AIMS Mathematics, 2018, 3(2): 316-321. doi: 10.3934/Math.2018.2.316.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.

Mathematics Department, University of Pittsburgh, Pittsburgh, PA 15260, USA

A scaling and renormalization approach to the Riemann zetafunction, $\zeta$, evaluated at $-1$ is presented in two ways. In the first,one takes the difference between $U_{n}:=\sum_{q=1}^{n}q$ and$4U_{\left\lfloor \frac{n}{2}\right\rfloor }$ where $\left\lfloor \frac{n}%{2}\right\rfloor $ \ is the greatest integer function. Using the Cesaro meantwice, i.e., $\left( C,2\right) $, yields convergence to the appropriatevalue. For values of $z$ for which the zeta function is represented by a\textit{convergent} infinite sum, the double Cesaro mean also yields$\zeta\left( z\right) ,$ suggesting that this could be used as analternative method for extension from the convergent region of $z.$ In thesecond approach, the difference $U_{n}-k^{2}\bar{U}_{n/k}$ between $U_{n}$ anda particular average, $\bar{U}_{n/k}$, involving terms up to $k<n$ and scaledby $k^{2}$ is shown to equal exactly $-\frac{1}{12}\left( 1-k^{2}\right) $for all $k<n$. This leads to another perspective for interpreting$\zeta\left( -1\right) $.
  Article Metrics

Keywords Riemann zeta function; sum of natural numbers; $\zeta\left(-1\right)$; 1+2+3+...; Cesaro mean or sum

Citation: Gunduz Caginalp. A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.. AIMS Mathematics, 2018, 3(2): 316-321. doi: 10.3934/Math.2018.2.316


  • 1. E. C. Titchmarsh, D. R. Heath-Brown, The theory of the Riemann zeta-function, Oxford University Press, 1986.
  • 2. K. G.Wilson, J. B. Kogut, The renormalization group and the $\epsilon$ expansion, Phys. Rep., 12 (1974), 75–200.
  • 3. R. J. Creswick, C. P. Poole and H. A. Farach, Introduction to renormalization group methods in physics, 1992.
  • 4. J. G. Polchinski, String Theory, Volume I, An Introduction to the Bosonic String, Cambridge University Press, 1998.
  • 5. A. Padilla, E. Copeland, Available from:
  • 6. E. M. Stein, R. Shakarchi, Fourier Analysis an introduction, Princeton University Press, 2003.
  • 7. P. Billingsley, Probability and Measure, Wiley: Anniversary Edition, 2012.


Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved