Review Topical Sections

Unique insight into protein-DNA interactions from single molecule atomic force microscopy

  • Received: 07 July 2018 Accepted: 17 September 2018 Published: 21 September 2018
  • Protein-DNA interactions are pivotal for many essential biological processes. Atomic force microscopy (AFM) imaging of protein-DNA systems involved in DNA target site search, identification, and processing by proteins has contributed invaluable information to our understanding of the underlying mechanisms. The single molecule 3D resolution of AFM enables us to uncover stoichiometries and conformational properties of protein-DNA complexes. Its molecular resolution places AFM at the interface between the atomic resolution achievable by crystallography and the comparably poor (typically > hundred nanometers) spatial resolution of optical microscopy. Furthermore, the transient character of protein interactions with nonspecific DNA sites, for example during their target site search renders these complexes difficult to resolve by standard ensemble methods. Here, we review current applications and capabilities of as well as novel advances in AFM imaging in protein-DNA interaction studies.

    Citation: Disha Mohan Bangalore, Ingrid Tessmer. Unique insight into protein-DNA interactions from single molecule atomic force microscopy[J]. AIMS Biophysics, 2018, 5(3): 194-216. doi: 10.3934/biophy.2018.3.194

    Related Papers:

  • Protein-DNA interactions are pivotal for many essential biological processes. Atomic force microscopy (AFM) imaging of protein-DNA systems involved in DNA target site search, identification, and processing by proteins has contributed invaluable information to our understanding of the underlying mechanisms. The single molecule 3D resolution of AFM enables us to uncover stoichiometries and conformational properties of protein-DNA complexes. Its molecular resolution places AFM at the interface between the atomic resolution achievable by crystallography and the comparably poor (typically > hundred nanometers) spatial resolution of optical microscopy. Furthermore, the transient character of protein interactions with nonspecific DNA sites, for example during their target site search renders these complexes difficult to resolve by standard ensemble methods. Here, we review current applications and capabilities of as well as novel advances in AFM imaging in protein-DNA interaction studies.


    加载中
    [1] Binnig G, Quate CF, Gerber C (1986) Atomic Force Microscope. Phys Rev Lett 56: 930–933. doi: 10.1103/PhysRevLett.56.930
    [2] Tessmer I, Kaur P, Lin JG, et al. (2013) Investigating bioconjugation by atomic force microscopy. J Nanobiotechnol 11: 1–17. doi: 10.1186/1477-3155-11-1
    [3] Werten PJL, Remigy HW, de Groot BL, et al. (2002) Progress in the analysis of membrane protein structure and function. FEBS Lett 529: 65–72. doi: 10.1016/S0014-5793(02)03290-8
    [4] Muller DJ, Sapra KT, Scheuring S, et al. (2006) Single-molecule studies of membrane proteins. Curr Opin Struct Biol 16: 489–495. doi: 10.1016/j.sbi.2006.06.001
    [5] Gorle S, Pan YG, Sun ZQ, et al. (2017) Computational Model and Dynamics of Monomeric Full-Length APOBEC3G. ACS Cent Sci 3: 1180–1188. doi: 10.1021/acscentsci.7b00346
    [6] Sander B, Tria G, Shkumatov AV, et al. (2013) Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. Acta Crystallogr 69: 2050–2060.
    [7] Ishino S, Yamagami T, Kitamura M, et al. (2014) Multiple interactions of the intrinsically disordered region between the helicase and nuclease domains of the archaeal Hef protein. J Biol Chem 289: 21627–21639. doi: 10.1074/jbc.M114.554998
    [8] Shinozaki Y, Sumitomo K, Tsuda M, et al. (2009) Direct Observation of ATP-Induced Conformational Changes in Single P2X(4) Receptors. PLos Biol 7: e1000103. doi: 10.1371/journal.pbio.1000103
    [9] Lemaire PA, Tessmer I, Craig R, et al. (2006) Unactivated PKR exists in an open conformation capable of binding nucleotides. Biochemistry 45: 9074–9084. doi: 10.1021/bi060567d
    [10] Kinoshita E, van Rossum-Fikkert S, Sanchez H, et al. (2015) Human RAD50 makes a functional DNA-binding complex. Biochimie 113: 47–53. doi: 10.1016/j.biochi.2015.03.017
    [11] Bonazza K, Rottensteiner H, Seyfried BK, et al. (2014) Visualization of a protein-protein interaction at a single-molecule level by atomic force microscopy. Anal Bioanal Chem 406: 1411–1421. doi: 10.1007/s00216-013-7563-0
    [12] Shlyakhtenko LS, Gall AA, Filonov A, et al. (2003) Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97: 279–287. doi: 10.1016/S0304-3991(03)00053-6
    [13] Scheuring S, Muller DJ, Ringler P, et al. (1999) Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope. J Microsc 193: 28–35. doi: 10.1046/j.1365-2818.1999.00434.x
    [14] Whited AM, Park PS (2014) Atomic force microscopy: A multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838: 56–68. doi: 10.1016/j.bbamem.2013.04.011
    [15] Dubrovin EV, Schachtele M, Klinov DV, et al. (2017) Time-Lapse Single-Biomolecule Atomic Force Microscopy Investigation on Modified Graphite in Solution. Langmuir 33: 10027–10034. doi: 10.1021/acs.langmuir.7b02220
    [16] Oliveira Brett AM, Chiorcea Paquim AM (2005) DNA imaged on a HOPG electrode surface by AFM with controlled potential. Bioelectrochemistry 66: 117–124. doi: 10.1016/j.bioelechem.2004.05.009
    [17] Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47: 197–301. doi: 10.1016/S0167-5729(02)00077-8
    [18] Dufrene YF, Ando T, Garcia R, et al. (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12: 295–307. doi: 10.1038/nnano.2017.45
    [19] Hansma HG, Sinsheimer RL, Groppe J, et al. (1993) Recent Advances in Atomic-Force Microscopy of DNA. Scanning 15: 296–299. doi: 10.1002/sca.4950150509
    [20] Balamurugan S, Obubuafo A, Soper SA, et al. (2008) Surface immobilization methods for aptamer diagnostic applications. Anal Bioanal Chem 390: 1009–1021. doi: 10.1007/s00216-007-1587-2
    [21] Knecht S, Ricklin D, Eberle AN, et al. (2009) Oligohis-tags: Mechanisms of binding to Ni2+-NTA surfaces. J Mol Recognit 22: 270–279. doi: 10.1002/jmr.941
    [22] Ritzefeld M, Walhorn V, Anselmetti D, et al. (2013) Analysis of DNA interactions using single-molecule force spectroscopy. Amino Acids 44: 1457–1475. doi: 10.1007/s00726-013-1474-4
    [23] Rief M, Clausen-Schaumann H, Gaub HE (1999) Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol 6: 346–349. doi: 10.1038/7582
    [24] Carrion-Vazquez M, Oberhauser AF, Fowler SB, et al. (1999) Mechanical and chemical unfolding of a single protein: A comparison. Proc Natl Acad Sci U. S. A 96: 3694–3699. doi: 10.1073/pnas.96.7.3694
    [25] Woodside MT, Block SM (2014) Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy. Annu Rev Biophys 43: 19–39. doi: 10.1146/annurev-biophys-051013-022754
    [26] Hughes ML, Dougan L (2016) The physics of pulling polyproteins: A review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep Prog Phys Phys Soc 79: 076601. doi: 10.1088/0034-4885/79/7/076601
    [27] Fisher TE, Marszalek PE, Fernandez JM (2000) Stretching single molecules into novel conformations using the atomic force microscope. Nat Struct Biol 7: 719–724. doi: 10.1038/78936
    [28] Beckwitt EC, Kong M, Van Houten B (2018) Studying protein-DNA interactions using atomic force microscopy. Semin Cell Dev Biol 73: 220–230. doi: 10.1016/j.semcdb.2017.06.028
    [29] Kasas S, Dietler G (2018) DNA-protein interactions explored by atomic force microscopy. Semin Cell Dev Biol 73: 231–239. doi: 10.1016/j.semcdb.2017.07.015
    [30] Lyubchenko YL, Shlyakhtenko LS (2016) Imaging of DNA and Protein-DNA Complexes with Atomic Force Microscopy. Crit Rev Eukaryot Gene Expr 26: 63–96. doi: 10.1615/CritRevEukaryotGeneExpr.v26.i1.70
    [31] Halford SE, Marko JF (2004) How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res 32: 3040–3052. doi: 10.1093/nar/gkh624
    [32] Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21: 3027–3043. doi: 10.1101/gad.1604607
    [33] Lambert SA, Jolma A, Campitelli LF, et al. (2018) The Human Transcription Factors. Cell 172: 650–665. doi: 10.1016/j.cell.2018.01.029
    [34] Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, et al. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39–85. doi: 10.1146/annurev.biochem.73.011303.073723
    [35] Kapanidis AN, Strick T (2009) Biology, one molecule at a time. Trends Biochem Sci 34: 234–243. doi: 10.1016/j.tibs.2009.01.008
    [36] Larson MH, Landick R, Block SM (2011) Single-Molecule Studies of RNA Polymerase: One Singular Sensation, Every Little Step It Takes. Mol Cell 41: 249–262. doi: 10.1016/j.molcel.2011.01.008
    [37] Ghodke H, Wang H, Hsieh CL, et al. (2014) Single-molecule analysis reveals human UV-damaged DNA-binding protein (UV-DDB) dimerizes on DNA via multiple kinetic intermediates. P Natl Acad Sci USA 111: E1862–E1871. doi: 10.1073/pnas.1323856111
    [38] Buechner CN, Maiti A, Drohat AC, et al. (2015) Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Nucleic Acids Res 43: 2716–2729. doi: 10.1093/nar/gkv139
    [39] Bewley CA, Gronenborn AM, Clore GM (1998) Minor groove-binding architectural proteins: Structure, function, and DNA recognition. Annu Rev Biophys Biomol Struct 27: 105–131. doi: 10.1146/annurev.biophys.27.1.105
    [40] Perez-Rueda E, Hernandez-Guerrero R, Martinez-Nunez MA, et al. (2018) Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors. PLos One 13: e0195332. doi: 10.1371/journal.pone.0195332
    [41] Richards FM, Kundrot CE (1988) Identification of Structural Motifs from Protein Coordinate Data-Secondary Structure and 1st-Level Supersecondary Structure. Proteins 3: 71–84. doi: 10.1002/prot.340030202
    [42] Shanahan HP, Garcia MA, Jones S, et al. (2004) Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Res 32: 4732–4741. doi: 10.1093/nar/gkh803
    [43] Bustin M, Reeves R (1996) High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54: 35–100. doi: 10.1016/S0079-6603(08)60360-8
    [44] Smith NC, Matthews JM (2016) Mechanisms of DNA-binding specificity and functional gene regulation by transcription factors. Curr Opin Struct Biol 38: 68–74. doi: 10.1016/j.sbi.2016.05.006
    [45] Saravanan M, Vasu K, Nagaraja V (2008) Evolution of sequence specificity in a restriction endonuclease by a point mutation. Proc Natl Acad Sci U. S. A 105: 10344–10347. doi: 10.1073/pnas.0804974105
    [46] Ferredamare AR, Prendergast GC, Ziff EB, et al. (1993) Recognition by Max of Its Cognate DNA through a Dimeric B/Hlh/Z Domain. Nature 363: 38–45. doi: 10.1038/363038a0
    [47] Morgunova E, Yin Y, Jolma A, et al. (2015) Structural insights into the DNA-binding specificity of E2F family transcription factors. Nat Commun 6: 10050. doi: 10.1038/ncomms10050
    [48] Li J, Rodriguez JP, Niu F, et al. (2016) Structural basis for DNA recognition by STAT6. P Natl Acad Sci USA 113: 13015–13020. doi: 10.1073/pnas.1611228113
    [49] Rudolph MJ, Gergen JP (2001) DNA-binding by Ig-fold proteins. Nat Struct Biol 8: 384–386. doi: 10.1038/87531
    [50] Doherty AJ, Serpell LC, Ponting CP (1996) The helix-hairpin-helix DNA-binding motif: A structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res 24: 2488–2497. doi: 10.1093/nar/24.13.2488
    [51] Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA Replication Fork. Annu Rev Biochem 86: 417–438. doi: 10.1146/annurev-biochem-061516-044709
    [52] Raghunathan S, Kozlov AG, Lohman TM, et al. (2000) Structure of the DNA binding domain of E-coli SSB bound to ssDNA. Nat Struct Biol 7: 648–652. doi: 10.1038/77943
    [53] Theis K, Chen PJ, Skorvaga M, et al. (1999) Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J 18: 6899–6907. doi: 10.1093/emboj/18.24.6899
    [54] Waters TR, Eryilmaz J, Geddes S, et al. (2006) Damage detection by the UvrABC pathway: Crystal structure of UvrB bound to fluorescein-adducted DNA. FEBS Lett 580: 6423–6427. doi: 10.1016/j.febslet.2006.10.051
    [55] Chai N, Li WX, Wang J, et al. (2015) Structural basis for the Smad5 MH1 domain to recognize different DNA sequences. Nucleic Acids Res 43: 9051–9064. doi: 10.1093/nar/gkv848
    [56] Maiti A, Morgan MT, Pozharski E, et al. (2008) Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. P Natl Acad Sci USA 105: 8890–8895. doi: 10.1073/pnas.0711061105
    [57] Bruner SD, Norman DPG, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403: 859–866. doi: 10.1038/35002510
    [58] Ando T, Kodera N, Takai E, et al. (2001) A high-speed atomic force microscope for studying biological macromolecules. P Natl Acad Sci USA 98: 12468–12472. doi: 10.1073/pnas.211400898
    [59] Ando T (2018) High-speed atomic force microscopy and its future prospects. Biophys Rev 10: 285–292. doi: 10.1007/s12551-017-0356-5
    [60] Sawicka M, Aramayo R, Ayala R, et al. (2017) Single-Particle Electron Microscopy Analysis of DNA Repair Complexes. Methods Enzymol 592: 159–186. doi: 10.1016/bs.mie.2017.03.010
    [61] Sun JC, Yuan ZN, Bai L, et al. (2017) Cryo-EM of dynamic protein complexes in eukaryotic DNA replication. Protein Sci 26: 40–51. doi: 10.1002/pro.3033
    [62] Tessmer I, Moore T, Lloyd RG, et al. (2005) AFM studies on the role of the protein RdgC in bacterial DNA recombination. J Mol Biol 350: 254–262. doi: 10.1016/j.jmb.2005.04.043
    [63] Lohr D, Bash R, Wang H, et al. (2007) Using atomic force microscopy to study chromatin structure and nucleosome remodeling. Methods 41: 333–341. doi: 10.1016/j.ymeth.2006.08.016
    [64] Hizume K, Kominam H, Kobayash K, et al. (2017) Flexible DNA Path in the MCM Double Hexamer Loaded on DNA. Biochemistry 56: 2435–2445. doi: 10.1021/acs.biochem.6b00922
    [65] Noort JV, Heijden TVD, Dutta CF, et al. (2004) Initiation of translocation by Type I restriction-modification enzymes is associated with a short DNA extrusion. Nucleic Acids Res 32: 6540–6547. doi: 10.1093/nar/gkh999
    [66] Maurer S, Fritz J, Muskhelishvili G, et al. (2006) RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex. EMBO J 25: 3784–3790. doi: 10.1038/sj.emboj.7601261
    [67] Verhoeven EEA, Wyman C, Moolenaar GF, et al. (2002) The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J 21: 4196–4205. doi: 10.1093/emboj/cdf396
    [68] Cellai S, Mangiarotti L, Vannini N, et al. (2007) Upstream promoter sequences and alpha CTD mediate stable DNA wrapping within the RNA polymerase-promoter open complex. EMBO Rep 8: 271–278. doi: 10.1038/sj.embor.7400888
    [69] Umemura K, Okada T, Kuroda R (2005) Cooperativity and intermediate structures of single-stranded DNA binding-assisted RecA-single-stranded DNA complex formation studied by atomic force microscopy. Scanning 27: 35–43.
    [70] Hamon L, Pastre D, Dupaigne P, et al. (2007) High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein-DNA complexes. Nucleic Acids Res 35: e58. doi: 10.1093/nar/gkm147
    [71] Li BS, Goh MC (2010) Direct visualization of the formation and structure of RecA/dsDNA complexes. Micron 41: 227–231. doi: 10.1016/j.micron.2009.10.011
    [72] Li BS, Wei B, Goh MC (2012) Direct visualization of the formation of RecA/dsDNA complexes at the single-molecule level. Micron 43: 1073–1075. doi: 10.1016/j.micron.2012.04.016
    [73] Tessmer I, Melikishvili M, Fried MG (2012) Cooperative cluster formation, DNA bending and base-flipping by O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Res 40: 8296–8308. doi: 10.1093/nar/gks574
    [74] Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of Nucleosomes Assessed with Time-Lapse High-Speed Atomic Force Microscopy. Biochemistry 50: 7901–7908. doi: 10.1021/bi200946z
    [75] Sanchez H, Suzuki Y, Yokokawa M, et al. (2011) Protein-DNA interactions in high speed AFM: Single molecule diffusion analysis of human RAD54. Integr Biol 3: 1127–1134. doi: 10.1039/c1ib00039j
    [76] Endo M, Sugiyama H (2014) Single-Molecule Imaging of Dynamic Motions of Biomolecules in DNA Origami Nanostructures Using High-Speed Atomic Force Microscopy. Acc Chem Res 47: 1645–1653. doi: 10.1021/ar400299m
    [77] Lee AJ, Endo M, Hobbs JK, et al. (2018) Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search. Acs Nano 12: 272–278. doi: 10.1021/acsnano.7b06208
    [78] Suzuki Y, Shin M, Yoshida A, et al. (2012) Fast microscopical dissection of action scenes played by Escherichia coli RNA polymerase. FEBS Lett 586: 3187–3192. doi: 10.1016/j.febslet.2012.06.033
    [79] Buechner CN, Tessmer I (2013) DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions. J Mol Recognit 26: 605–617. doi: 10.1002/jmr.2311
    [80] Yang Y, Sass LE, Du C, et al. (2005) Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res 33: 4322–4334. doi: 10.1093/nar/gki708
    [81] Sukhanova MV, Abrakhi S, Joshi V, et al. (2016) Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Res 44: e60. doi: 10.1093/nar/gkv1476
    [82] Buechner CN, Heil K, Michels G, et al. (2014) Strand-specific Recognition of DNA Damages by XPD Provides Insights into Nucleotide Excision Repair Substrate Versatility. J Biol Chem 289: 3613–3624. doi: 10.1074/jbc.M113.523001
    [83] Wirth N, Gross J, Roth HM, et al. (2016) Conservation and Divergence in Nucleotide Excision Repair Lesion Recognition. J Biol Chem 291: 18932–18946. doi: 10.1074/jbc.M116.739425
    [84] Doniselli N, Rodriguez-Aliaga P, Amidani D, et al. (2015) New insights into the regulatory mechanisms of ppGpp and DksA on Escherichia coli RNA polymerase-promoter complex. Nucleic Acids Res 43: 5249–5262. doi: 10.1093/nar/gkv391
    [85] Nettikadan S, Tokumasu F, Takeyasu K (1996) Quantitative analysis of the transcription factor AP2 binding to DNA by atomic force microscopy. Biochem Biophys Res Commun 226: 645–649. doi: 10.1006/bbrc.1996.1409
    [86] Timofeeva OA, Chasovskikh S, Lonskaya I, et al. (2012) Mechanisms of Unphosphorylated STAT3 Transcription Factor Binding to DNA. J Biol Chem 287: 14192–14200. doi: 10.1074/jbc.M111.323899
    [87] Zhang P, Xia JH, Zhu J, et al. (2018) High-throughput screening of prostate cancer risk loci by single nucleotide polymorphisms sequencing. Nat Commun 9: 2022. doi: 10.1038/s41467-018-04451-x
    [88] Huang Q, Whitington T, Gao P, et al. (2014) A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. Nat Genet 46: 126–135. doi: 10.1038/ng.2862
    [89] Gao P, Xia JH, Sipeky C, et al. (2018) Biology and Clinical Implications of the 19q13 Aggressive Prostate Cancer Susceptibility Locus. Cell 174: 576–589. doi: 10.1016/j.cell.2018.06.003
    [90] Crampton N, Bonass WA, Kirkham J, et al. (2006) Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy. Nucleic Acids Res 34: 5416–5425. doi: 10.1093/nar/gkl668
    [91] Countryman P, Fan Y, Gorthi A, et al. (2018) Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J Biol Chem 293: 1054–1069. doi: 10.1074/jbc.M117.806406
    [92] Schneider SW, Larmer J, Henderson RM, et al. (1998) Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflug Arch Eur J Phy 435: 362–367. doi: 10.1007/s004240050524
    [93] Ratcliff GC, Erie DA (2001) A novel single-molecule study to determine protein-protein association constants. J Am Chem Soc 123: 5632–5635. doi: 10.1021/ja005750n
    [94] Wang H, Dellavecchia MJ, Skorvaga M, et al. (2006) UvrB domain 4, an autoinhibitory gate for regulation of DNA binding and ATPase activity. J Biol Chem 281: 15227–15237. doi: 10.1074/jbc.M601476200
    [95] Roth HM, Romer J, Grundler V, et al. (2012) XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair 11: 286–293. doi: 10.1016/j.dnarep.2011.12.002
    [96] Fuentes-Perez ME, Dillingham MS, Moreno-Herrero F (2013) AFM volumetric methods for the characterization of proteins and nucleic acids. Methods 60: 113–121. doi: 10.1016/j.ymeth.2013.02.005
    [97] Amidani D, Tramonti A, Canosa AV, et al. (2016) Study of DNA binding and bending by Bacillus subtilis GabR, a PLP-dependent transcription factor. Biochim Biophys Acta Gen Subj 1861: 3474–3489.
    [98] Rivetti C, Guthold M, Bustamante C (1996) Scanning force microscopy of DNA deposited onto mica: Equilibration versus kinetic trapping studied by statistical polymer chain analysis. J Mol Biol 264: 919–932. doi: 10.1006/jmbi.1996.0687
    [99] Cassina V, Manghi M, Salerno D, et al. (2016) Effects of cytosine methylation on DNA morphology: An atomic force microscopy study. Biochim Biophys Acta 1860: 1–7. doi: 10.1016/j.bbagen.2015.10.006
    [100] Scipioni A, Anselmi C, Zuccheri G, et al. (2002) Sequence-dependent DNA curvature and flexibility from scanning force microscopy images. Biophys J 83: 2408–2418. doi: 10.1016/S0006-3495(02)75254-5
    [101] Moukhtar J, Faivre-Moskalenko C, Milani P, et al. (2010) Effect of genomic long-range correlations on DNA persistence length: from theory to single molecule experiments. J Phys Chem B 114: 5125–5143. doi: 10.1021/jp911031y
    [102] Jager MD, Noort JV, Gent DCV, et al. (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8: 1129–1135. doi: 10.1016/S1097-2765(01)00381-1
    [103] Tessmer I, Yang Y, Zhai J, et al. (2008) Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 283: 36646–36654. doi: 10.1074/jbc.M805712200
    [104] Bosch D, Campillo M, Pardo L (2003) Binding of proteins to the minor groove of DNA: What are the structural and energetic determinants for kinking a basepair step? J Comput Chem 24: 682–691. doi: 10.1002/jcc.10200
    [105] Kong MW, Liu LL, Chen XJ, et al. (2016) Single-Molecule Imaging Reveals that Rad4 Employs a Dynamic DNA Damage Recognition Process. Mol Cell 64: 376–387. doi: 10.1016/j.molcel.2016.09.005
    [106] Wang H, Yang Y, Schofield MJ, et al. (2003) DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc Natl Acad Sci U. S. A 100: 14822–14827. doi: 10.1073/pnas.2433654100
    [107] Chen L, Haushalter KA, Lieber CM, et al. (2002) Direct visualization of a DNA glycosylase searching for damage. Chem Biol 9: 345–350. doi: 10.1016/S1074-5521(02)00120-5
    [108] Lamers MH, Perrakis A, Enzlin JH, et al. (2000) The crystal structure of DNA mismatch repair protein MutS binding to a G center dot T mismatch. Nature 407: 711–717. doi: 10.1038/35037523
    [109] Koroleva ON, Dubrovin EV, Yaminsky IV, et al. (2016) Effect of DNA bending on transcriptional interference in the systems of closely spaced convergent promoters. Biochim Biophys Acta 1860: 2086–2096. doi: 10.1016/j.bbagen.2016.06.026
    [110] Fronczek DN, Quammen C, Wang H, et al. (2011) High accuracy FIONA-AFM hybrid imaging. Ultramicroscopy 111: 350–355. doi: 10.1016/j.ultramic.2011.01.020
    [111] Sanchez H, Kertokalio A, van Rossum-Fikkert S, et al. (2013) Combined optical and topographic imaging reveals different arrangements of human RAD54 with presynaptic and postsynaptic RAD51-DNA filaments. P Natl Acad Sci USA 110: 11385–11390. doi: 10.1073/pnas.1306467110
    [112] Frederickx W, Rocha S, Fujita Y, et al. (2018) Orthogonal Probing of Single-Molecule Heterogeneity by Correlative Fluorescence and Force Microscopy. Acs Nano 12: 168–177. doi: 10.1021/acsnano.7b05405
    [113] Schmucker SW, Kumar N, Abelson JR, et al. (2012) Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography. Nat Commun 3: 935. doi: 10.1038/ncomms1907
    [114] Pfreundschuh M, Alsteens D, Hilbert M, et al. (2014) Localizing Chemical Groups while Imaging Single Native Proteins by High-Resolution Atomic Force Microscopy. Nano Lett 14: 2957–2964. doi: 10.1021/nl5012905
    [115] Monig H, Hermoso DR, Arado OD, et al. (2016) Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe. Acs Nano 10: 1201–1209. doi: 10.1021/acsnano.5b06513
    [116] Senapati S, Lindsay S (2016) Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy. Acc Chem Res 49: 503–510. doi: 10.1021/acs.accounts.5b00533
    [117] Khan Z, Leung C, Tahir BA, et al. (2010) Digitally tunable, wide-band amplitude, phase, and frequency detection for atomic-resolution scanning force microscopy. Rev Sci Instrum 81: 197.
    [118] Calo A, Eleta-Lopez A, Stoliar P, et al. (2016) Multifrequency Force Microscopy of Helical Protein Assembly on a Virus. Sci Rep 6: 21899. doi: 10.1038/srep21899
    [119] Wu D, Kaur P, Li ZM, et al. (2016) Visualizing the Path of DNA through Proteins Using DREEM Imaging. Mol Cell 61: 315–323. doi: 10.1016/j.molcel.2015.12.012
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5304) PDF downloads(2155) Cited by(7)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog