storage Systems in Parabolic Trough Plants. J Sol Energ Eng 135: 021016.    
  • 44. Menzies A W C, Dutt N N (1911) The Liquidus Surface of the Ternary System Composed of the Nitrates of Potassium, Sodium, and Calcium. J Am Chem Soc 33: 1366-1375.    
  • 45. Jänecke E (1942) The Quaternary System Na,K,Ca,Mg // NO3 and Its Subsystems. Z. Elektrochem. Angew. Phy Chem 48: 453-512 (in German).
  • 46. Bergman A G, Rassonskaya I S, Shmidt N E (1955) Izvest. Sektora. Fiz.-Khim. Anal., Inst. Obshch. Neorg. Khim., Tr Fiz Inst Akad Nauk SSSR 26: 156-163.
  • 47. Levin E M, McMurdie H F, Hall F P (1956) Phase Diagrams for Ceramists, In: The American Ceramic Society, Columbus; OH, Vol. 1.
  • 48. Reddy R G (2010) Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation. U.S. Department of Energy, Solar Energy Technologies Program Peer Review.
  • 49. Wang T, Mantha D, Reddy R G (2012) Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage. Sol Energ Mat Sol C 100: 162-168.    
  • 50. Coscia K, Nelle S, Elliot T, et al. (2013) Thermophysical Properties of LiNO3–NaNO3–KNO3 Mixtures for Use in Concentrated Solar Power. J Sol Energ Eng 135: 034506.    
  • 51. Bradshaw R W, Meeker D E (1990) High-Temperature Stability of Ternary Nitrate Molten Salts for Solar Thermal Energy Systems. Sol Energ Mat 21: 51-60.    
  • 52. Bradshaw R W, Tyner C E (1988) Chemical and Engineering Factors Affecting Solar Central Receiver Applications of Ternary Molten Salts. Sandia National Laboratories, Report No. SAND88-8686.
  • 53. Zhao C Y, Wu Z G (2011). Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems. Sol Energ Mat Sol C 95: 3341-3346.    
  • 54. Bradshaw R W, Brosseau D A (2009) Low-Melting Point Inorganic Nitrate Salt Heat Transfer Fluid. USPO, Patent No. 7,588,694.
  • 55. Wang T, Mantha D, Reddy R G (2013) Thermodynamic properties of LiNO3–NaNO3–KNO3–2KNO3·Mg(NO3)2 system. Thermochim Acta 551: 92-98.    
  • 56. Wang T, Mantha D, Reddy R G (2013) Novel low melting point quaternary eutectic system for solar thermal energy storage. Appl Energ 102: 1422-1429.    
  • 57. Kenisarin M M (2010) High-temperature phase change materials for thermal energy storage. Renew Sust Energ Rev 14: 955-70.    
  • 58. Phillips W M, Stearns J W (1985) Advanced latent heat of fusion thermal energy storage for solar power systems. Proceedings of the 20th intersociety energy conversion engineering conference, 2: 384-91.
  • 59. Fujiwara M, Sano T, Suzuki K, et al. (1988) Thermal analysis and fundamental tests on heat pipe receiver for solar dynamic space power system. Proceedings of the 23rd intersociety energy conversion engineering conference 2: 195-200.
  • 60. Christian L B (2007) Molten salts and nuclear energy production. J Nucl Mater 360: 1-5.    
  • 61. Shin B C, Kim S D, Park W H (1990) Ternary carbonate eutectic (lithium, sodium and potassium carbonates) for latent heat storage medium. Sol Energ Mater 21: 81-90.    
  • 62. Mamantov G, Braunstein J, Mamantov C B (1981) Advances in molten salt chemistry. New York: Plenum Press.
  • 63. Kenisarin, M M (2010) High temperature phase change materials for thermal energy storage. Renew Sust Energy Rev 14: 955-970.    
  • 64. Robelin C, Chartrand P, Pelton A (2004) Thermodynamic Evaluation and Optimization of the (NaCl + KCl + AlCl3) System. J Chem Thermodyn 36: 683-699.    
  • 65. Robelin C, Chartrand P (2011) Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) system. J Chem Thermodyn 43: 377-391.    
  • 66. Janz G J, Allen C B, Bansal N P (1979) Physical Properties Data Compilations Relevant to Energy Storage. II. Molten Salts:Data on Single and Multi-Component Salt Systems, NSRDB-NBS 61 Part II.
  • 67. http://webbook.nist.gov/chemistry/, NIST Chemistry WebBook.
  • 68. Poling B E, Thomson G H, Friend D G (2008) Physical and Chemical Data Section 2, Perry's Chemical Engineers' Handbook, 8th Edition.
  • 69. Keneshea F J, Cubicciotti D (1964) Vapor Pressures of Zinc Chloride and Zinc Bromide and Their Gaseous Dimerization. J Chem Phys 40: 191-199.    
  • 70. Cubicciotti D, Eding H (1964) Heat Contents of Molten Zinc Chloride and Bromide and the Molecular Constants of the Gases. J Chem Phys 40: 978-982.    
  • 71. Wachter A, Hildebrand J H (1930) Thermodynamic Properties of Solutions of Molten Lead Chloride and Zinc Chloride. J Am Chem Soc 52: 4655-4661.    
  • 72. Pedersen S (2001) Viscosity, structure and glass formation in the AlCl3-ZnCl2 system. Ph.D thesis (Institutt for Kjemi, Norges Tekniskurn-Naturvitenskaplige Universitet, 2001).
  • 73. Douglas S Rustad, Norman W Gregory (1983) Vapor Pressure of Iron(III) Chloride. J Chem En Data 28: 151-155.    
  • 74. Nitta K, Nohira T, Hagiwara R. (2009) Physicochemical properties of ZnCl2–NaCl–KCl eutectic melt. Electrochim Acta 54: 4898-4902.    
  • 75. Vignaroobana K., Pugazhendhi P, Tucker C, et al. (2014) Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications, Solar Energy 103: 62-69.


This article has been cited by

  • 1. H. Benoit, L. Spreafico, D. Gauthier, G. Flamant, Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients, Renewable and Sustainable Energy Reviews, 2016, 55, 298, 10.1016/j.rser.2015.10.059
  • 2. Yaxuan Xiong, Jianfeng Shi, Yuting Wu, Chongfang Ma, Hongbing Chen, Preparation and investigation on density and surface tension of quaternary bromides for concentrating solar power, Solar Energy Materials and Solar Cells, 2016, 157, 709, 10.1016/j.solmat.2016.07.016
  • 3. Hao Zhang, Kinjal Dasbiswas, Nicholas B. Ludwig, Gang Han, Byeongdu Lee, Suri Vaikuntanathan, Dmitri V. Talapin, Stable colloids in molten inorganic salts, Nature, 2017, 542, 7641, 328, 10.1038/nature21041
  • 4. Yuanyuan Li, Xiankun Xu, Xiaoxin Wang, Peiwen Li, Qing Hao, Bo Xiao, Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl 2 , CaCl 2 , ZnCl 2 for heat transfer and thermal storage fluids in CSP, Solar Energy, 2017, 10.1016/j.solener.2017.03.019
  • 5. Gechuanqi Pan, Jing Ding, Yunfei Du, Duu-Jong Lee, Yutong Lu, A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 2. Potential development and properties prediction of ZnCl2-NaCl-KCl ternary salt for CSP, Computational Materials Science, 2021, 187, 110055, 10.1016/j.commatsci.2020.110055

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Peiwen Li, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved