Citation: Prasantha Bharathi Dhandapani, Dumitru Baleanu, Jayakumar Thippan, Vinoth Sivakumar. On stiff, fuzzy IRD-14 day average transmission model of COVID-19 pandemic disease[J]. AIMS Bioengineering, 2020, 7(4): 208-223. doi: 10.3934/bioeng.2020018
[1] | Zadeh LA (1965) Fuzzy sets. Inform Contr 8: 338-353. doi: 10.1016/S0019-9958(65)90241-X |
[2] | Chang SSL, Zadeh LA (1972) On fuzzy mapping and control. doi: 10.1109/TSMC.1972.5408553 |
[3] | Buckley JJ, Feuring T (2000) Fuzzy differential equations. Fuzzy Set Syst 110: 43-54. doi: 10.1016/S0165-0114(98)00141-9 |
[4] | Dubois D, Prade H (1982) Towards fuzzy differential calculus, Part 3: Differentiation. Fuzzy Set Syst 8: 225-233. doi: 10.1016/S0165-0114(82)80001-8 |
[5] | Lupulescu V (2009) On a class of fuzzy functional differential equations. Fuzzy set Syst 160: 1547-1562. doi: 10.1016/j.fss.2008.07.005 |
[6] | Kaleva O (1987) Fuzzy differential equations. Fuzzy Set Syst 24: 301-317. doi: 10.1016/0165-0114(87)90029-7 |
[7] | Kaleva O (1990) The Cauchy problem for fuzzy differential equations. Fuzzy Set Syst 35: 389-386. doi: 10.1016/0165-0114(90)90010-4 |
[8] | Ma M, Friedman M, Kandel A (1999) Numerical solutions of fuzzy differential equations. Fuzzy Set Syst 105: 133-138. doi: 10.1016/S0165-0114(97)00233-9 |
[9] | Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Set Syst 24: 319-330. doi: 10.1016/0165-0114(87)90030-3 |
[10] | Diamond P, Kloeden P (1984) Metric Spaces of Fuzzy Sets: Theory and Applications Singapore: World Scientific. |
[11] | Chalco-Cano Y, Roman-Flores H (2008) On new solutions of fuzzy differential equation. Chaos Soliton Fract 38: 112-119. doi: 10.1016/j.chaos.2006.10.043 |
[12] | Abbasbandy S, Viranloo TA (2002) Numerical solution of fuzzy differential equation by Taylor method. Comput Meth Appl mat 2: 113-124. doi: 10.2478/cmam-2002-0006 |
[13] | Abbasbandy S, Viranloo TA (2004) Numerical solution of fuzzy differential equation by Runge-Kutta method. Nonlinear Stud 11: 117-129. |
[14] | Curtiss CF, Hirschfelder JO (1952) Integration of stiff equations. Proc Natl Acad Sci USA 38: 235-243. doi: 10.1073/pnas.38.3.235 |
[15] | Söderlind G, Jay L, Calvo M (2015) Stiffness 1952–2012: Sixty years in search of a definition. BIT Numer Math 55: 531-558. doi: 10.1007/s10543-014-0503-3 |
[16] | Shampine LF (1981) Evaluation of a test set for stiff ODE solvers. ACM Trans Math Softw 7: 409-420. doi: 10.1145/355972.355973 |
[17] | Higham DJ, Trefethen LN (1993) Stiffness of ODEs. BIT 33: 285-303. doi: 10.1007/BF01989751 |
[18] | Spijker MN (1996) Stiffness in numerical initial-value problems. J Comp Appl Math 72: 393-406. doi: 10.1016/0377-0427(96)00009-X |
[19] | Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc Roy Soc Lond A 115: 700-721. doi: 10.1098/rspa.1927.0118 |
[20] | Palese P, Young JF (1982) Variation of influenza A, B, and C viruses. Science 215: 1468-1474. doi: 10.1126/science.7038875 |
[21] | Allen LJS (2007) An Introduction to Mathematical Biology NJ: Prentice Hall. |
[22] | He S, Tang S, Rong L (2020) A discrete stochastic model of the COVID-19 outbreak: Forecast and control. MBE 17: 2792-2804. doi: 10.3934/mbe.2020153 |
[23] | Zhou W, Wang A, Xia F, et al. (2020) Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak. MBE 17: 2693-2707. doi: 10.3934/mbe.2020147 |
[24] | Yin F, Lv J, Zhang X, et al. (2020) COVID-19 information propagation dynamics in the chinese sina-microblog. MBE 17: 2676-2692. doi: 10.3934/mbe.2020146 |
[25] | Dai C, Yang J, Wang K (2020) Evaluation of prevention and control interventions and its impact on the epidemic of coronavirus disease 2019 in Chongqing and Guizhou Provinces. MBE 17: 2781-2791. doi: 10.3934/mbe.2020152 |
[26] | Rong X, Yang L, Chu H, et al. (2020) Effect of delay in diagnosis on transmission of COVID-19. MBE 17: 2725-2740. doi: 10.3934/mbe.2020149 |
[27] | Tian J, Wu J, Bao Y, et al. (2020) Modeling analysis of COVID-19 based on morbidity data in Anhui, China. MBE 17: 2842-2852. doi: 10.3934/mbe.2020158 |
[28] | Li C, Xu J, Liu J, et al. (2020) The within-host viral kinetics of SARS-CoV-2. MBE 17: 2853-2861. doi: 10.3934/mbe.2020159 |
[29] | Volpert V, Banerjee M, Petrovskii S (2020) On a quarantine model of coronavirus infection and data analysis. Math Model Nat Phenom 15: 24. doi: 10.1051/mmnp/2020006 |
[30] | Tang B, Bragazzi NL, Li Q, et al. (2020) An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model 5: 248-225. |
[31] | Yang Z, Zeng Z, Wang K, et al. (2020) Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis 12: 165-174. doi: 10.21037/jtd.2020.02.64 |
[32] | Tuli S, Tuli S, Tuli R, et al. (2020) Predicting the growth and trend of COVID-19 pandemic using machine learning and Cloud computing. Internet Thing 11: 100222. doi: 10.1016/j.iot.2020.100222 |
[33] | Pai C, Bhaskar A, Rawoot V (2020) Investigating the dynamics of COVID-19 pandemic in India under lockdown. Chaos Soliton Fract 138: 109988. doi: 10.1016/j.chaos.2020.109988 |
[34] | Ribeiro MHDM, Da Silva RG, Mariani VC, et al. (2020) Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos Soliton Fract 135: 109853. doi: 10.1016/j.chaos.2020.109853 |
[35] | Khan MA, Atangana A (2020) Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. doi: 10.1016/j.aej.2020.02.033 |
[36] | Gong X, Fatmawati, Khan MA (2020) A numerical solution of the competition model among bank data in Caputo-Fabrizio derivative. doi: 10.1016/j.aej.2020.02.008 |
[37] | Jan R, Khan MA, Gómez-Aguilar JF (2020) Asymptomatic carriers in transmission dynamics of dengue with control interventions. Optim Control Appl Meth 41: 430-447. doi: 10.1002/oca.2551 |
[38] | Khan MA, Ullah S, Ullah S, et al. (2020) Fractional order SEIR model with generalized incidence rate. AIMS Mathematics 5: 2843-2857. doi: 10.3934/math.2020182 |
[39] | Windarto, Khan MA, Fatmawati (2020) Parameter estimation and fractional derivatives of dengue transmission model. AIMS Mathematics 5: 2758-2779. doi: 10.3934/math.2020178 |
[40] | Dhandapani PB, Baleanu D, Thippan J, et al. (2019) Fuzzy type RK4 solutions to fuzzy hybrid retarded delay differential equations. Front Phys 7: 168. doi: 10.3389/fphy.2019.00168 |
[41] | Dhandapani PB, Thippan J, Sivakumar V (2019) Numerical solution of fuzzy multiple hybrid single retarded delay differential equations. Int J Recent Technol Eng 8: 1946-1949. |
[42] | Dhandapani PB, Thippan J, Sivakumar V (2019) Numerical solutions of fuzzy multiple hybrid single neutral delay differential equations. Int J Sci Technol Res 8: 520-523. |
[43] | Daily updates of coronavirus COVID-19 pandemic disease.Available from: https://www.worldometers.info/coronavirus/. |