AIMS Mathematics, 2018, 3(4): 464-484. doi: 10.3934/Math.2018.4.464.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A semilnear singular problem for the fractional laplacian

Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, CiudadUniversitaria, 5000 Cordoba, Argentina

We study the problem $\left(  -\Delta\right)  ^{s}u=-au^{-\gamma}+\lambda h$ in $\Omega,$ $u=0$ in $\mathbb{R}^{n}\setminus\Omega,$ $u>0$ in $\Omega,$ where $0{\langle}s\langle1,$ $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with $C^{1,1}$ boundary, $a$ and $h$ are nonnegative bounded functions, $h\not \equiv 0,$ and $\lambda>0.$ We prove that if $\gamma\in\left(  0,s\right)  $ then, for $\lambda$ positive and large enough, there exists a weak solution such that $c_{1}d_{\Omega}^{s}\leq u\leq c_{2}d_{\Omega}^{s}$ in $\Omega$ for some positive constants $c_{1}$ and $c_{2}.$ A somewhat more general result is also given.
  Figure/Table
  Supplementary
  Article Metrics

Keywords singular elliptic problems; positive solutions; fractional Laplacian; sub andsupersolutions

Citation: Tomas Godoy. A semilnear singular problem for the fractional laplacian. AIMS Mathematics, 2018, 3(4): 464-484. doi: 10.3934/Math.2018.4.464

References

  • 1. I. Bachar, H. Mâagli and V. Rǎdulescu, Singular solutions of a nonlinear elliptic equation in a punctured domain, Electron. J. Qual. Theo., 94 (2017), 1–19.
  • 2. B. Barrios, I. De Bonis, M. Medina, et al. Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015), 390–407.
  • 3. A. Callegari and A. Nachman, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38 (1980), 275–281.
  • 4. Z. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465–501.
  • 5. F. Cîrstea, M. Ghergu and V. Rǎdulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pure. Appl., 84 (2005), 493–508.
  • 6. D. S. Cohen and H. B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech., 16 (1967), 1361–1376.
  • 7. M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Commun. Part. Diff. Eq., 2 (1977), 193–222.
  • 8. M. A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 122 (1992), 341–352.
  • 9. J. I. Diaz, J. Hernandez and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math., 79 (2011), 233–245.
  • 10. J. Díaz, M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Commun. Part. Diff. Eq., 12 (1987), 1333–1344.
  • 11. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521–573.
  • 12. A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, ANN. I. H. POINCARE-AN, 33 (2016), 1279–1299.
  • 13. L. Dupaigne, M. Ghergu and V. Rǎdulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pure. Appl., 87 (2007), 563–581.
  • 14. L. F. O. Faria, O. H. Miyagaki and D. Motreanu, Comparison and positive solutions for problems with the (p;q)-Laplacian and a convection term, Proceedings of the Edinburgh Mathematical Society (Series 2), 57 (2014), 687–698.
  • 15. W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka J. Math., 12 (1960), 1–19.
  • 16. A. Fiscella, R. Servadei and E. Valdinoci, Density properties for fractional Sobolev Spaces, Annales Academiae Scientiarum Fennicae. Mathematica, 40 (2015), 235–253.
  • 17. L. Gasiński and N. S. Papageorgiou, Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities, Ann. Henri Poincaré, 13 (2012), 481–512.
  • 18. M. Ghergu, V. Liskevich and Z. Sobol, Singular solutions for second-order non-divergence type elliptic inequalities in punctured balls, J. Anal. Math., 123 (2014), 251-279.
  • 19. T. Godoy and A. Guerin, Multiplicity of positive weak solutions to subcritical singular elliptic Dirichlet problems, Electron. J. Qual. Theo., 100 (2017), 1–30.
  • 20. T. Godoy and A. Guerin, Multiple positive finite energy weak solutions to singular elliptic problems with a parameter, AIMS Mathematics, 3 (2018), 233–252.
  • 21. A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, P. Am. Math. Soc., 111 (1991), 721–730.
  • 22. H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal-Theor, 74 (2011), 2941–2947.
  • 23. H. Mâagli, and M. Zribi, Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl., 263 (2001), 522–542.
  • 24. N. S. Papageorgiou and G. Smyrlis, Nonlinear elliptic equations with singular reaction, Osaka J. Math., 53 (2016), 489–514.
  • 25. K. Ho, K. Perera, I. Sim, et al. A note on fractional p-Laplacian problems with singular weights, Journal of fixed point theory and its applications, 19 (2017), 157–173.
  • 26. V. D. Rǎdulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, In: M. Chipot, Editor, Handbook of Differential Equations: Stationary Partial Differential Equations, North-Holland Elsevier Science, Amsterdam, 4 (2007), 483–593.
  • 27. X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60 (2016), 3–26.
  • 28. X. Ros-Oton and J. Serra, The Dirichlet problem fot the fractional laplacian: Regularity up to the boundary, J. Math. Pure. Appl., 101 (2014), 275–302.
  • 29. R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105–2137.
  • 30. Z. Zhang, The asymptotic behaviour of the unique solution for the singular Lane–Emden–Fowler equation, J. Math. Anal. Appl., 312 (2005), 33–43.

 

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved