Theory article Special Issues

A Theory on the Singular Function of the Hippocampus: Facilitating the Binding of New Circuits of Cortical Columns

  • Received: 01 June 2016 Accepted: 23 August 2016 Published: 31 August 2016
  • Despite the hippocampus being extensively studied, controversy remains as to its role in cognitive processing. The current paper presents a theoretical argument that the hippocampus has only one purpose: the binding of parallel cortical circuits. The paper begins with a discussion of cortical columns as the common binary digit (bit) for all neocortical processing. This is followed by details on the Dimensional Systems Model and its explanation of cortical circuitry. As opposed to any independent function in cognitive processing, the hippocampal cells are viewed as serving a slave function to cortical circuits since they are activated as part of a cortical-hippocampal-thalamic-cortical circuit. As part of that circuit, the hippocampus serves the role of reactivating the cortical circuits involved in complex memories (i.e., involving multiple cortical circuits) to facilitate the consolidation of the involved cortical columns’ interconnections. Next there is a brief discussion of prior theoretical views explaining hippocampal involvement in memory and spatial representations. To facilitate an appreciation of the unique aspects of the new model, it is contrasted against the extensively developed Component Process Model. Conclusions focus on how a complete model of cortical cognitive processing is necessary to adequately explain the purpose of the hippocampus, viewed as a complex structure with an elegantly simple function.

    Citation: Robert A. Moss. A Theory on the Singular Function of the Hippocampus: Facilitating the Binding of New Circuits of Cortical Columns[J]. AIMS Neuroscience, 2016, 3(3): 264-305. doi: 10.3934/Neuroscience.2016.3.264

    Related Papers:

  • Despite the hippocampus being extensively studied, controversy remains as to its role in cognitive processing. The current paper presents a theoretical argument that the hippocampus has only one purpose: the binding of parallel cortical circuits. The paper begins with a discussion of cortical columns as the common binary digit (bit) for all neocortical processing. This is followed by details on the Dimensional Systems Model and its explanation of cortical circuitry. As opposed to any independent function in cognitive processing, the hippocampal cells are viewed as serving a slave function to cortical circuits since they are activated as part of a cortical-hippocampal-thalamic-cortical circuit. As part of that circuit, the hippocampus serves the role of reactivating the cortical circuits involved in complex memories (i.e., involving multiple cortical circuits) to facilitate the consolidation of the involved cortical columns’ interconnections. Next there is a brief discussion of prior theoretical views explaining hippocampal involvement in memory and spatial representations. To facilitate an appreciation of the unique aspects of the new model, it is contrasted against the extensively developed Component Process Model. Conclusions focus on how a complete model of cortical cognitive processing is necessary to adequately explain the purpose of the hippocampus, viewed as a complex structure with an elegantly simple function.


    加载中
    [1] Maguire EA, Intraub H, Mullally SL (2015) Scenes, Spaces, and Memory Traces What Does the Hippocampus Do? The Neuroscientist: 1-8. doi: 10.1177/107385415600389.
    [2] Moscovitch M, Cabeza R, Winocur G, et al. (2016) Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. Annu Rev Psychol 67: 105-134. doi: 10.1146/annurev-psych-113011-143733 doi: 10.1146/annurev-psych-113011-143733
    [3] Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20: 408-434.
    [4] Calvin W (1995) Cortical columns, modules, and Hebbian cell assemblies. In M. A. Arbib (Ed), Handbook of brain theory and neural networks (pp. 269-275). Cambridge, Massachusetts: MIT Press.
    [5] Moss RA (2006) Of bits and logic: Cortical columns in learning and memory. J Mind Beh 27: 215-246.
    [6] Moss RA, Hunter BP, Shah D, et al. (2012) A theory of hemispheric specialization based on cortical columns. J Mind Beh 33: 141-172.
    [7] Vicente R, Gollo LL, Mirasso CR, et al. (2008) Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc Natl Acad Sci 105: 17157-17162. doi: 10.1073/pnas.0809353105
    [8] Perin R, Berger TK, Markram H (2011) A synaptic organizing principle for cortical neuronal groups. Proc Natl Acad Sci 108: 5419-5424. doi: 10.1073/pnas.1016051108
    [9] Roe AW, Chernov MM, Friedman RM, et al. (2015) In vivo mapping of cortical columnar networks in the monkey with focal electrical and optical stimulation. Front Neuroanat 9: 135.
    [10] Leaver AM, Rauschecker JP (2016) Functional Topography of Human Auditory Cortex. J Neurosci 36: 1416-1428. doi: 10.1523/JNEUROSCI.0226-15.2016
    [11] Nasr S, Polimeni JR, Tootell RB (2016) Interdigitated color-and disparity-selective columns within human visual cortical areas V2 and V3. J Neurosci 36: 1841-1857 doi: 10.1523/JNEUROSCI.3518-15.2016
    [12] Yacoub E, Shmuel A, Logothetis N, et al. (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37: 1161-1177. doi: 10.1016/j.neuroimage.2007.05.020
    [13] Yacoub E, Harel N, U?urbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci 105: 10607-10612. doi: 10.1073/pnas.0804110105
    [14] Zimmermann J, Goebel R, De Martino F, et al. (2011) Mapping the organization of axis of motion selective features in human area MT using high-field fMRI. PLoS One 6: e28716. doi: 10.1371/journal.pone.0028716
    [15] Wang G, Tanaka K, Tanifuji M (1996) Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272: 1665-1668. doi: 10.1126/science.272.5268.1665
    [16] Tanaka K (2000) Mechanisms of visual object recognition studied in monkeys. Spat Vision 13: 147-163. doi: 10.1163/156856800741171
    [17] Hirata Y, Sawaguchi T (2008) Functional columns in the primate prefrontal cortex revealed by optical imaging in vitro. Neurosci Res 61: 1-10. doi: 10.1016/j.neures.2008.01.003
    [18] Jones EG, Rakic P (2010) Radial columns in cortical architecture: it is the composition that counts. Cereb Cortex 20: 2261-2264. doi: 10.1093/cercor/bhq127
    [19] Moss RA, Moss J (2014a) The role of cortical columns in explaining gamma-band synchronization and NMDA receptors in cognitive functions. AIMS Neurosci 1: 65-88. doi: 10.3934/Neuroscience2014.1.65
    [20] Lee AJ, Wang G, Jiang X, et al. (2015) Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits. Cereb Cortex 25: 2114-2126. doi: 10.1093/cercor/bhu020
    [21] Salkoff DB, Zagha E, Yüzge? ?, et al. (2015) Synaptic mechanisms of tight spike synchrony at gamma frequency in cerebral cortex. J Neurosci 35: 10236-10251. doi: 10.1523/JNEUROSCI.0828-15.2015
    [22] Bachatene L, Bharmauria V, Cattan S, et al. (2015) Reprogramming of orientation columns in visual cortex: a domino effect. Sci Rep 5: 9436. doi: 10.1038/srep09436
    [23] Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160: 106-154. doi: 10.1113/jphysiol.1962.sp006837
    [24] Wertz A, Trenholm S, Yonehara K, et al. (2015) Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349: 70-74. doi: 10.1126/science.aab1687
    [25] Hofer SB, Ko H, Pichler B, et al. (2011) Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat neurosci 14: 1045-1052. doi: 10.1038/nn.2876
    [26] Kerlin AM, Andermann ML, Berezovskii VK, et al. (2010) Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67: 858-871. doi: 10.1016/j.neuron.2010.08.002
    [27] Sadovsky AJ, MacLean JN (2014) Mouse visual neocortex supports multiple stereotyped patterns of microcircuit activity. J Neurosci 34: 7769-7777. doi: 10.1523/JNEUROSCI.0169-14.2014
    [28] Rikhye RV, Sur M (2015) Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex. J Neurosci 35: 14661-14680. doi: 10.1523/JNEUROSCI.1660-15.2015
    [29] Heys JG, Rangarajan KV, Dombeck DA (2014) The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84: 1079-1090. doi: 10.1016/j.neuron.2014.10.048
    [30] Igarashi KM (2016) The entorhinal map of space. Brain Res 1637: 177-187. doi: 10.1016/j.brainres.2015.10.041
    [31] Bonnevie T, Dunn B, Fyhn M, et al. (2013) Grid cells require excitatory drive from the hippocampus. Nat Neurosci 16: 309-317. doi: 10.1038/nn.3311
    [32] Winter SS, Mehlman ML, Clark BJ, et al. (2015) Passive transport disrupts grid signals in the parahippocampal cortex. Curr Biol 25: 2493-2502. doi: 10.1016/j.cub.2015.08.034
    [33] Krupic J, Burgess N, O’Keefe J (2012) Neural representations of location composed of spatially periodic bands. Science 337: 853-857. doi: 10.1126/science.1222403
    [34] Krupic J, Burgess N, O'Keefe J (2015) Spatially Periodic Cells Are Neither Formed From Grids Nor Poor Isolation. arXiv preprint arXiv:1512.06248.
    [35] Doeller CF, Barry C, Burgess N (2010) Evidence for grid cells in a human memory network. Nature 463: 657-661. doi: 10.1038/nature08704
    [36] Constantinescu AO, O’Reilly JX, Behrens TE (2016) Organizing conceptual knowledge in humans with a gridlike code. Science 352: 1464-1468. doi: 10.1126/science.aaf0941
    [37] Luria AR (1966) Higher cortical functions in man. New York: Basic Books.
    [38] Turk E, Scholtens LH, van den Heuvel MP (2016) Cortical chemoarchitecture shapes macroscale effective functional connectivity patterns in macaque cerebral cortex. Hum Brain Mapp 37: 1856-1865. doi: 10.1002/hbm.23141
    [39] Heuvel MP, Scholtens LH, Turk E, et al. (2016) Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting‐state functional connectivity. Hum Brain Mapp. doi:10.1002/hbm.23229.
    [40] Harris KD, Shepherd GM (2015) The neocortical circuit: themes and variations. Nat Neurosci 18: 170-181. doi: 10.1038/nn.3917
    [41] Milner B (1962) Les troubles de la memoire accompagnant des lesions hippocampiques bilaterales. Physiologie de l’hippocampe: 257-272.
    [42] Olsen RK, Lee Y, Kube J, et al. (2015) The role of relational binding in item memory: evidence from face recognition in a case of developmental amnesia. J Neurosci 35: 5342-5350. doi: 10.1523/JNEUROSCI.3987-14.2015
    [43] Moss RA (2013) Psychotherapy and the brain: The dimensional systems model and clinical biopsychology. J Mind Beh 34: 63-89.
    [44] Moss RA (2015) Psychotherapy integration from a brain-based perspective: Clinical biopsychology. Continuing education course offered through Health Forum Online. www.healthforumonline.com
    [45] Moss RA (1992) Emotional restructuring. Greenville, SC: Center for Emotional Restructuring.
    [46] Moss RA (2001) Clinical biopsychology in theory and practice. Greenville, SC: Center for Emotional Restructuring.
    [47] Gazzaniga MS (2002) Consciousness. In V. S. Ramachandran (Ed.), Encyclopedia of the human brain (Vol. 2, pp. 31–35). New York: Academic Press.
    [48] Wagner AD, Desmond JE, Demb JB, et al. (1997) Semantic repetition priming for verbal and pictorial knowledge: A functional MRI study of left inferior prefrontal cortex. J Cog Neurosci 9: 714-726. doi: 10.1162/jocn.1997.9.6.714
    [49] Badre D, Wagner AD (2007) Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45: 2883-2901. doi: 10.1016/j.neuropsychologia.2007.06.015
    [50] Schott BH, Wüstenberg T, Wimber M, et al. (2013) The relationship between level of processing and hippocampal–cortical functional connectivity during episodic memory formation in humans. Hum Brain Mapp 34: 407-424. doi: 10.1002/hbm.21435
    [51] Barredo J, ?ztekin I, Badre D (2013) Ventral fronto-temporal pathway supporting cognitive control of episodic memory retrieval. Cereb Cortex bht291.
    [52] Hage SR, Nieder A (2015) Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex. J Neurosci 35: 7030-7040. doi: 10.1523/JNEUROSCI.2371-14.2015
    [53] Bruni S, Giorgetti V, Bonini L, et al. (2015) Processing and integration of contextual information in monkey ventrolateral prefrontal neurons during selection and execution of goal-directed manipulative actions. J Neurosci 35: 11877-11890. doi: 10.1523/JNEUROSCI.1938-15.2015
    [54] Moss RA (2007) Negative emotional memories in clinical practice: Theoretical considerations. J Psychoth Integ 17: 209-224.
    [55] Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94: 115-147. doi: 10.1037/0033-295X.94.2.115
    [56] Boynton GM, Hegdé J (2004) Visual cortex: The continuing puzzle of area V2. Curr Biol 14: R523-R524. doi: 10.1016/j.cub.2004.06.044
    [57] Nandy AS, Sharpee TO, Reynolds JH, et al. (2013) The fine structure of shape tuning in area V4. Neuron 78: 1102-1115. doi: 10.1016/j.neuron.2013.04.016
    [58] Martin AB, von der Heydt R (2015) Spike synchrony reveals emergence of proto-objects in visual cortex. J Neurosci 35: 6860-6870. doi: 10.1523/JNEUROSCI.3590-14.2015
    [59] Gü?lü U, van Gerven MA (2015) Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J Neurosci 35: 10005-10014. doi: 10.1523/JNEUROSCI.5023-14.2015
    [60] Youssofzadeh V, Prasad G, Fagan AJ, et al. (2015) Signal Propagation in the Human Visual Pathways: An Effective Connectivity Analysis. J Neurosci 35:13501-13510. doi: 10.1523/JNEUROSCI.2269-15.2015.
    [61] Jacques C, Witthoft N, Weiner KS, et al. (2016) Corresponding ECoG and fMRI category-selective signals in Human ventral temporal cortex. Neuropsychologia 83: 14-28. doi: 10.1016/j.neuropsychologia.2015.07.024
    [62] Hosoya H, Hyv?rinen A (2015) A hierarchical statistical model of natural images explains tuning properties in V2. J Neurosci 35: 10412-10428. doi: 10.1523/JNEUROSCI.5152-14.2015
    [63] Moss RA, Moss J (2014b) Commentary on the Pinotsis and Friston neural fields DCM and the Cadonic and Albensi oscillations and NMDA receptors articles. AIMS Neurosci 1: 158-162. doi: 10.3934/Neuroscience.2014.2.158
    [64] Pinotsis D, Friston K (2014) Gamma Oscillations and Neural Field DCMs can reveal cortical excitability and microstructure. AIMS Neurosci 1: 18-38.
    [65] Zeki S (2016) Multiple asynchronous stimulus‐and task‐dependent hierarchies (STDH) within the visual brain's parallel processing systems. Euro J Neurosci.
    [66] Yeo BT, Krienen FM, Sepulcre J, et al. (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125-1165. doi: 10.1152/jn.00338.2011
    [67] Weiner KS, Grill-Spector K (2013) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77: 74-97. doi: 10.1007/s00426-011-0392-x
    [68] Lafer-Sousa R, Conway BR, Kanwisher NG (2016) Color-Biased Regions of the Ventral Visual Pathway Lie between Face-and Place-Selective Regions in Humans, as in Macaques. J Neurosci 36: 1682-1697. doi: 10.1523/JNEUROSCI.3164-15.2016
    [69] Bracci S, Op de Beeck H (2016) Dissociations and associations between shape and category representations in the two visual pathways. J. Neurosci 36: 432-444. doi: 10.1523/JNEUROSCI.2314-15.2016
    [70] Galuske RAW, Schlote W, Bratzke H, et al. (2000) Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 289: 1946-1949.
    [71] Hutsler J, Galuske RAW (2003) Hemispheric asymmetries in cerebral cortical networks. Trend Neurosci 26: 429-435.
    [72] Iturria–Medina Y, Fernandez AP, Morris DM, et al. (2011) Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cereb Cortex 21: 56–67. doi:10.1093/cercor/bhq058
    [73] Christoff K, Gordon AM, Smallwood J, et al. (2009) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci 106: 8719-8724. doi:10.1073/pnas.0900234106
    [74] Vatansever D, Menon DK, Manktelow AE, et al. (2015) Default mode dynamics for global functional integration. J Neurosci 35: 15254-15262. doi: 10.1523/JNEUROSCI.2135-15.2015
    [75] Kober H, Barrett LF, Joseph J, et al. (2008) Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. Neuroimage 42: 998-1031. doi:10.1016/j.neuroimage.2008.03.059
    [76] Badre D, D’Esposito M (2009) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10: 659-669.
    [77] Badre D, D’Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cog Neurosci 19: 2082-2099.
    [78] de la Vega A, Chang LJ, Banich MT, et al. (2016) Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization. J Neurosci 36: 6553-6562. doi: 10.1523/JNEUROSCI.4402-15.2016
    [79] Blumenfeld RS, Nomura EM, Gratton C, et al. (2013) Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis. Cereb Cortex 23: 2457-2466. doi: 10.1093/cercor/bhs223
    [80] Knight R, Hayman R (2014) Allocentric directional processing in the rodent and human retrosplenial cortex. Front Hum Neurosci 8: 135.
    [81] Miller AM, Vedder LC, Law LM, et al. (2014) Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci 8: 586.
    [82] Zhuo J, Fan L, Liu Y, et al. (2016) Connectivity Profiles Reveal a Transition Subarea in the Parahippocampal Region That Integrates the Anterior Temporal—Posterior Medial Systems. J Neurosci 36: 2782-2795. doi: 10.1523/JNEUROSCI.1975-15.2016
    [83] Paller K (2002) Cross-cortical consolidation as the core defect in amnesia. In Squire, LR, Schacter, DL, editors, Neuropsychology of Memory, 3rd ed. New York: Guilford Press, 114-129.
    [84] Waldhauser GT, Braun V, Hanslmayr S (2016) Episodic memory retrieval functionally relies on very rapid reactivation of sensory information. J Neurosci 36: 251-260. doi: 10.1523/JNEUROSCI.2101-15.2016
    [85] Guidotti R, Del Gratta C, Baldassarre A, et al. (2015) Visual learning induces changes in resting-state fMRI multivariate pattern of information. J Neurosci 35: 9786-9798. doi: 10.1523/JNEUROSCI.3920-14.2015
    [86] Cholvin T, Loureiro M, Cassel R, et al. (2016) Dorsal hippocampus and medial prefrontal cortex each contribute to the retrieval of a recent spatial memory in rats. Brain Struc Func 221: 91-102. doi: 10.1007/s00429-014-0894-6
    [87] Morrissey MD, Takehara-Nishiuchi K (2014) Diversity of mnemonic function within the entorhinal cortex: a meta-analysis of rodent behavioral studies. Neurobiol Learn Mem 115: 95-107.
    [88] Mankin EA, Diehl GW, Sparks FT, et al. (2015) Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron 85: 190-201. doi: 10.1016/j.neuron.2014.12.001
    [89] Lavenex P, Lavenex PB (2013) Building hippocampal circuits to learn and remember: insights into the development of human memory. Behav Brain Res 254: 8-21. doi: 10.1016/j.bbr.2013.02.007
    [90] Vivar C, Potter MC, Choi J, et al. (2012) Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun 3: 1107. doi: 10.1038/ncomms2101
    [91] Deshpande A, Bergami M, Ghanem A, et al. (2013) Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci 110: E1152-E1161. doi: 10.1073/pnas.1218991110
    [92] Drew LJ, Fusi S, Hen R (2013) Adult neurogenesis in the mammalian hippocampus: Why the dentate gyrus? Learn Mem 20: 710-729. doi: 10.1101/lm.026542.112
    [93] Saunders RC, Mishkin M, Aggleton JP (2005) Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubicilum to the medial thalamus in macaque monkeys: Identifying different pathways using disconnection techniques. Exper Brain Res 167: 1-16.
    [94] Sperling RA, Bates JF, Cocchiarella AJ, et al. (2001) Encoding novel face–name associations: A functional MRI study. Hum Brain Mapp 14: 129-139.
    [95] Jankowski MM, Ronnqvist KC, Tsanov M, et al. (2015) The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci 7: 45. doi:10.3389/fnsys.2013.00045
    [96] Karnani MM, Agetsuma M, Yuste R (2014) A blanket of inhibition: functional inferences from dense inhibitory connectivity. Curr Opin Neurobiol 26: 96-102.
    [97] Karnani MM, Jackson J, Ayzenshtat I, et al. (2016) Opening holes in the blanket of inhibition: localized lateral disinhibition by VIP interneurons. J Neurosci 36: 3471-3480. doi: 10.1523/JNEUROSCI.3646-15.2016
    [98] Wall NR, De La Parra M, Sorokin JM, et al. (2016) Brain-Wide Maps of Synaptic Input to Cortical Interneurons. J Neurosci 36: 4000-4009. doi: 10.1523/JNEUROSCI.3967-15.2016
    [99] Zhang H, Jacobs J (2015) Traveling theta waves in the human hippocampus. J Neurosci 35: 12477-12487. doi: 10.1523/JNEUROSCI.5102-14.2015
    [100] Buzsáki G, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev 6: 139-171. doi: 10.1016/0165-0173(83)90037-1
    [101] Butler JL, Mendon?a PR, Robinson HP, et al. (2016) Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation. J Neurosci 36: 4155-4169. doi: 10.1523/JNEUROSCI.3150-15.2016
    [102] Jahnke S, Timme M, Memmesheimer RM (2015) A unified dynamic model for learning, replay, and sharp-wave/ripples. J Neurosci 35: 16236-16258. doi: 10.1523/JNEUROSCI.3977-14.2015
    [103] Wei Y, Krishnan GP, Bazhenov M (2016) Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations. J Neurosci 36: 4231-4247. doi: 10.1523/JNEUROSCI.3648-15.2016
    [104] Miyamoto D, Hirai D, Fung CCA, et al. (2016) Top-down cortical input during NREM sleep consolidates perceptual memory. Science 352: 1315-1318. doi: 10.1126/science.aaf0902
    [105] Shimamura AP (2002) Relational binding theory and the role of consolidation in memory retrieval, In: Squire, LR, Schacter, DL, editors, Neuropsychology of Memory, 3rd ed. New York: Guilford Press, 61-72.
    [106] Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc B 262: 23-28.
    [107] Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobio 7: 217-227. doi: 10.1016/S0959-4388(97)80010-4
    [108] Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99: 195-231. doi: 10.1037/0033-295X.99.2.195
    [109] Squire LR, Cohen NJ, Nadel L (1984) The medial temporal region and memory consolidation: A new hypothesis. In Weingartner H, Parker ES, editors, Memory Consolidation: Psychobiology of Cognition, Hillsdale, NJ: Erlbaum, 185-210.
    [110] Nakamura NH, Sauvage MM (2016) Encoding and reactivation patterns predictive of successful memory performance are topographically organized along the longitudinal axis of the hippocampus. Hippocampus 26: 67-75. doi: 10.1002/hipo.22491
    [111] Yassa MA, Reagh ZM (2013) Competitive trace theory: a role for the hippocampus in contextual interference during retrieval. Front Behav Neurosci 7: 107.
    [112] Hassabis D, Maguire EA (2007) Deconstructing episodic memory with construction. Trend Cogn Sci 11: 299-306. doi: 10.1016/j.tics.2007.05.001
    [113] Addis DR, Schacter DL (2008) Constructive episodic simulation: Temporal distance and detail of past and future events modulate hippocampal engagement. Hippocampus 18: 227-237. doi: 10.1002/hipo.20405
    [114] Kim S, Dede AJ, Hopkins RO, et al. (2015) Memory, scene construction, and the human hippocampus. Proc Natl Acad Sci 112: 4767-4772. doi: 10.1073/pnas.1503863112
    [115] Sheldon S, Levine B (2016) The role of the hippocampus in memory and mental construction. Ann N Y Acad Sci: 1-17. doi: 10.1111/nyas.13006
    [116] Beron D, Schutze H, Maass A, et al. (2016) Strong evidence for pattern separation in human dentate gyrus. J Neurosci 36: 7569-7579. doi: 10.1523/JNEUROSCI.0518-16.2016 doi: 10.1523/JNEUROSCI.0518-16.2016
    [117] Pidgeon LM, Morcom AM (2016) Cortical pattern separation and item-specific memory encoding. Neuropsychologia 85: 256-271. doi: 10.1016/j.neuropsychologia.2016.03.026
    [118] Kent BA, Hvoslef-Eide M, Saksida LM, et al. (2016) The representational–hierarchical view of pattern separation: Not just hippocampus, not just space, not just memory? Neurobiol Learn Mem 129: 99-106. doi: 10.1016/j.nlm.2016.01.006
    [119] McClelland JL, McNaughton BL, O'Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102: 419-457. doi: 10.1037/0033-295X.102.3.419
    [120] O’Reilly RC, Bhattacharyya R, Howard MD, et al. (2014) Complementary learning systems. Cog Sci 38: 1229-1248. doi: 10.1111/j.1551-6709.2011.01214.x
    [121] McClelland JL (2013) Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. J Exper Psychol: Gen 142: 1190-1212. doi: 10.1037/a0033812
    [122] Eichenbaum H, Sauvage M, Fortin N, et al. (2012) Towards a functional organization of episodic memory in the medial temporal lobe. Neurosci Biobeh Rev 36: 1597-1608. doi: 10.1016/j.neubiorev.2011.07.006
    [123] O'Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34: 171-175.
    [124] Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15: 732-744. doi: 10.1038/nrn3827
    [125] Eradath MK, Mogami T, Wang G, et al. (2015) Time context of cue-outcome associations represented by neurons in perirhinal cortex. J Neurosci 35: 4350-4365. doi: 10.1523/JNEUROSCI.4730-14.2015
    [126] Mozaffari B (2014) The medial temporal lobe—conduit of parallel connectivity: a model for attention, memory, and perception. Front Integ Neurosci 8: 86.
    [127] Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8: 4049-4068.
    [128] Poppenk J, Evensmoen HR, Moscovitch M, et al. (2013) Long-axis specialization of the human hippocampus. Trends in Cog Sci 17: 230-240. doi: 10.1016/j.tics.2013.03.005
    [129] Moser EI, Roudi Y, Witter MP, et al. (2014) Grid cells and cortical representation. Nat Rev Neurosci 15: 466-481. doi: 10.1038/nrn3766
    [130] Shen K, Hutchison RM, Bezgin G, et al. (2015) Network structure shapes spontaneous functional connectivity dynamics. J Neurosci 35: 5579-5588. doi: 10.1523/JNEUROSCI.4903-14.2015
    [131] Wang J, Nie B, Duan S, et al. (2016) Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI. PloS one 11: e0146535. doi: 10.1371/journal.pone.0146535
    [132] O'keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map, UK. Oxford: Oxford University Press.
    [133] Burgess N, Recce M, O'Keefe J (1994) A model of hippocampal function. Neural Net 7: 1065-1081. doi: 10.1016/S0893-6080(05)80159-5
    [134] O’Donnell C, Sejnowski TJ (2016) Street View of the Cognitive Map. Cell 164: 13-15. doi: 10.1016/j.cell.2015.12.051
    [135] Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9: 467-480.
    [136] Hafting T, Fyhn M, Molden S, et al. (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436: 801-806. doi: 10.1038/nature03721
    [137] Krupic J, Bauza M, Burton S, et al. (accepted article) Framing the grid: Effect of boundaries on grid cells and navigation. J Physio. doi: 10.1113/JP270607
    [138] Stermensky II G, Moss RA (2016) Cognitive symptoms and effects of stress. In: S. Wadhwa S, editor Stress in the Modern World: Understanding Science and Society. Santa Barbara, CA: ABC-CLIO
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4465) PDF downloads(1467) Cited by(3)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog