AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations

1 ENS of Mostaganem, University of Mostaganem, Box 227, Mostaganem 27000, Algeria
2 Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria, 6 95125 Catania - Italy
3 RUDN University, 6 Miklukho - Maklay St, Moscow, 117198, Russia
4 Department of Mathematical Science , Faculty of Applied Science, Umm Alqura University, P. O.Box 14035, Makkah 21955, Saudi Arabia

In this work, we investigate the regularitycriterion for the solution of the Hall-MHD system in three-dimensions. It isproved that if the pressure $\pi $ and the gradient of magnetic field $%\nabla B$ satisfies some kind of space-time integrable condition on $[0,T]$,then the corresponding solution keeps smoothness up to time $T$. This resultimproves some previous works to the Morrey space $\overset{\cdot }{\mathcal{M}}_{2,\frac{3}{r}}$ for $0\leq r<1$ which is larger than $L^{\frac{3}{r}}$.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Hall-MHD; regularity criterion; Morrey space; Besov space $\overset {\cdot }{B}_{\infty ,\infty }^{-1}$

Citation: A. M. Alghamdi, S. Gala, M. A. Ragusa. A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565

References

  • 1. M. Acheritogaray, P. Degond, A. Frouvelle, et al. Kinetic fomulation and global existence for the Hall-magneto-hydrodynamics system, Kinet. Relat. Mod., 4 (2011), 901–918.    
  • 2. S. A. Balbus and C. Terquem, Linear analysis of the Hall e_ect in protostellar disks, The Astrophysical Journal, 552 (2001), 235–247.    
  • 3. J. Bergh and J. L¨ofstrom, Inerpolation Spaces. An Introduction, Springer-Verlag, New York, 1976.
  • 4. D. Chae, P. Degond and J. G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. I. H. Poincaré-An, 31 (2014), 555–565
  • 5. D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics, J. Di_er. Equations, 256 (2014), 3835–3858.    
  • 6. D. Chae and M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Di_er. Equations, 255 (2013), 3971–3982.    
  • 7. D. Chae and S. Weng, Singularity formation for the incompressible Hall-MHD equations without resistivity, Ann. I. H. Poincaré-An, 33 (2016), 1009–1022.    
  • 8. D. Chae and J. Wolf, On partial regularity for the steady Hall-magnetohydrodynamics system, Commun. Math. Phys., 339 (2015), 1147–1166.    
  • 9. D. Chae and J. Wolf, On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane, SIAM J. Math. Anal., 48 (2016), 443–469.    
  • 10. J. Fan, Y. Fukumoto, G. Nakamura, et al. Regularity criteria for the incompressible Hall-MHD system, Zamm-Z Angew. Math. Me., 95 (2015), 1156–1160.    
  • 11. J. Fan, X. Jia, G. Nakamura, et al. On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip e_ects, Z. Angew. Math. Phys., 66 (2015), 1695–1706.    
  • 12. J. Fan, A. Alsaedi, T. Hayat, et al. On strong solutions to the compressible Hallmagnetohydrodynamic system, Nonlinear Anal-Real, 22 (2015), 423–434.
  • 13. J. Fan, H. Malaikah, S. Monaquel, et al. Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., 175 (2014), 127–131.    
  • 14. J. Fan and T. Ozawa, Regularity criteria for the incompressible MHD with the Hall or Ion-Slip e_ects, International Journal of Mathematical Analysis, 9 (2015), 1173–1186.    
  • 15. J. Fan, F. Li and G. Nakamura, Regularity criteria for the incompressible Hallmagnetohydrodynamic equations, Nonlinear Anal-Theor, 109 (2014), 173–179.    
  • 16. J. Fan, B. Samet and Y. Zhou, A regularity criterion for a generalized Hall-MHD system, Comput. Math. Appl., 74 (2017), 2438–2443.    
  • 17. J. Fan, B. Ahmad, T. Hayat, et al. On well-posedness and blow-up for the full compressible Hall-MHD system, Nonlinear Anal-Real, 31 (2016), 569–579.    
  • 18. M. Fei and Z. Xiang, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics with horizontal dissipation, J. Math. Phys., 56 (2015), 051504.    
  • 19. T. G. Forbes, Magnetic reconnection in solar flares, Geophys. Astro. Fluid, 62 (1991), 15–36.
  • 20. S. Gala, Regularity criterion for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space, NoDEA-Nonlinear Di_., 17 (2010), 181–194.    
  • 21. S. Gala, On the regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space, Nonlinear Anal-Real, 12 (2011), 2142–2150.    
  • 22. S. Gala, A new regularity criterion for the 3D MHD equations in R3 , Commun. Pur. Appl. Anal., 11 (2012), 973–980.    
  • 23. J. Geng, X. Chen and S. Gala, On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space, Commun. Pur. Appl. Anal., 10 (2011), 583–592.    
  • 24. Z. Guo and S. Gala, Remarks on logarithmical regularity criteria for the Navier-Stokes equations, J. Math. Phys., 52 (2011), 063503.    
  • 25. F. He, B. Ahmad, T. Hayat, et al. On regularity criteria for the 3D Hall-MHD equations in terms of the velocity, Nonlinear Anal-Real, 32 (2016), 35–51.    
  • 26. X. Jia and Y. Zhou, Ladyzhenskaya-Prodi-Serrin type regularity criteria for the 3D incompressible MHD equations in terms of 3 $\times$ 3 mixture matrices, Nonlinearity, 28 (2015), 3289–3307.    
  • 27. Z. Jiang, Y. Wang and Y. Zhou, On regularity criteria for the 2D generalized MHD system, J. Math. Fluid Mech., 18 (2016), 331–341.    
  • 28. P. G. Lemarié-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space, Rev. Mat. Iberoam., 23 (2007), 897–930.    
  • 29. M. J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. T. R. Soc. A, 252 (1960), 397–430.    
  • 30. S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2003), 1553–1556.
  • 31. Y. Meyer, P. Gerard and F. Oru, Inégalités de Sobolev précisées, Séminaire sur les Équations aux Dérivées Partielles (Polytechnique), 1996 (1997), 1–8.
  • 32. D. A. Shalybkov and V. A. Urpin, The Hall e_ect and the decay of magnetic fields, Astronomy and Astrophysics, 321 (1997), 685–690.
  • 33. R.Wan and Y. Zhou, On global existence, energy decay and blow up criterions for the Hall-MHD system, J. Di_er. Equations, 259 (2015), 5982–6008.    
  • 34. Y. Wang and W. Zuo, On the blow-up criterion of smooth solutions for Hallmagnetohydrodynamics system with partial viscosity, Commun. Pur. Appl. Anal., 13 (2014), 1327–1336.    
  • 35. Z. Ye, Regularity criterion for the 3D Hall-magnetohydrodynamic equations involving the vorticity, Nonlinear Anal-Theor, 144 (2016), 182–193.    
  • 36. Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal-Theor, 72 (2010), 3643–3648.    
  • 37. Y. Zhou and S. Gala, Regularity criteria in terms of the pressure for the Navier-Stokes Equations in the critical Morrey-Campanato space, Z. Anal. Anwend., 30 (2011), 83–93.    
  • 38. R. Wan and Y. Zhou, Low regularity well-posedness for the 3D generalized Hall-MHD system, Acta Appl. Math., 147 (2017), 95–111.    
  • 39. R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Di_er. Equations, 259 (2015), 5982–6008.    
  • 40. M. Frazier, B. Jawerth and G. L. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Math. 79, Amer. Math. Soc., Providence, RI, 1991.

 

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved