Research article Topical Sections

In-situ AC electroosmotic and thermal perturbation effects for wide range of ionic strength

  • Received: 20 January 2017 Accepted: 22 June 2017 Published: 30 July 2017
  • AC electrokinetic flow is promising in designing microfluidic chips for manipulation of biological and chemical samples toward clinical diagnostics. Four pieces of electrodes are optimized to enhance mixing effect inside a straight microchannel. In this research, the mixing dependency on the ionic strength of solutions is investigated. AC electroosmotic secondary flow is responsible for the mixing at low ionic strength (σ < 5 mS m–1), whereas AC electrothermal secondary flow is proposed to mix high conductive mediums (σ > 5 mS m–1). The electrode-electrolyte impedance analysis is employed to facilitate the in-situation mixing process by choosing appropriate electrical excitation parameters for the electrodes.

    Citation: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi. In-situ AC electroosmotic and thermal perturbation effects for wide range of ionic strength[J]. AIMS Biophysics, 2017, 4(3): 451-464. doi: 10.3934/biophy.2017.3.451

    Related Papers:

  • AC electrokinetic flow is promising in designing microfluidic chips for manipulation of biological and chemical samples toward clinical diagnostics. Four pieces of electrodes are optimized to enhance mixing effect inside a straight microchannel. In this research, the mixing dependency on the ionic strength of solutions is investigated. AC electroosmotic secondary flow is responsible for the mixing at low ionic strength (σ < 5 mS m–1), whereas AC electrothermal secondary flow is proposed to mix high conductive mediums (σ > 5 mS m–1). The electrode-electrolyte impedance analysis is employed to facilitate the in-situation mixing process by choosing appropriate electrical excitation parameters for the electrodes.


    加载中
    [1] Kaajakari V (2009) Practical MEMS: Design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems, Las Vegas, NV: Small Gear Publishing.
    [2] Vafaie RH, Ghavifekr HB, Lintel HV, et al. (2016) Bi‐directional AC electrothermal micropump for on‐chip biological applications. Electrophoresis 37: 719–726. doi: 10.1002/elps.201500404
    [3] Poorreza A, Vafaie RH, Mehdipoor M, et al. (2013) A microseparator based-on 4-phase travelling wave dielectrophoresis for Lab-on-a-chip applications. Indian J Pure Appl Phys 51: 506–515.
    [4] Vafaie RH, Mehdipoor M, Pourmand A, et al. (2013) An electroosmotically-driven micromixer modified for high miniaturized microchannels using surface micromachining. Biotechnol Bioprocess Eng 18: 594–605. doi: 10.1007/s12257-012-0431-5
    [5] Nguyen NT, Wu Z (2004) Micromixers-a review. J Micromech Microeng 15: R1.
    [6] He B, Burke BJ, Zhang X, et al. (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal Chem 73: 1942–1947. doi: 10.1021/ac000850x
    [7] Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulationsand optical study. Anal Chem 74: 4279–4286. doi: 10.1021/ac025642e
    [8] Ryu KS, Shaikh K, Goluch E, et al. (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4: 608–613. doi: 10.1039/b403305a
    [9] Yang Z, Matsumoto S, Goto H, et al. (2001) Ultrasonic micromixer for microfluidic systems. Sensor Actuat A Phys 93: 266–272. doi: 10.1016/S0924-4247(01)00654-9
    [10] Français O, Jullien MC, Rousseau L, et al. (2007) An active chaotic micromixer integrating thermal actuation associating PDMS and silicon microtechnology. Arxiv preprint arXiv: 0711.3290.
    [11] Morgan H, Green NG (2003) AC electrokinetics: Colloids and nanoparticles, Baldock, Hertfordshire: Research Study Press LTD.
    [12] Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76: 3208–3213. doi: 10.1021/ac035451r
    [13] Fu LM, Yang RJ, Lin CH, et al. (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26: 1814–1824. doi: 10.1002/elps.200410222
    [14] Meisel I, Ehrhard P (2006) Electrically-excited (electroosmotic) flows in microchannels for mixing applications. Eur J Mech B-Fluid 25: 491–504. doi: 10.1016/j.euromechflu.2005.12.002
    [15] Chen CK, Cho CC (2008) Electrokinetically driven flow mixing utilizing chaotic electric fields. Microfluid Nanofluid 5: 785–793. doi: 10.1007/s10404-008-0286-4
    [16] Yang CK, Chang JS, Chao SD, et al. (2007) Two dimensional simulation on immunoassay for a biosensor with applying electrothermal effect. Appl Phys Lett 91: 113904. doi: 10.1063/1.2784941
    [17] Sigurdson M, Wang D, Meinhart CD (2005) Electrothermal stirring for heterogeneous immunoassays. Lab Chip 5: 1366–1373. doi: 10.1039/b508224b
    [18] Huang KR, Chang JS, Chao SD, et al. (2008) Simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect. J Appl Phys 104: 064702. doi: 10.1063/1.2981195
    [19] Ramos A, Morgan H, Green NG, et al. (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31: 2338. doi: 10.1088/0022-3727/31/18/021
    [20] Zhu J, Xuan X (2009) Dielectrophoretic focusing of particles in a microchannel constriction using DC‐biased AC flectric fields. Electrophoresis 30: 2668–2675. doi: 10.1002/elps.200900017
    [21] Williams SJ, Green NG (2015) Electrothermal pumping with interdigitated electrodes and resistive heaters. Electrophoresis 36: 1681–1689. doi: 10.1002/elps.201500112
    [22] Vafaie RH, Ghavifekr HB (2017) Configurable ACET micro-manipulator for high conductive mediums by using a novel electrode engineering. Microsys Technol 23: 1393–1403. doi: 10.1007/s00542-015-2806-y
    [23] Chang CC, Yang RJ (2004) Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. J Micromech Microeng 14: 550. doi: 10.1088/0960-1317/14/4/016
    [24] Probstein RF (2005) Physicochemical hydrodynamics: an introduction, John Wiley & Sons.
    [25] Landau LD, Bell JS, Kearsley MJ, et al. (2013) Electrodynamics of continuous media, Elsevier.
    [26] Lide DR (2004) CRC handbook of chemistry and physics, CRC press.
    [27] Yuan Q, Yang K, Wu J (2014) Optimization of planar interdigitated microelectrode array for biofluid transport by AC electrothermal effect. Microfluid Nanofluid 16: 167–178. doi: 10.1007/s10404-013-1231-8
    [28] Chen JK, Yang RJ (2007) Electroosmotic flow mixing in zigzag microchannels. Electrophoresis 28: 975–983. doi: 10.1002/elps.200600470
    [29] Taguchi G, Chowdhury S, Wu Y (2005) Taguchi's quality engineering handbook, Wiley.
    [30] Huang SH, Hsueh HJ, Hung KY (2010) Configurable AC electroosmotic generated in-plane microvortices and pumping flow in microchannels. Microfluid Nanofluid 8: 187–195. doi: 10.1007/s10404-009-0453-2
    [31] Jorcin JB, Orazem ME, Pébère N, et al. (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51: 1473–1479. doi: 10.1016/j.electacta.2005.02.128
    [32] Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18: 1883–1892. doi: 10.1021/la015646z
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4504) PDF downloads(1106) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog