Research article Special Issues

A guide to investigating colloidal nanoparticles by cryogenic transmission electron microscopy: pitfalls and benefits

  • Received: 26 February 2015 Accepted: 16 June 2015 Published: 28 June 2015
  • Synthetic colloidal nanoparticles are nowadays omnipresent. Nonetheless, adequately characterizing them and interpreting the data is challenging, as their surrounding environment, e.g. the medium they are dispersed in, is often an active contributor to their size, morphology and structural integrity. In this regard, cryo-transmission electron microscopy (cryo-TEM) is an ideal methodology. This article provides a general guidance for beginners and experts encountering this technique on the common benefits and pitfalls when characterizing synthetic nanoparticles. Illustrative experimental examples are presented which cover the importance of water as a supportive and structural component, along with contrast generation and electron beam damage.

    Citation: Christophe A. Monnier, David C. Thévenaz, Sandor Balog, Gina L. Fiore, Dimitri Vanhecke, Barbara Rothen-Rutishauser, Alke Petri-Fink. A guide to investigating colloidal nanoparticles by cryogenic transmission electron microscopy: pitfalls and benefits[J]. AIMS Biophysics, 2015, 2(3): 245-258. doi: 10.3934/biophy.2015.3.245

    Related Papers:

  • Synthetic colloidal nanoparticles are nowadays omnipresent. Nonetheless, adequately characterizing them and interpreting the data is challenging, as their surrounding environment, e.g. the medium they are dispersed in, is often an active contributor to their size, morphology and structural integrity. In this regard, cryo-transmission electron microscopy (cryo-TEM) is an ideal methodology. This article provides a general guidance for beginners and experts encountering this technique on the common benefits and pitfalls when characterizing synthetic nanoparticles. Illustrative experimental examples are presented which cover the importance of water as a supportive and structural component, along with contrast generation and electron beam damage.


    加载中
    [1] Nanotechnologies—Terminology and Definitions for Nano-objects—Nanoparticle, Nanofibre and Nanoplate (2008) International Organization for Standardization Geneva, Switzerland.
    [2] Wagner V, Dullaart A, Bock A-K, et al. (2006) The emerging nanomedicine landscape. Nat Biotechnol 24: 1211-1217. doi: 10.1038/nbt1006-1211
    [3] Cao Q, Rogers JA (2009) Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects. Adv Mater 21: 29-53. doi: 10.1002/adma.200801995
    [4] Rao C, Cheetham A (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11: 2887-2894. doi: 10.1039/b105058n
    [5] Brinkhuis RP, Rutjes FP, van Hest JC (2011) Polymeric vesicles in biomedical applications. Pol Chem 2: 1449-1462. doi: 10.1039/c1py00061f
    [6] Du Z-X, Xu J-T, Fan Z-Q (2007) Micellar morphologies of poly (ε-caprolactone)-b-poly (ethylene oxide) block copolymers in water with a crystalline core. Macromolecules 40: 7633-7637. doi: 10.1021/ma070977p
    [7] Du ZX, Xu JT, Fan ZQ (2008) Regulation of Micellar Morphology of PCL-b-PEO Block Copolymers by Crystallization Temperature. Macromol Rapid Comm 29: 467-471. doi: 10.1002/marc.200700795
    [8] Giacomelli C, Borsali R (2006) Morphology of Poly (ethylene oxide)-block-Polycaprolatone Block Copolymer Micelles Controlled via the Preparation Method. Wiley Online Library 147-153.
    [9] Ghoroghchian PP, Li G, Levine DH, et al. (2006) Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly (ethylene oxide)-block-polycaprolactone. Macromolecules 39: 1673-1675. doi: 10.1021/ma0519009
    [10] Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Comm 30: 267-277. doi: 10.1002/marc.200800713
    [11] Renggli K, Baumann P, Langowska K, et al. (2011) Selective and responsive nanoreactors. Adv Funct Mater 21: 1241-1259. doi: 10.1002/adfm.201001563
    [12] Graff A, Winterhalter M, Meier W (2001) Nanoreactors from polymer-stabilized liposomes. Langmuir 17: 919-923. doi: 10.1021/la001306m
    [13] Nardin C, Widmer J, Winterhalter M, et al. (2001) Amphiphilic block copolymer nanocontainers as bioreactors. Eur Phys J E 4: 403-410. doi: 10.1007/s101890170095
    [14] Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Transactions 2: Molecular Chem Phys 72: 1525-1568.
    [15] Brinker CJ, Lu Y, Sellinger A, et al. (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11: 579-585.
    [16] He WN, Xu JT, Du BY, et al. (2010) Inorganic-Salt-Induced Morphological Transformation of Semicrystalline Micelles of PCL-b-PEO Block Copolymer in Aqueous Solution. Macromol Chem Phys 211: 1909-1916. doi: 10.1002/macp.201000184
    [17] He WN, Xu JT, Du BY, et al. (2012) Effect of pH on the Micellar Morphology of Semicrystalline PCL-b-PEO Block Copolymers in Aqueous Solution. Macromol Chem Phys 213: 952-964. doi: 10.1002/macp.201100615
    [18] Egelhaaf S, Müller M, Schurtenberger P (1998) Size determination of polymer-like micelles using cryo-electron microscopy. Langmuir 14: 4345-4349. doi: 10.1021/la971370c
    [19] Hao X, Kuang C, Gu Z, et al. (2013) From microscopy to nanoscopy via visible light. Light: Science Applications 2: e108. doi: 10.1038/lsa.2013.64
    [20] Shtengel G, Galbraith JA, Galbraith CG, et al. (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. P Natl Acad Sci U S A 106: 3125-3130. doi: 10.1073/pnas.0813131106
    [21] Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Bio 9: 929-943. doi: 10.1038/nrm2531
    [22] McMullan G, Faruqi A (2008) Electron microscope imaging of single particles using the Medipix2 detector. Nucl Instrum Methods Phys Res A 591: 129-133. doi: 10.1016/j.nima.2008.03.041
    [23] Massover WH (2008) On the experimental use of light metal salts for negative staining. Microsc Microanal 14: 126-137.
    [24] He Y, Li Z, Simone P, et al. (2006) Self-assembly of block copolymer micelles in an ionic liquid. J Am Chem Soc 128: 2745-2750. doi: 10.1021/ja058091t
    [25] Oguchi K, Sanui K, Ogata N, et al. (1990) Relationship between electron sensitivity and chemical structures of polymers as electron beam resist. VII: Electron sensitivity of vinyl polymers containing pendant 1, 3-dioxolan groups. Pol Eng Sci30: 449-452.
    [26] Dubochet J, Adrian M, Chang J-J, et al. (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21: 129-228. doi: 10.1017/S0033583500004297
    [27] Thévenaz DC, Monnier CA, Balog S, et al. (2014) Luminescent Nanoparticles with Lanthanide-Containing Poly (ethylene glycol)-Poly (ε-caprolactone) Block Copolymers. Biomacromolecules 15: 3994-4001. doi: 10.1021/bm501058n
    [28] Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39: 189-227. doi: 10.1039/B905604C
    [29] Wang W, Lin J, Cai C, et al. (2015) Optical properties of amphiphilic copolymer-based self-assemblies. Eur Polym J.
    [30] Turkevich J, Cooper SP, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11: 55-75. doi: 10.1039/df9511100055
    [31] Haran G, Cohen R, Bar LK, et al. (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. BBA-Biomembranes 1151: 201-215. doi: 10.1016/0005-2736(93)90105-9
    [32] Michen B, Geers C, Vanhecke D, et al. (2015) Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Sci Rep 5.
    [33] Hirsch V, Kinnear C, Rodriguez-Lorenzo L, et al. (2014) In vitro dosimetry of agglomerates. Nanoscale 6: 7325-7331. doi: 10.1039/c4nr00460d
    [34] Dinu MV, Spulber M, Renggli K, et al. (2015) Macromol. Rapid Commun. 6/2015. Macromol Rapid Comm 36: 576-576. doi: 10.1002/marc.201570025
    [35] Egelhaaf S, Wehrli E, Adrian M, et al. (1996) Determination of the size distribution of lecithin liposomes: a comparative study using freeze fracture, cryoelectron microscopy and dynamic light scattering. J Microsc 184: 214-228. doi: 10.1046/j.1365-2818.1996.1280687.x
    [36] Adrian M, Dubochet J, Fuller SD, et al. (1998) Cryo-negative staining. Micron 29: 145-160. doi: 10.1016/S0968-4328(97)00068-1
    [37] Bonnaud C, Monnier CA, Demurtas D, et al. (2014) Insertion of nanoparticle clusters into vesicle bilayers. ACS nano 8: 3451-3460. doi: 10.1021/nn406349z
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8380) PDF downloads(1649) Cited by(8)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog