
AIMS Mathematics, 2018, 3(4): 514523. doi: 10.3934/Math.2018.4.514
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Lower bounds for the blowup time to a nonlinear viscoelastic wave equation with strong damping
^{1} School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China
^{2} School of Mathematical Sciences, Qufu Normal University, Qufu 273155, Shandong, China
^{3} School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
Received: , Accepted: , Published:
References
1. A. B. Al'shin, M. O. Korpusov, A. G. Siveshnikov, Blow up in nonlinear Sobolev type equations, Series in Nonlinear Analysis and Applications, Vol. 15, Berlin: De Gruyter, 2011.
2. S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66.
3. S. A. Messaoudi, Blowup of positiveinitialenergy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902–915.
4. S. T. Wu, Blowup of solutions for an integrodi_erential equation with a nonlinear source, Electron. J. Di_er. Eq., 45 (2006), 1–9.
5. H. T. Song, C. K. Zhong, Blowup of solutions of a nonlinear viscoelastic wave equation, Nonlinear Analysis: Real World Applications, 11 (2010), 3877–3883.
6. H. T. Song, D. X. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Analysis: Theory, Methods & Applications, 109 (2014), 245–251.
7. F. S. Li, C. L. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 3468–3477.
8. F. S. Li, Z. Q. Zhao, Y. F. Chen, Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Analysis: Real World Applications, 12 (2011), 1759–1773.
9. W. Liu, Y. Sun, G. Li, On decay and blowup of solutions for a singular nonlocal viscoelastic problem with a nonlinear source term, Topol. Method Nonl. An., 49 (2017), 299–323.
10. W. Liu, D. Wang, D. Chen, General decay of solution for a transmission problem in infinite memorytype thermoelasticity with second sound, J. Therm. Stresses, 41 (2018), 758–775.
11. S. H. Park, M. J. Lee, J. R. Kang, Blowup results for viscoelastic wave equations with weak damping, Appl. Math. Lett., 80 (2018), 20–26.
12. L. E. Payne, P.W. Schaefer, Lower bounds for blowup time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196–1205.
13. L. E. Payne, P.W. Schaefer, Lower bounds for blowup time in parabolic problems under Neumann conditions, J. Math. Appl. Anal., 85 (2006), 1301–1311.
14. L. L. Sun, B. Guo, W. J. Gao, A lower bound for the blowup time to a damped semilinear wave equation, Appl. Math. Lett., 37 (2014), 22–25.
15. G. A. Philippin, Lower bounds for blowup time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2014), 129–134.
16. G. A. Philippin, S.Vernier Piro, Lower bound for the lifespan of solutions for a class of fourth order wave equations, Appl. Math. Lett., 50 (2015), 141–145.
17. B. Guo, F. Liu, A lower bound for the blowup time to a viscoelastic hyperbolic equation with nonlinear sources, Appl. Math. Lett., 60 (2016), 115–119.
18. K. Baghaei, Lower bounds for the blowup time in a superlinear hyperbolic equation with linear damping term, Comput. Math. Appl., 73 (2017), 560–564.
19. L. Yang, F. Liang, Z. H. Guo, Lower bounds for blowup time of a nonlinear viscoelastic wave equation, Bound. Value Probl., 2015 (2015), 219.
20. S. Y. Tian, Bounds for blowup time in a semilinear parabolic problem with viscoelastic term, Comput. Math. Appl., 74 (2017), 736–743.
21. X. M. Peng, Y. D. Shang, X. X. Zheng, Lower bounds for the blowup time to a nonlinear viscoelastic wave equation with strong damping, Appl. Math. Lett., 76 (2018), 66–73.
22. R. A. Adams, J. J. F. Fournier, Sobolev Spaces, 2Eds., New York: Academic Press, 2003.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)