-
AIMS Mathematics, 2018, 3(3): 353-364. doi: 10.3934/Math.2018.3.353.
Research article
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Study of Multivalent Spirallike Bazilevic Functions
1 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Pakistan
2 Department of Mathematics, Riphah International University Islamabad, Pakistan
Received: , Accepted: , Published:
Keywords: kpirallike function; Bazilevic functions; multivalent function; necessary and su cientconditions
Citation: Nazar Khan, Ajmal Khan, Qazi Zahoor Ahmad, Bilal Khan, Shahid Khan. Study of Multivalent Spirallike Bazilevic Functions. AIMS Mathematics, 2018, 3(3): 353-364. doi: 10.3934/Math.2018.3.353
References:
- 1. M. Arif, J. Dziok, M. Raza, et al. On products of multivalent close-to-star functions, J. Ineq. appl., 2015 (2015), 1–14.
- 2. I. E. Bazilevic, On a case of integrabitity in quadratures of the Loewner-Kufarev equation, Matematicheskii Sbornik, 79 (1955), 471–476.
- 3. I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3 (1971), 469–474.
- 4. F. R. Keogh and E. P. Merkes, A coeffcient inequality for certain classes of analytic functions, P. Am. Math. Soc., 20 (1969), 8–12.
- 5. S. Kanas, Coeffcient estimate in subclasses of the Caratheodary class related to conic domains, Acta Math. Univ. Comenianae, 74 (2005), 149–161.
- 6. S. Kanas and D. R˘aducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196.
- 7. S. Kanas and A. Wi´sniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336.
- 8. S. Kanas and A. Wi´sniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–657.
- 9. S. Kanas, Techniques of the di_erential subordination for domains bounded by conic sections, International Journal of Mathematics and Mathematical Sciences, 38 (2003), 2389–2400.
- 10. N. Khan, B. Khan, Q. Z. Ahmad, et al. Some Convolution properties of multivalent analytic functions, AIMS Mathematics, 2 (2017), 260–268.
- 11. N. Khan, Q. Z. Ahmad, T. Khalid, et al. Results on spirallike p-valent functions, AIMS Mathematics, 3 (2017), 12–20.
- 12. R. Libera, Univalent a-spiral functions, Ca˜nad. J. Math., 19 (1967), 449–456.
- 13. K. I. Noor, N. Khan and Q. Z. Ahmad, Coeffcient bounds for a subclass of multivalent functions of reciprocal order, AIMS Mathematics, 2 (2017), 322–335.
- 14. K. I. Noor, N. Khan and M. A. Noor, On generalized spiral-like analytic functions, Filomat, 28 (2014), 1493–1503.
- 15. K. I. Noor and S. N. Malik, On coeffcient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217.
- 16. S. Owa, K. Ochiai and H. M.Srivastava, Some coeffcients inequalities and distortion bounds associated with certain new subclasses of analytic functions, Math. Ineq. Appl., 9 (2006), 125–135.
- 17. R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proceedings of the American Mathematical Society, 106 (1989), 145–152.
- 18. S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, International Journal of Mathematics and Mathematical Sciences, 2004 (2004), 2959–2961.
- 19. L. Spacek, Prispevek k teorii funkei prostych, Casopis pest. Mat., 62 (1933), 12–19.
Reader Comments
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *