Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mesenchymal Stem Cells for the Treatment of Skin Diseases

Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan

Special Issue: Mesenchymal Stem Cells

Mesenchymal stem cell (MSC)-based therapy involving both autologous and allogeneic MSCs shows great promise in treating several conditions. MSCs promote wound healing, and can differentiate into multiple cell lineages, including keratinocytes. Therefore, MSCs can be used for the treatment of congenital or acquired skin defects. Because of their immunomodulatory properties, MSCs may be useful for the treatment of inflammatory and autoimmune skin diseases. In particular, MSCs might be effective for the treatment of large vitiligo lesions as immunosuppressant or cultured grafts. MSCs can also be a novel cell source for regenerating hair in the treatment of scarring alopecia and androgenic alopecia. MSCs might also be an effective treatment for alopecia areata, which is associated with autoimmunity. Stem cell therapies with topical administration of MSCs and bone marrow transplantation were shown to alleviate recessive dystrophic epidermolysis bullosa in both animal models and human subjects. In addition to cell transplantation, the mobilization of endogenous MSCs has been attempted for skin regeneration. Overall, this review highlights the great potential of MSCs for the treatment of skin diseases in the near future.
  Figure/Table
  Supplementary
  Article Metrics

Keywords mesenchymal stem cells; adipose tissue-derived mesenchymal stem cell; skin regeneration; vitiligo; alopecia; epidermolysis bullosa; anti-aging; epidermal stem cells; keratinocytes; skin disease

Citation: Toshio Hasegawa, Shigaku Ikeda. Mesenchymal Stem Cells for the Treatment of Skin Diseases. AIMS Cell and Tissue Engineering, 2017, 1(2): 104-117. doi: 10.3934/celltissue.2017.2.104

References

  • 1. Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 21: 1045-1056.    
  • 2. Sellheyer K, Krahl J (2010) Skin mesenchymal stem cells: prospects for clinical dermatology. J Am Acad Dermatol 63: 859-865.    
  • 3. Shi C, Zhu Y, Su Y, et al. (2006) Stem cells and their applications in skin-cell therapy. Trends Biotechnol 24: 48-52.    
  • 4. Sousa BR, Parreira RC, Fonseca EA, et al. (2014) Human adult stem cells from deverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry A 85: 43-77.    
  • 5. Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells – current trends and future prospective. Biosci Rep 35: e00191.
  • 6. Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20: 5-14.    
  • 7. Chamberlain G, Fox J, Ashton B, et al. (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem cells 25: 2739-2749.    
  • 8. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9: 641-650.    
  • 9. Pittenger MF, Mackay AM, Beck SC, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.    
  • 10. Wegmeyer H, Bröske A-M, Leddin M, et al. (2013) Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev 22: 2606-2618.    
  • 11. Zouboulis CC, Adjaye J, Akamatsu H, et al. (2008) Human skin stem cells and the aging process. Experimental Gerontol 43: 986-997.    
  • 12. Fraser JK, Wulur I, Alfonso Z, et al. (2006) Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol 24: 150-154.    
  • 13. Zuk PA, Zhu M, Mizuno H, et al. (2001) Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 7: 211-228.    
  • 14. Dominici M, Le Blanc K, Mueller I, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cryotherapy 8: 315-317.
  • 15. Barry FP, Murphy JM, English K, et al. (2005) Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev 14: 252-265.    
  • 16. Caplan AI, Correa D (2011) The MSC: An injury drugstore. Cell Stem Cell 9: 11-15.    
  • 17. Chen L, Tredget EE, Wu PY, et al. (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 3: e1886.    
  • 18. Wang J, Liao L, Tan J (2011) Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions. Expert Opin. Biol Ther 11: 893-909.    
  • 19. Hoogduijn MJ (2015) Are mesenchymal stromal cells immune cells? Arthritis Res Ther 17: 88.    
  • 20. Nauta AJ, Kruisselbrink AB, Lurvink E, et al. (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177: 2080-2087.    
  • 21. Bartholomew A, Sturgeon C, Siatskas M, et al. (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30: 42-48.    
  • 22. McIntosh K, Zvonic S, Garrett S, et al. (2006) The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24: 1246-1253.    
  • 23. Lombardo E, DelaRosa O, Mancheño-Corvo P, et al. (2009) Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng Part A 15: 1579-1589.    
  • 24. Puissant B, Barreau C, Bourin P, et al. (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129: 118-129.    
  • 25. Gonzalez MA, Gonzalez-Rey E, Rico L, et al. (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60: 1006-1019.    
  • 26. Fang B, Song Y, Liao L, et al. (2007) Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc 39: 3358-3362.    
  • 27. Cho KS, Roh HJ (2010) Immunomodulatory effects of adipose-derived stem cells in airway allergic diseases. Curr Stem Cell Res Ther 5: 111-115.    
  • 28. Badillo AT, Redden RA, Zhang L, et al. (2007) Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure. Cell Tissue Res 329: 301-311.    
  • 29. Li H, Fu X, Ouyang Y, et al. (2006) Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res 326: 725-736.    
  • 30. Ma K, Liao S, He L, et al. (2011) Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds. Tissue Eng Part A 17: 1413-1424.    
  • 31. Schneider RK, Pullen A, Kramann R, et al. (2010) Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation 79: 182-193.    
  • 32. Wu Y, Chen L, Scott PG, et al. (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25: 2648-2659.    
  • 33. Kwon DS, Gao X, Liu YB, et al. (2008) Treatment with bone-marrow derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 5: 453-463.    
  • 34. Yoshikawa T, Mitsuno H, Nonaka I, et al. (2008) Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 121: 860-877.    
  • 35. Falanga V, Iwamoto S, ChartierM, et al. (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13: 1299-1312.    
  • 36. Borue X, Lee S, Grove J, et al. (2004) Bone marrow-derived cells contribute to epithelial engraftment during wound healing. Am J Pathol 165: 1767-1772.    
  • 37. Sasaki M, Abe R, Fujita Y, et al. (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180: 2581-2587.    
  • 38. Shokrgozar MA, Fattahi M, Bonakdar S, et al. (2012) Healing potential of mesenchymal stem cells cultured on a collagen-based scaffold for skin regeneration. Iran Biomed J 16: 68-76.
  • 39. Påunescu V, Deak E, Herman D, et al. (2007) In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J Cell Mol Med 11: 502-508.    
  • 40. Hasegawa T, Sakamoto A, Wada A, et al. (2015) Keratinocyte progenitor cells reside in human subcutaneous adipose tissue. PLoS One 10: e0118402.    
  • 41. Chavez-Munoz C, Nguyen KT, Xu W, et al. (2013) Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: Engineering a stratified epidermis. PLoS One 8: e80587.    
  • 42. Dominici M, Le Blanc K, Mueller I, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.
  • 43. Kuroda Y, Kitada M, Wakao S, et al. (2010) Unique multipotent cells in adult human mesenchymal stem cell populations. Proc Natl Acad Sci USA 107: 8639-8643.    
  • 44. Tsuchiyama K, Wakao S, Kuroda Y, et al. (2013) Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol 133: 2425-2435.    
  • 45. Squillaro T, Peluso G, Galderisi U (2016) Clinical Trials With Mesenchymal Stem Cells: an update. Cell Transplant 25: 829-848.    
  • 46. Oraee-Yazdani S, Hafizi M, Atashi A, et al (2016) Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome. Spinal Cord 54: 102-109.    
  • 47. Le Blanc K, Rasmusson I, Sundberg B, et al. (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymalstem cells. Lancet 363: 1439-1441.    
  • 48. Ball LM, Bernardo ME, Roelofs H, et al. (2013) Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III-IV acute graftversus- host disease. Br J Haematol 163: 501-509.    
  • 49. Kurtzberg J, Prockop S, Teira P, et al. (2014) Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant 20: 229-235.    
  • 50. Introna M, Lucchini G, Dander E, et al. (2014) Treatment of graft versus host disease with mesenchymal stromal cells: A phase I study on 40 adult and pediatric patients. Biol Blood Marrow Transplant 20: 375-381.    
  • 51. Ringd´en O, Erkers T, Nava S, et al. (2013) Fetal membrane cells for treatment of steroid-refractory acute graft-versus-host disease. Stem Cells 31: 592-601.    
  • 52. Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126: 1459-1468.    
  • 53. Ohyama M, Kobayashi T (2012) Isolation and characterization of stem cell-enriched human and canine hair follicle keratinocytes. Methods Mol Biol 879: 389-401.    
  • 54. Staricco RG, Miller-Milinska A (1962) Activation of the amelanotic melanocytes in the outer root sheath of the hair follicle following ultra violet rays exposure. J Invest Dermatol 39: 163-164.    
  • 55. Quevedo WC Jr, Isherwoob JE (1961) Influence of hair growth cycle on melanocyte activation in rabbit skin after a single application of methylcholanthrene. J Invest Dermatol 27: 93-101.
  • 56. Yamada T, Hasegawa S, Inoue Y, et al. (2013) Wnt/β-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J Invest Dermatol 133: 2753-2762.    
  • 57. Cichorek M,Wachulska M, Stasiewicz A, et al. (2013) Skin melanocytes: biology and development. Postepy Dermatol Allergol 30: 30-41.
  • 58. Watt FM, Jensen KB (2009) Epidermal stem cell diversity and quiescence. EMBO Mol Med 1: 260-267.    
  • 59. Sieber-Blum M, Grim M, Hu YF, et al. (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231: 258-269.    
  • 60. Koga M, Tango T (1988) Clinical features and course of type A and type B vitiligo. Br J Dermatol 118: 223-228.    
  • 61. Njoo MD, Westerhof W, Bos JD, et al. (1999) The development of guidelines for the treatment of vitiligo. Clinical Epidemiology Unit of the Istituto Dermopatico dell'Immacolata-Istituto di Recovero e Cura a Carattere Scientifico (IDI-IRCCS) and the Archives of Dermatology. Arch Dermatol 135: 1514-1521.
  • 62. Spencer GA (1951) Skin transplantation in extensive vitiligo. AMA Arch Derm Syphilol 64: 514-515.
  • 63. Hasegawa T, Suga Y, Ikejima A, et al. (2007) Suction blister grafting with CO2 laser resurfacing of the graft recipient site for vitiligo. J Dermatol 34: 490-492.    
  • 64. Falabella R (1983) Repigmentation of segmental vitiligo by autologous minigrafting. J Am Acad Dermatol 9: 514-521.    
  • 65. Yamauchi T, Yamasaki K, Tsuchiyama K, et al. (2017) A quantitative analysis of multilineaage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction. J Dermatol Sci 86: 198-205.    
  • 66. Yoo BY, Shin YH, Yoon HH, et al. (2010) Application of mesenchymal stem cells derived from bone marrow and umbilical cord in human hair multiplication. J Dermatol Sci 60:74-83.    
  • 67. McElwee KJ, Hoffmann R (2002) Alopecia areata-animal models. Clin Exp Dermatol 27: 410-417.    
  • 68. Randall VA (2001) Is alopecia areata an autoimmune disease? Lancet 358: 1922-1924.    
  • 69. Gilhar A, Landau M, Assy B, et al. (2001) Melanocyte-associated T cell epitopes can function as autoantigens for transfer of alopecia areata to human scalp explants on Prkdc(scid) mice. J Invest Dermatol 117: 1357-1362.    
  • 70. Byun JW, Kin HJ, Na K, et al. (2017) Bone marrow-derived mesenchymal stem cells prevent alopecia areata development through the inhibition of NKG2D expression: A pilot study. Exp Dermatol 25: 532-535.
  • 71. Hilal L, Rochat A, Duquesnoy P, et al. (1993) A homozygous insertion-deletion in the type VII collagen gene (COL7A1) in Hallopeau-Siemens dystrophic epidermolysis bullosa. Nat Genet 5: 287-293.    
  • 72. Fine JD, Eady RA, Bauer EA, et al. (2008) The classification of inherited epidermolysis bullosa (EB): Report of the Third International Consensus Meeting on Diagnosis and Classification of EB. J Am Acad Dermatol 58: 931-950.    
  • 73. Freeman EB, Köglmeier J, Martinez AE, et al. (2008) Gastrointestinal complications of epidermolysis bullosa in children. Br J Dermatol 158: 1308-1314.    
  • 74. McGrath JA, Schofield OM, Ishida-Yamamoto A, et al. (1993) Cultured keratinocyte allografts and wound healing in severe recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol 29: 407-419.    
  • 75. Roseeuw D, De Raeve L, Dangoisse C, et al. (1994) Treatment of epidermolysis bullosa with human cultured epidermal allografts. Dermatology 189: 68-70.    
  • 76. Beele H, Naeyaert JM, Monstrey S, et al. (1995) Ulcers in pretibial epidermolysis bullosa. Grafting with autologous meshed split-thickness skin and allogeneic cultured keratinocytes. Arch Dermatol 131: 990-992.
  • 77. Verplancke P, Beele H, Monstrey S, et al. (1997) Treatment of dystrophic epidermolysis bullosa with autologous meshed split-thickness skin grafts and allogeneic cultured keratinocytes. Dermatology 194: 380-382.    
  • 78. Eisenberg M, Llewelyn D (1998) Surgical management of hands in children with recessive dystrophic epidermolysis bullosa: use of allogeneic composite cultured skin grafts. Br J Plast Surg 51: 608-613.    
  • 79. Hasegawa T, Suga Y, Mizoguchi M, et al. (2004) Clinical trial of allogeneic cultured dermal substitute for the treatment of intractable skin ulcers in 3 patients with recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol 50: 803-804.    
  • 80. Hasegawa T, Mizoguchi M, Haruna K, et al. (2007) Amnia for intractable skin ulcers with recessive dystrophic epidermolysis bullosa: Report of three cases. J Dermatol 34: 328-332.    
  • 81. Kiuru M, Itoh M, Cario MS, et al. (2010) Bone marrow stem cell therapy for recessive dystrophic epidermolysis bullosa. Dermatol Clin 28: 371-382.
  • 82. Wagner JE, Ishida-Yamamoto A, McGrath JA, et al. (2010) Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Eng J Med 363: 629-639.    
  • 83. Chino T, Tamai K, Yamazaki T, et al. (2008) Bone marrow cell transfer into fetal circulation can ameliorate genetic skin diseases by providing fibroblasts to the skin and inducing immune tolerance. Am J Pathol 173: 803-814.    
  • 84. Conget P, Rodriguez F, Kramer S, et al. (2010) Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cryotherapy 12: 429-431.
  • 85. Liao Y, Itoh M, Yang A, et al. (2014) Human cord blood-derived unrestricted somatic stem cells promote wound healing and have therapeutic potential for patients with recessive dystrophic epidermolysis bullosa. Cell Transplant 23: 303-317.    
  • 86. Liao Y, Ivanova L, Zhu H, et al. (2015) Rescue of the mucocutaneous manifestations by human cord blood derived nonhematopoietic stem cells in a mouse model of recessive dystrophic epidermolysis bullosa. Stem Cells 33: 1807-1817.    
  • 87. Petrof G, Lwin SM, Martinez-Queipo M, et al. (2015) Potential of systemic allogeneic mesenchymal stromal cell therapy for children with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 135: 2319-2321.    
  • 88. Iinuma S, Aikawa E, Tamaki K, et al. (2015) Transplanted bone marrow-derived circulating PDGFRα+ cells restore type VII collagen in recessive dystrophic epidermolysis bullosa mouse skin graft. J Immunol 194: 1996-2003.    
  • 89. Woodley DT, Cogan J, Wang X, et al. (2014) De novo anti-type VII collagen antibodies in patients with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 134: 1138-1140.    
  • 90. Bauer J, Schumann H, Sonnichsen K (2002) Molecular diagnostics facilitate distinction between lethal and non-lethal subtypes of junctional epidermolysis bullosa: a case report and review of the literature. Eur J Pediatr 161: 672-679.    
  • 91. Yuen WY, Duipmans JC, Molenbuur B (2012) Long-term follow-up of patients with Herlitz-type junctional epidermolysis bullosa. Br J Dermatol 167: 374-382    
  • 92. Mavilio F, Pellegrini G, Ferrari S, et al. (2006) Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermolysis bullosa by transplantaation of genetically modified epidermal stem cells. Nat Med 12: 1397-1342.
  • 93. Osmanov T, Ugrinova I, Pasheva E (2013) The chaperone like function of the nonhistone protein HMGB1. Biochem Biophys Res Commun 432: 231-235.    
  • 94. Tang D, Shi Y, Kang R, et al. (2007) Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol 81: 741-747.
  • 95. Dumitriu IE, Baruah P, Valentinis B, et al. (2005) Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 174: 7506-7515.    
  • 96. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cell triggers inflammation. Nature 418: 191-195.    
  • 97. Park JS, Gamboni-Robertson F, He Q, et al. (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 290: C917-924.
  • 98. Yanai H, Ban T, Taniguchi T (2012) High-mobility group box family of proteins: ligand and sensor for innate immunity. Trends Immunol 33: 633-640.    
  • 99. Takahashi K, Fukushima S, Yamahara K, et al. (2008) Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart. Circulation 118: S106-114.    
  • 100. Straino S, Di Cario A, Mangoni A, et al. (2008) High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J Invest Dermatol 128: 1545-1553.    
  • 101. Palumbo R et al. (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164: 441-449.    
  • 102. Clavakis E, Hain A, Vinci M, et al. (2007) High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 100: 204-212.    
  • 103. Tamai K, Yamazaki T, Chino T, et al. (2011) PDGFRα-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci USA 108: 6609-6614.    
  • 104. Jeremias TS, Machado RG, Visoni SB, et al. (2014) Dermal substitutes support the growth of human skin-derived mesenchymal stromal cells. PLoS One 9: e89542.    

 

Reader Comments

your name: *   your email: *  

Copyright Info: © 2017, Toshio Hasegawa, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved