AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Phase-field system with two temperatures and a nonlinear coupling term

Université des Sciences et Techniques de Masuku (USTM), Unité de Recherche en Mathématiques et Informatique (URMI), BP 943 Franceville, Gabon

The subject of this paper is the qualitative study of a generalization of Caginalp phase-fieldsystem involving two temperatures and a nonlinear coupling. First, we prove the well-posedness ofthe corresponding initial and boundary value problem, and we study the dissipativity properties of thesystem, in terms of bounded absorbing sets. We end by analyzing the spatial behavior of solutions in asemi-infinite cylinder, assuming the existence of such solutions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Caginalp phase-field system; two temperatures; well-posedness; disspativity; spatialbahavior; Phragmén-Lindelöf alternative

Citation: Brice Landry Doumbé Bangola. Phase-field system with two temperatures and a nonlinear coupling term. AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298

References

  • 1. G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. An., 92 (1986), 205–245.    
  • 2. S. Aizicovici, E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, J. Evol. Equ., 1 (2001), 69–84.    
  • 3. S. Aizicovici, E. Feireisl, F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Math. Methods Appl. Sci., 24 (2001), 277–287.    
  • 4. D. Brochet, X. Chen, D. Hilhorst, Finite-dimensional exponential attractors for the phase-field model, Appl. Anal., 49 (1993), 197–212.    
  • 5. M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.
  • 6. L. Cherfils, A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107–129.
  • 7. L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89–115.    
  • 8. R. Chill, E. Fasangová, J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448–1462.    
  • 9. C. I. Christov, P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 94 (2005), 154301.    
  • 10. J. N. Flavin, R. J. Knops, L. E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Quart. Appl. Math., 47 (1989), 325–350.    
  • 11. S. Gatti, A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in: Differential Equations: Inverse and Direct Problems (Proceedings of the workshop    
  • 12. C. Giorgi, M. Grasselli, V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana U. Math. J., 48 (1999), 1395–1445.    
  • 13. M. Grasseli, A. Miranville, V. Pata, et al. Well-posedness and long time behavior of a parabolichyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475–1509.    
  • 14. M. Grasselli, On the large time behavior of a phase-field system with memory, Asymptotic Anal., 56 (2008), 229–249.
  • 15. M. Grasselli, A. Miranville, G. Shimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67–98.    
  • 16. M. Grasselli, V. Pata, Exstence of a universal attractor for a fully hyperbolic phase-field system, J. Evol. Equ., 4 (2004), 27–51.    
  • 17. A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 271–306.    
  • 18. A. Miranville and S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differential Equations, 2002.
  • 19. Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Commun. Pure Appl. Anal., 4 (2005), 683–693.    
  • 20. A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type III heat conduction with two temperatures, Q. Appl. Math., 74 (2016), 375–398.    
  • 21. A. Andami Ovono, B. L. Doumbé Bangola and M. A. Ipopa, On the Caginalp phase-field system based on type III with two temperatures and nonlinear coupling, to appear.
  • 22. M. Grasselli, V. Pata, Robust exponential attractors for a phase-field system with memory, J. Evol. Equ., 5 (2005), 465–483.    
  • 23. M. Grasselli, H. Petzeltová, G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potentials, Z. Anal. Anwend., 25 (2006), 51–73.    
  • 24. M. Grasselli, H.Wu, S. Zheng, Asymptotic behavior of a nonisothermal Ginzburg-Landau model, Q. Appl. Math., 66 (2008), 743–770.    
  • 25. A. E. Green, P. M. Naghdi, A new thermoviscous theory for fluids, J. Non-Newtonian Fluid Mech., 56 (1995), 289–306.    
  • 26. A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond. A, 432 (1991), 171–194.    
  • 27. A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264.    
  • 28. J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 341 (2008), 149–169.    
  • 29. J. Jiang, Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law, Math. Methods Appl. Sci., 32 (2009), 1156–1182.    
  • 30. Ph. Laurenc¸ot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 167–185.    
  • 31. A. Miranville, R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877–894.    
  • 32. A. Miranville, R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal-Theor, 71 (2009), 2278–2290.    
  • 33. A. Miranville, R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal-Real, 11 (2010), 2849–2861.    
  • 34. A. Miranville, S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differ. Eq., 2002 (2002), 1–28.
  • 35. A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in: C.M. Dafermos, M. Pokorny (Eds.), Handbook of Differential Equations, Evolutionary Partial Differential Equations, Elsevier, Amsterdam, 2008.    
  • 36. A. Novick-Cohen, A phase field system with memory: Global existence, J. Int. Equ. Appl., 14 (2002), 73–107.    
  • 37. R. Quintanilla, On existence in thermoelasticity without energy dissipation, J. Thermal Stresses, 25 (2002), 195–202.    
  • 38. R. Quintanilla, End effects in thermoelasticity, Math. Methods Appl. Sci., 24 (2001), 93–102.    
  • 39. R. Quintanilla, R. Racke, Stability in thermoelasticity of type III, Discrete Cont. Dyn-B, 3 (2003), 383–400.    
  • 40. R. Quintanilla, Phragmén-Lindelöf alternative for linear equations of the anti-plane shear dynamic problem in viscoelasticity, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 423–435.
  • 41. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, in: Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.    
  • 42. Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Commun. Pure Appl. Anal., 4 (2005), 683–693.    
  • 43. B. L. Doumbé Bangola, Global and esponential attractors for a Caginalp type phase-field problem, Cent. Eur. J. Math., 11 (2013), 1651–1676.    
  • 44. B. L. Doumbé Bangola, Etude de mod`eles de champ de phase de type Caginalp, PhD Thesis, Université de Poitiers, 2013.
  • 45. A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Appl. Math. Opt., 63 (2011), 133–150.    
  • 46. A. Miranville and R. Quintanilla, A type III phase-field system with a logarithmic potential, Appl. Math. Lett., 24 (2011), 1003–1008.    
  • 47. A. Miranville and R. Quintanilla, A generalization of Allen-Cahn equation, IMA J. Appl. Math., 80 (2015), 410–430.    
  • 48. P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 614–627.
  • 49. P. J. Chen, M. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 969–970.
  • 50. P. J. Chen, M. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, Z. Angew. Math. Phys. (ZAMP), 20 (1969), 107–112.

 

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved