Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy

1 Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, UMR CNRS 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10 004 Troyes cedex, France
2 NanoBioPhotonics group, Institute for Integrative Biology of the Cell, Université Paris-Saclay, CNRS, CEA, Bâtiment 430, 91405 Orsay cedex, France
3 Laboratoire Matrice Extracellulaire et Dynamique Cellulaire, UMR CNRS 7369, Universit´e de Reims Champagne-Ardennes, 51 rue Cognacq-Jay, 51096 Reims Cedex, France

Special Issue: Single Cell analysis

We propose a new strategy to evaluate adhesion strength at the single cell level. This approach involves variable-angle total internal reflection fluorescence microscopy to monitor in real time the topography of cell membranes, i.e. a map of the membrane/substrate separation distance. According to the Boltzmann distribution, both potential energy profile and dissociation energy related to the interactions between the cell membrane and the substrate were determined from the membrane topography. We have highlighted on glass substrates coated with poly-L-lysine and fibronectin, that the dissociation energy is a reliable parameter to quantify the adhesion strength of MDA-MB-231 motile cells.
  Article Metrics

Keywords biophotonics; total internal reflection fluorescence microscopy; super-resolution microscopy; cell adhesion; cell membrane-substrate interactions

Citation: Marcelina Cardoso Dos Santos, Cyrille Vézy, Hamid Morjani, Rodolphe Jaffol. Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy. AIMS Biophysics, 2017, 4(3): 438-450. doi: 10.3934/biophy.2017.3.438


  • 1. Roca-Cusachs P, Gauthier NC, del Rio A, et al. (2009) Clustering of $\alpha_5 \beta_1$ integrins determines adhesion strength whereas $\alpha_v \beta_3$ and talin enable mechanotransduction. PNAS 106: 16245–16250.    
  • 2. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687.    
  • 3. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesion. Nat Rev Mol Cell Biol 10: 21–33.    
  • 4. Sackmann E, Bruinsma RF (2002) Cell adhesion as wetting transition? Chem Phys Chem 3: 262–269.    
  • 5. Limozin L, Sengupta K (2007) Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushion. Biophys J 93: 3300–3313.    
  • 6. Sackmann E, Smith AS (2014) Physics of cell adhesion: some lessons from cell-mimetic systems. Soft Matter 10: 1644–1659.    
  • 7. Paszek MJ, DuFort CC, Rossier O, et al. (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511: 319–325.    
  • 8. Feghhi S, Munday AD, Tooley WW, et al. (2016) Glycoprotein Ib-IX-V complex transmits cytoskeletal forces that enhance platelet adhesion. Biophys J 111: 601–608.    
  • 9. Labouesse C, Verkhovsky AB, Meister JJ, et al. (2015) Cell shape dynamics reveal balance of elasticity and contractility in peripheral arcs. Biophys J 108: 2437–2447.    
  • 10. Rupprecht P, Gol L, Rieu JP, et al. (2012) A tapered channel microfluidic device for comprehensive cell adhesion analysis, using measurements of detachment kinetics and shear stress-dependent motion. Biomicrofluidics 6: 014107.    
  • 11. Visser CW, Gielen MV, Hao Z, et al. (2015) Quantifying cell adhesion through impingement of a controlled microjet. Biophys J 108: 23–31.    
  • 12. Sariisik E, Popov C, Mller JP et al. (2015) Decoding cytoskeleton-anchored and non-anchored receptors from single-cell adhesion force data. Biophys J 109: 1330–1333.    
  • 13. Partridge MA, Marcantonio EE (2006) Initiation of attachement and generation of mature focal adhesions by integrin-containing filopodia in cell spreading. Mol Biol Cell 17: 4237–4248.    
  • 14. Kanchanawong P, Shtengel G, Pasapera AM, et al. (2010) Nanoscale architecture of integrin-based cell adhesion. Nature 468: 713–724.    
  • 15. Dos Santos MC, Déturche R, Vézy C, et al. (2016) Topography of cells revealed by variable-angle total internal reflection fluorescence microscopy. Biophys J 111: 1316–1327.    
  • 16. Limozin L, Sengupta K (2009) Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Chem Phys Chem 10: 2752–2768.    
  • 17. Paszek MJ, DuFort CC, Rubashkin MG, et al. (2012) Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nat Methods 9: 825–827.    
  • 18. Chizhik AI, Rother J, Gregor I, et al. (2014) Metal-induced energy transfer for live cell nanoscopy. Nat Photonics 8: 124–127.    
  • 19. Bourg N, Mayet C, Dupuis G, et al. (2015) Direct optical nanoscopy with axially localized detection. Nat Photonics 9: 587–593.    
  • 20. Waldchen S, Lehmann J, Klein T, et al. (2015) Light-induced cell damage in live-cell superresolution microscopy. Sci Rep 5: 15348.    
  • 21. Johansson S, Svineng G, Wennerberg K, et al. (1997) Fibronectin-integrin interactions. Front Biosci 2: d126–d146.    
  • 22. Bartsch JE, Staren ED, Appert HE (2003) Adhesion and migration of extracellular matrixstimulated breast cancer. J Surg Res 110: 287–294.    
  • 23. Wong NC, Mueller BM, Barbas CF, et al. (1998) $\alpha_v$ Integrins mediate adhesion and migration of breast carcinoma cell lines. Clin Exp Metastasis 16: 50–61.
  • 24. Mierke CT, Frey B, Fellner M, et al. (2010) Integrin $\alpha_{5}\beta_{1}$ facilitates cancer cell invasion through enhanced contractile forces. J Cell Sci 124: 369–383.
  • 25. Prieve DC, Alexander BM (1986) Hydrodynamic measurement of double-layer repulsion between colloidal particle and flat plate. Science 231: 1269–1270.    
  • 26. Prieve DC, Bike SG, Frej NA (1990) Brownian motion of a single microscopic sphere in a colloidal force field. Faraday Discuss Chem Soc 90: 209–222.    
  • 27. Prieve DC, Frej NA (1990) Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces. Langmuir 6: 396–403.    
  • 28. Radler J, Sackmann E (1992) One the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy. Langmuir 8: 848–853.    
  • 29. Schmidt D, Monzel C, Bihr T, et al. (2014) Signature of nonharmonic potential as revealed from a consistent shape and fluctuation analysis of adherent membrane. Phys Rev X 4: 021023.
  • 30. Morse PM (1929) Diatomic molecules according to the wave mechanics. II Vibrational levels. Phys Rev 34: 57–64.
  • 31. Herzberg G (1950) Molecular spectra and molecular structure. I. Spectra of diatomic molecules, 2 Eds., New York: D. Van Nostrand Company, INC.
  • 32. Merkel R, Nassoy P, Leung A, et al. (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397: 50–53.    
  • 33. Li F, Redick SD, Erickson HP, et al. (2003) Force measurements of the $\alpha_5 \beta_1$ integrin-fibronectin interaction. Biophys J 84: 1252–1262.    
  • 34. Robert P, Nicolas A, Aranda-Espinoza S, et al. (2011) Minimal encounter time and separation determine ligand-receptor binding in cell adhesion. Biopjys J 100: 2642–2651.
  • 35. Gutierrez E, Tkachenko E, Besser A, et al. (2011) High refractive index silicone gels for simultaneous total internal reflection fluorescence and traction force microscopy of adherent cells. PloS One 6: e23807.    


Reader Comments

your name: *   your email: *  

Copyright Info: © 2017, Rodolphe Jaffol, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved