Research article Special Issues

Biochemical and biophysical mechanisms underlying the heart and the brain dialog

  • Received: 20 August 2020 Accepted: 18 October 2020 Published: 28 October 2020
  • In this paper, within the so called “neuro-visceral integration model”, it is reviewed the ability of the heart to secrete numerous endocrine mediators, neurotransmitters and substances that regulate the immune function with repercussions on the central nervous system. The heart would also seem to be able to process various information independently, influencing the brain work through the “intrinsic cardiac nervous system” and baroreceptor pathways. In reviewing this matter, further physical mechanisms are also described, including mechanical contractions and deformations, that are involved in the “heart-brain symphony” based on intra-cardiac formation and propagation of blood vortices coupled to electrical signals. The relevance of the role of vorticity of the blood flow in the molecular dynamics and physiological activity is stressed. By resorting to some conceptual and formal aspects of the dissipative quantum model of brain, mechanisms such as the spontaneous breakdown of symmetry in many-body physics, the dynamical formation of long range correlations and their associated Nambu-Goldstone quanta, coherent states and fractal self-similarity are discussed with reference to the heart-brain dialog. Our discussion supports the view that the heart role is more than the one of a muscle responsible of the blood flow. Further related topics such as the formation of aneurysms and vein varices which in our modeling seem to be related to the weakening or loss of vorticity of the blood flow, the role of the recently discovered fluid-filled interstitial structure and the complex network of thick collagen bundles are finally briefly mentioned in the concluding remarks.

    Citation: C. Dal Lin, M. Falanga, E. De Lauro, S. De Martino, G. Vitiello. Biochemical and biophysical mechanisms underlying the heart and the brain dialog[J]. AIMS Biophysics, 2021, 8(1): 1-33. doi: 10.3934/biophy.2021001

    Related Papers:

  • In this paper, within the so called “neuro-visceral integration model”, it is reviewed the ability of the heart to secrete numerous endocrine mediators, neurotransmitters and substances that regulate the immune function with repercussions on the central nervous system. The heart would also seem to be able to process various information independently, influencing the brain work through the “intrinsic cardiac nervous system” and baroreceptor pathways. In reviewing this matter, further physical mechanisms are also described, including mechanical contractions and deformations, that are involved in the “heart-brain symphony” based on intra-cardiac formation and propagation of blood vortices coupled to electrical signals. The relevance of the role of vorticity of the blood flow in the molecular dynamics and physiological activity is stressed. By resorting to some conceptual and formal aspects of the dissipative quantum model of brain, mechanisms such as the spontaneous breakdown of symmetry in many-body physics, the dynamical formation of long range correlations and their associated Nambu-Goldstone quanta, coherent states and fractal self-similarity are discussed with reference to the heart-brain dialog. Our discussion supports the view that the heart role is more than the one of a muscle responsible of the blood flow. Further related topics such as the formation of aneurysms and vein varices which in our modeling seem to be related to the weakening or loss of vorticity of the blood flow, the role of the recently discovered fluid-filled interstitial structure and the complex network of thick collagen bundles are finally briefly mentioned in the concluding remarks.


    加载中

    Acknowledgment



    Thanks to the Pneumomeditazione© teachers and the Entolé staff for their support. Useful discussions with Professor Sergio Pagano are also acknowledged.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] Kocica MJ, Corno AF, Carreras-Costa F, et al. (2006) The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur J Cardiothorac Surg 29: S21-S40. doi: 10.1016/j.ejcts.2006.03.011
    [2] Dal Lin C, Tona F, Osto E (2018) The heart as a psychoneuroendocrine and immunoregulatory organ. Sex-Specific Analysis of Cardiovascular Function 1065: 225-239. doi: 10.1007/978-3-319-77932-4_15
    [3] Marinelli RA, Penney DG, Marinelli W, et al. (1991) Rotary motion in the heart and blood vessels: a review. J Appl Cardiol 6: 421-431.
    [4] Sengupta PP, Narula J, Chandrashekhar Y (2014) The dynamic vortex of a beating heart: Wring out the old and ring in the new!. J Am Coll Cardiol 64: 1722-1724. doi: 10.1016/j.jacc.2014.07.975
    [5] Bottio T, Buratto E, Dal Lin C, et al. (2012) Aortic valve hydrodynamics: considerations on the absence of sinuses of Valsalva. J Heart Valve Dis 21: 718-723.
    [6]  Calgary University Medicine: Blood Moving Through the Heart - 4D Flow Available from: https://www.youtube.com/watch?v=sMeaD3Jh64E.
    [7] Dal Lin C, Marinova M, Rubino G, et al. (2018) Thoughts modulate the expression of inflammatory genes and may improve the coronary blood flow in patients after a myocardial infarction. J Tradit Complement Med 8: 150-163. doi: 10.1016/j.jtcme.2017.04.011
    [8] Armour JA (2007) The little brain on the heart. Cleve Clin J Med 74: S48-S51. doi: 10.3949/ccjm.74.Suppl_1.S48
    [9] Lane RD, Reiman EM, Ahern GL, et al. (1982) Activity in medial prefrontal cortex correlates with vagal component of heart rate variability during emotion. Brain Cognition 47: 97-100.
    [10] Jennings JR, Sheu LK, Kuan DCH, et al. (2016) Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability. Psychophysiology 53: 444-454. doi: 10.1111/psyp.12586
    [11] Schandry R, Montoya P (1996) Event-related brain potentials and the processing of cardiac activity. Biol Psychol 42: 75-85. doi: 10.1016/0301-0511(95)05147-3
    [12] Garfinkel SN, Barrett AB, Minati L, et al. (2013) What the heart forgets: Cardiac timing influences memory for words and is modulated by metacognition and interoceptive sensitivity. Psychophysiology 50: 505-512. doi: 10.1111/psyp.12039
    [13] Azevedo RT, Garfinkel SN, Critchley HD, et al. (2017) Cardiac afferent activity modulates the expression of racial stereotypes. Nat Commun 8: 13854. doi: 10.1038/ncomms13854
    [14] Garfinkel SN, Minati L, Gray MA, et al. (2014) Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. J Neurosci 34: 6573-6582. doi: 10.1523/JNEUROSCI.3507-13.2014
    [15] Montoya P, Schandry R, Müller A (1993) Heartbeat evoked potentials (HEP): topography and influence of cardiac awareness and focus of attention. Electroencephalogr Clin Neurophysiol Evoked Potentials 88: 163-172. doi: 10.1016/0168-5597(93)90001-6
    [16] Thayer JF, Lane RD (2000) A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 61: 201-216. doi: 10.1016/S0165-0327(00)00338-4
    [17] Park G, Thayer JF (2014) From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Front Psychol 5: 278. doi: 10.3389/fpsyg.2014.00278
    [18] Thayer JF, Hansen AL, Saus-Rose E, et al. (2009) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 37: 141-153. doi: 10.1007/s12160-009-9101-z
    [19] Thayer JF, Sternberg E (2006) Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci 1088: 361-372. doi: 10.1196/annals.1366.014
    [20] Lin PF, Lo MT, Tsao J, et al. (2014) Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis. PLoS One 9: e87798. doi: 10.1371/journal.pone.0087798
    [21] Aftanas LI, Brak IV, Reva NV, et al. (2013) Brain oscillations and individual variability of cardiac defense in human. Ross Fiziol Zh Im IM Sechenova 99: 1342-1356.
    [22] McCraty R, Atkinson M, Bradley RT (2004) Electrophysiological evidence of intuition: Part 2. A system-wide process? J Altern Complement Med 10: 325-336. doi: 10.1089/107555304323062310
    [23] Gray MA, Beacher FD, Minati L, et al. (2012) Emotional appraisal is influenced by cardiac afferent information. Emotion 12: 180-191. doi: 10.1037/a0025083
    [24] Craig ADB (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10: 59-70. doi: 10.1038/nrn2555
    [25] Craig ADB (2014)  How do you feel? An interoceptive moment with your neurobiological self Princeton: Princeton University Press. doi: 10.23943/princeton/9780691156767.001.0001
    [26] Grossmann I, Sahdra BK, Ciarrochi J, et al. (2016) Heart and a mind: Self-distancing facilitates the association between heart rate variability, and wise reasoning. Front Behav Neurosci 10: 68. doi: 10.3389/fnbeh.2016.00068
    [27] Rahman SU, Hassan M (2013) Heart's role in the human body: A literature review. ICCSS 2: 1-6.
    [28] McCraty R, Trevor Bradley R, Tomasino D (2004) The resonant heart. Front Counsciousness 5: 15-19.
    [29] McCraty R, Atkinson M, Tomasino D, et al. (2009) The coherent heart: Heart-brain interactions, psychophysiological coherence, and the emergence of system-wide order. Integr Rev 5: 10-115.
    [30] Goldstein DS (2012) Neurocardiology: therapeutic implications for cardiovascular disease. Cardiovasc Ther 30: 89-106. doi: 10.1111/j.1755-5922.2010.00244.x
    [31] Dal Lin C, Poretto A, Scodro M, et al. (2015) Coronary microvascular and endothelial function regulation: Crossroads of psychoneuroendocrine immunitary signals and quantum physics. J Integr Cardiol 1: 132-163.
    [32] Dal Lin C, Tona F, Osto E (2019) The crosstalk between the cardiovascular and the immune system. Vasc Biol 1: H83-H88. doi: 10.1530/VB-19-0023
    [33] Dal Lin C, Tona F, Osto E (2015) Coronary microvascular function and beyond: The crosstalk between hormones, cytokines, and neurotransmitters. Int J Endocrinol 2015: 1-17. doi: 10.1155/2015/312848
    [34] Lashley KS (1942) The problem of cerebral organization in vision. Visual Mechanisms. Biological Symposia Lancaster: Jaques Cattell Press, 301-322.
    [35] Pribram KH (1991)  Brain and Perception Hillsdale: Lawrence Erlbaum.
    [36] Freeman WJ (1975)  Mass Action in the Nervous System New York: Academic Press.
    [37] Freeman WJ (2000)  Neurodynamics: An Exploration of Mesoscopic Brain Dynamics Berlin: Springer. doi: 10.1007/978-1-4471-0371-4
    [38] Ricciardi LM, Umezawa H (1967) Brain and physics of many-body problems. Kybernetik 4: 44-48. doi: 10.1007/BF00292170
    [39] Goldstone J, Salam A, Weinberg S (1962) Broken Symmetries. Phys Rev 127: 965-970. doi: 10.1103/PhysRev.127.965
    [40] Umezawa H (1995)  Advanced field theory: Micro, macro, and thermal physics New York: AIP.
    [41] Blasone M, Jizba P, Vitiello G (2011)  Quantum Field Theory and its macroscopic manifestations: Boson condensation, ordered patterns, and topological defects London: Imperial College Press. doi: 10.1142/p592
    [42] Jibu M, Yasue K (1995)  Quantum brain dynamics and consciousness Amsterdam: John Benjamins Publ. doi: 10.1075/aicr.3
    [43] Umezawa H (1995) Development in concepts in quantum field theory in half century. Math Jpn 41: 109-124.
    [44] Vitiello G (1995) Dissipation and memory capacity in the quantum brain model. Int J Mod Phys B 9: 973-989. doi: 10.1142/S0217979295000380
    [45] Vitiello G (2001)  My double unveiled Amsterdam: John Benjamins Publ. doi: 10.1075/aicr.32
    [46] Freeman WJ, Vitiello G (2006) Nonlinear brain dynamics as macroscopic manifestation of underlying many-body dynamics. Phys Life Rev 3: 93-118. doi: 10.1016/j.plrev.2006.02.001
    [47] Freeman WJ, Livi R, Obinata M (2012) Cortical phase transitions, non-equilibrium thermodynamics and the time dependent Ginzburg-Landau equation. Int J Mod Phys B 26: 1250035. doi: 10.1142/S021797921250035X
    [48] Alfinito E, Vitiello G (2000) Formation and lifetime of memory domains in the dissipative quantum model of brain. Int J Mod Phys B 14: 853-868.
    [49] Vitiello G (2012) Fractals, coherent states and self-similarity induced noncommutative geometry. Phys Lett A 376: 2527-2532. doi: 10.1016/j.physleta.2012.06.035
    [50] Freeman W, Vitiello G (2016) Matter and mind are entangled in two streams of images guiding behavior and informing the subject through awareness. Mind Matter 14: 7-24.
    [51] Del Giudice E, Doglia S, Milani M, et al. (1985) A quantum field theoretical approach to the collective behavior of biological systems. Nucl Phys B 251: 375-400. doi: 10.1016/0550-3213(85)90267-6
    [52] Del Giudice E, Doglia S, Milani M, et al. (1986) Electromagnetic field and spontaneous symmetry breakdown in biological matter. Nucl Phys B 275: 185-199. doi: 10.1016/0550-3213(86)90595-X
    [53] Del Giudice E, Preparata G, Vitiello G (1988) Water as a free electric dipole laser. Phys Rev Lett 61: 1085-1088. doi: 10.1103/PhysRevLett.61.1085
    [54] Engel GS, Calhoun TR, Read EL, et al. (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446: 782-786. doi: 10.1038/nature05678
    [55] Peacock JA (1990) An in vitro study of the onset of turbulence in the sinus of valsalva. Circ Res 67: 448-460. doi: 10.1161/01.RES.67.2.448
    [56] Mettauer B, Levy F, Richard R, et al. (2005) Exercising with a denervated heart after cardiac transplantation. Ann Transplant 10: 35-42.
    [57] Armour JA, Ardell JL (2004)  Basic and Clinical Neurocardiology Oxford: Oxford University Press.
    [58] Biasetti J, Hussain F, Gasser TC (2011) Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation. J R Soc Interface 8: 1449-1461. doi: 10.1098/rsif.2011.0041
    [59] Matsumoto H, Papastamatiou NJ, Umezawa H, et al. (1975) Dynamical rearrangement in the Anderson-Higgs-Kibble mechanism. Nucl Phys B 97: 61-89. doi: 10.1016/0550-3213(75)90215-1
    [60] Matsumoto H, Papastamatiou NJ, Umezawa H (1975) The boson transformation and the vortex solution. Nucl Phys B 97: 90-124. doi: 10.1016/0550-3213(75)90216-3
    [61] Manka R, Vitiello G (1990) Topological solitons and temperature effects in gauge field theory. Ann Phys 199: 61-83. doi: 10.1016/0003-4916(90)90368-X
    [62] Vitiello G (2000) Defect formation through boson condensation in quantum field theory. Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions Dordrecht: Springer, 171-191. doi: 10.1007/978-94-011-4106-2_9
    [63] Meyer G, Vitiello G (2018) On the molecular dynamics in the hurricane interactions with its environment. Phys Lett A 382: 1441-1448. doi: 10.1016/j.physleta.2018.03.044
    [64] Da Silva AF, Carpenter T, How TV, et al. (1997) Stable vortices within vein cuffs inhibit anastomotic myointimal hyperplasia? Eur J Vasc Endovasc Surg 14: 157-163. doi: 10.1016/S1078-5884(97)80185-2
    [65] Kefayati S, Amans M, Faraji F, et al. (2017) The manifestation of vortical and secondary flow in the cerebral venous outflow tract: An in vivo MR velocimetry study. J Biomech 50: 80-187. doi: 10.1016/j.jbiomech.2016.11.041
    [66] Lurie F, Kistner RL, Eklof B, et al. (2003) Mechanism of venous valve closure and role of the valve in circulation: a new concept. J Vasc Surg 38: 955-961. doi: 10.1016/S0741-5214(03)00711-0
    [67] Boisseau MR (1997) Venous valves in the legs: hemodynamic and biological problems and relationship to physiopathology. J Mal Vasc 22: 122-127.
    [68] Machi J, Sigel B, Ramos JR, et al. (1986) Sonographic evaluation of platelet aggregate retention in a vortex within a simulated venous sinus. J Ultrasound Med 5: 685-689. doi: 10.7863/jum.1986.5.12.685
    [69] Meyer G, Vitiello G (2019) On the hurricane collective molecular dynamics. J Phys Conf Ser 1275: 012017. doi: 10.1088/1742-6596/1275/1/012017
    [70] Higgs PW (1966) Spontaneous symmetry breakdown without massless bosons. Phys Rev 145: 1156-1163. doi: 10.1103/PhysRev.145.1156
    [71] Freeman W, Vitiello G (2010) Vortices in brain waves. Int J Mod Phys B 24: 3269-3295. doi: 10.1142/S0217979210056025
    [72] Del Giudice E, Vitiello G (2006) The role of the electromagnetic field in the formation of domains in the process of symmetry breaking phase transitions. Phys Rev A 74: 02210.
    [73] De Lauro E, De Martino S (2019) On the heart vibrations: Some insights from ECG and laser doppler vibrometry.p. atticon11705 V-C-5in press.
    [74] Scalise L (2012) Non contact heart monitoring. Advances in Electrocardiograms-Methods and Analysis Rijeka, Croatia: InTech, 81-106.
    [75] Tomasini E, Pinotti M, Paone N (1998) Carotid artery pulse wave measured by a laser vibrometer.3411: 611-616.
    [76] Morbiducci U, Scalise L, De Melis M (2006) Optical vibrocardiography: a novel tool for optical monitoring of cardiac activity. Ann Biomed Eng 35: 45-58. doi: 10.1007/s10439-006-9202-9
    [77] Buccheri G, De Lauro E, De Martino S, et al. (2016) Experimental study of self-oscillations of the trachea–larynx tract by laser doppler vibrometry. Biomed Phys Eng Express 2: 055009. doi: 10.1088/2057-1976/2/5/055009
    [78] Tavakolian K, Dumont GA, Blaber AP (2012) Analysis of seismocardiogram capability for trending stroke volume changes: A lower body negative pressure study. Computing in Cardiology 2012: 733-736.
    [79] Desjardins CL, Antonelli LT (2007) A remote and non-contact method for obtaining the blood pulse waveform with a laser Doppler vibrometer. Advanced Biomedical and Clinical Diagnostic Systems V, Proc. SPIE .
    [80] Hyvärinen A, Karhunen J, Oja E (2001)  Independent Component Analysis Hoboken, USA: John Wiley & Sons. doi: 10.1002/0471221317
    [81] Capuano P, De Lauro E, De Martino S, et al. (2017) Convolutive independent component analysis for processing massive datasets: a case study at Campi Flegrei (Italy). Nat Hazards 86: 417-429. doi: 10.1007/s11069-016-2545-0
    [82] Capuano P, De Lauro E, De Martino S (2016) Detailed investigation of long-period activity at Campi Flegrei by convolutive independent component analysis. Phys Earth Planet Inter 253: 48-57. doi: 10.1016/j.pepi.2016.02.003
    [83] Capuano P, De Lauro E, De Martino S (2011) Water-level oscillations in the Adriatic Sea as coherent self-oscillations inferred by independent component analysis. Prog Oceanogr 91: 447-460. doi: 10.1016/j.pocean.2011.06.001
    [84] De Lauro E, De Martino S, Falanga M, et al. (2006) Statistical analysis of Stromboli VLP tremor in the band [0.1–0.5] Hz: some consequences for vibrating structures. Nonlinear Process Geophys 13: 393-400. doi: 10.5194/npg-13-393-2006
    [85] Rüssel IK, Götte MJW, Bronzwaer JG, et al. (2009) Left ventricular torsion: an expanding role in the analysis of myocardial dysfunction. JACC Cardiovasc Imaging 2: 648-655. doi: 10.1016/j.jcmg.2009.03.001
    [86] Loppini A, Capolupo A, Cherubini C (2012) On the coherent behavior of pancreatic beta cell clusters. Phys Lett A 378: 3210-3217. doi: 10.1016/j.physleta.2014.09.041
    [87] Dal Lin C, Brugnolo L, Marinova M, et al. (2020) Toward a unified view of cognitive and biochemical activity: Meditation and linguistic self-reconstructing may lead to inflammation and oxidative stress improvement. Entropy 22: 818. doi: 10.3390/e22080818
    [88] Dal Lin C, Radu CM, Vitiello G, et al. (2020) In vitro effects on cellular shaping, contratility, cytoskeletal organization and mitochondrial activity in HL1 cells after different sounds stimulation. A qualitative pilot study and a theoretical physical model, 2020.
    [89] McFadden J, Al-Khalili J (2014)  Life on the edge: the coming of age of quantum biology London: Bantam Press.
    [90] McFadden J, Al-Khalili J (1999) A quantum mechanical model of adaptive mutation. Biosystems 50: 203-211. doi: 10.1016/S0303-2647(99)00004-0
    [91] Misra B, Sudarshan ECG (1977) The Zeno's paradox in quantum theory. J Math Phys 18: 756-763. doi: 10.1063/1.523304
    [92] Kraus K (1981) Measuring processes in quantum mechanics I. Continuous observation and the watchdog effect. Found Phys 11: 547-576. doi: 10.1007/BF00726936
    [93] Meloni M (2014) The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology. Front Hum Neurosci 8: 309. doi: 10.3389/fnhum.2014.00309
    [94] Vitiello G (2014) On the isomorphism between dissipative systems, fractal self-similarity and electrodynamics. Toward an integrated vision of nature. Systems 2: 203-216. doi: 10.3390/systems2020203
    [95] Novack DH, Cameron O, Epel E, et al. (2007) Psychosomatic medicine: The scientific foundation of the biopsychosocial model. Acad Psychiatry 31: 388-401. doi: 10.1176/appi.ap.31.5.388
    [96] Dal Lin C, Gola E, Brocca A, et al. (2018) miRNAs may change rapidly with thoughts: The relaxation response after myocardial infarction. Eur J Integr Med 20: 63-72. doi: 10.1016/j.eujim.2018.03.009
    [97] Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5: 374-381. doi: 10.1038/nrendo.2009.106
    [98] Muehsam D, Ventura C (2014) Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med 3: 40-55. doi: 10.7453/gahmj.2014.008
    [99] (2015)  Heart Beat Made Visible on CymaScope Avaibale from: https://www.youtube.com/watch?v=2kuY98F7o_0.
    [100] Ingber DE, Wang N, Stamenović D (2014) Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys 77: 046603. doi: 10.1088/0034-4885/77/4/046603
    [101] Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10: 75-82. doi: 10.1038/nrm2594
    [102] Martino F, Perestrelo AR, Vinarsky V, et al. (2018) Cellular mechanotransduction: from tension to function. Frony Physiol 9: 824. doi: 10.3389/fphys.2018.00824
    [103] Buxbaum O (2016)  Key Insights into Basic Mechanisms of Mental Activity Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-29467-4
    [104] Jamieson JP, Crum AJ, Goyer JP, et al. (2018) Optimizing stress responses with reappraisal and mindset interventions: an integrated model. Anxiety, Stress, Coping 31: 245-261. doi: 10.1080/10615806.2018.1442615
    [105] Pulvermüller F (2013) How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. Trends Cogn Sci 17: 458-470. doi: 10.1016/j.tics.2013.06.004
    [106] Segall JM, Allen EA, Jung RE, et al. (2012) Correspondence between structure and function in the human brain at rest. Front Neuroinform 6: 10. doi: 10.3389/fninf.2012.00010
    [107] Alexander-Bloch A, Shou H, Liu S, et al. (2018) On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178: 540-551. doi: 10.1016/j.neuroimage.2018.05.070
    [108] Rebollo I, Devauchelle AD, Béranger B, et al. (2018) Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans. Elife 7: e33321. doi: 10.7554/eLife.33321
    [109] Ventura C (2017) Seeing cell biology with the eyes of physics. NanoWorld J 3: S1-S8.
    [110] Fredericks S, Saylor JR (2013)  Shape oscillation of a levitated drop in an acoustic field, 2013 Available from: arXiv:1310.2967.
    [111] Zhang CY, Wang Y, Schubert R, et al. (2016) Effect of audible sound on protein crystallization. Cryst Growth Des 16: 705-713. doi: 10.1021/acs.cgd.5b01268
    [112] Guo F, Li P, French JB, et al. (2015) Controlling cell–cell interactions using surface acoustic waves. Proc Natl Acad Sci 112: 43-48. doi: 10.1073/pnas.1422068112
    [113] Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7: 265-275. doi: 10.1038/nrm1890
    [114] Shaobin G, Wu Y, Li K, et al. (2010) A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloid Surface B 78: 367-371. doi: 10.1016/j.colsurfb.2010.02.028
    [115] Gu SB, Yang B, Wu Y, et al. (2013) Growth and physiological characteristics of E. coli in response to the exposure of sound field. Pakistan J Biol Sci 16: 969-975. doi: 10.3923/pjbs.2013.969.975
    [116] Sahu S, Ghosh S, Fujita D, et al. (2014) Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci Rep 4: 7303. doi: 10.1038/srep07303
    [117] Acbas G, Niessen KA, Snell EH, et al. (2014) Optical measurements of long-range protein vibrations. Nat Commun 5: 3076. doi: 10.1038/ncomms4076
    [118] Christians ES, Benjamin IJ (2012) Proteostasis and REDOX state in the heart. Am J Physiol Heart Circ Physiol 302: H24-H37. doi: 10.1152/ajpheart.00903.2011
    [119] Christians ES, Mustafi SB, Benjamin IJ (2014) Chaperones and cardiac misfolding protein diseases. Curr Protein Pept Sci 15: 189-204. doi: 10.2174/1389203715666140331111518
    [120] Naviaux RK (2014) Metabolic features of the cell danger response. Mitochondrion 16: 7-17. doi: 10.1016/j.mito.2013.08.006
    [121] Crum A, Zuckerman B (2017) Changing mindsets to enhance treatment effectiveness. J Am Med Assoc 317: 2063-2064. doi: 10.1001/jama.2017.4545
    [122] Maas C, Belgardt D, Han KL, et al. (2009) Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc Natl Acad Sci 106: 8731-8736. doi: 10.1073/pnas.0812391106
    [123] Lo LP, Liu SH, Chang YC (2007) Assembling microtubules disintegrate the postsynaptic density in vitro. Cell Motil Cytoskeleton 64: 6-18. doi: 10.1002/cm.20163
    [124] Arimura N, Kaibuchi K (2007) Neuronal polarity: From extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8: 194-205. doi: 10.1038/nrn2056
    [125] Macario AJL, Conway de Macario E (2000) Stress and molecular chaperones in disease. Int J Clin Lab Res 30: 49-66. doi: 10.1007/s005990070016
    [126] Dal Lin C, Marinova M, Brugnolo L, et al. Rapid senectome and alternative splicing miRNAs changes with the relaxation response: A one year follow-up study, 2020 Available from: Preprints doi:10.20944/preprints202007.0268.v1.
    [127] Picard M, McManus MJ, Gray JD, et al. (2015) Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci 112: E6614-E6623. doi: 10.1073/pnas.1515733112
    [128] Piattelli-Palmarini M, Vitiello G (2015) Linguistics and some aspects of its underlying dynamics. Biolinguistics 9: 96-115.
    [129] Mańka R, Ogrodnik B (1991) A model of soliton transport along microtubules. J Biol Phys 18: 85-189. doi: 10.1007/BF00417807
    [130] Kučera O, Havelka D (2012) Mechano-electrical vibrations of microtubules-Link to subcellular morphology. BioSystems 109: 346-355. doi: 10.1016/j.biosystems.2012.04.009
    [131] Benias PC, Wells RG, Sackey-Aboagye B, et al. (2018) Structure and distribution of an unrecognized interstitium in human tissues. Sci Rep 8: 4947. doi: 10.1038/s41598-018-23062-6
    [132] Brizhik L, Chiappini E, Stefanini P, et al. (2019) Modeling meridians within the quantum field theory. J Acupunct Meridian Stud 12: 29-36. doi: 10.1016/j.jams.2018.06.009
    [133] Bentov I (1977)  Stalking the wild pendulum Glasgow: William Collins Sons & Co. Ltd.
    [134] Pavanello S, Campisi m, Tona F, et al. (2019) Exploring epigenetic age in response to intensive relaxing training: A pilot study to slow down biological age. Int J Env Res Pub He 16: 3074. doi: 10.3390/ijerph16173074
    [135] Dal Lin C, Grasso R, Scordino A, et al. (2020)  Ph, electric conductivity and delayed luminescence changes in human sera of subjects undergoing the relaxation response: A pilot study Available from: doi:10.20944/PREPRINTS202004.0202.V1.
    [136] Cifra M, Brouder C, Nerudová M, et al. (2015) Biophotons, coherence and photocount statistics: A critical review. J Lumin 164: 38-51. doi: 10.1016/j.jlumin.2015.03.020
    [137] Boveris A, Cadenas E, Reiter R (1980) Organ chemiluminescence: noninvasive assay for oxidative radical reactions. Proc Natl Acad Sci 77: 347-351. doi: 10.1073/pnas.77.1.347
    [138] Krasovitski B, Frenkel V, Shoham S (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci 108: 3258-3263. doi: 10.1073/pnas.1015771108
    [139] Brujan EA (2000) Collapse of cavitation bubbles in blood. Europhys Lett 50: 175. doi: 10.1209/epl/i2000-00251-7
    [140] Brennen CE (2015) Cavitation in medicine. Interface Focus 5: 20150022. doi: 10.1098/rsfs.2015.0022
    [141] Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons radicals and ions during single-bubble cavitation. Nature 418: 394-397. doi: 10.1038/nature00895
    [142] Sabbadini SA, Vitiello G (2019) Entanglement and phase-mediated correlations in quantum field theory. Application to brain-mind states. Appl Sci 9: 3203. doi: 10.3390/app9153203
    [143] Shaffer F, McCraty R, Zerr CL (2014) A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol 5: 1040. doi: 10.3389/fpsyg.2014.01040
    [144] Grippo A (2011) The utility of animal models in understanding links between psychosocial processes and cardiovascular health. Soc Pers Psychol Compass 5: 164-179. doi: 10.1111/j.1751-9004.2011.00342.x
    [145] Mensah G, Collins P (2015) Understanding mental health for the prevention and control of cardiovascular diseases. Glob Heart 10: 221. doi: 10.1016/j.gheart.2015.08.003
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(493) PDF downloads(67) Cited by(0)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog