AIMS Mathematics, 2018, 3(2): 288-297. doi: 10.3934/Math.2018.2.288

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A conserved phase-field model based on type II heat conduction

Faculté des Sciences et Techniques, Université Marien Ngouabi, B.P. 69 Congo-Brazzaville

Our aim in this paper is to study the well-posedness of Caginalp phase-field model based on the theory of type II thermomechanics. More precisely, we prove the existence and uniqueness of solutions.
  Figure/Table
  Supplementary
  Article Metrics

References

1. G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, phys. Rev. B, 38 (1988), 789–791.

2. G. Caginalp, The dynamics of a conserved phase-field system: Stefan-Like, Hele-Shaw and Cahn- Hilliard models as asymptotic limits , IMA J. Appl. Math., 1 (1990), 77–94.

3. D. Brochet, D. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model , Adv. Differ. Equ-NY, 1 (1996), 547–578.

4. G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions , Istit. Lombardo Accad. Sci. Lett. Rend. A, 14 (2007), 129–161.

5. C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media , Phys. Rev. Lett., 94 (2005), 154301.

6. M. Grasselli, A. Miranville, V. Pata, et al. Well-posedness and long time behavior of a parabolichyperbolic phase-field system with singular potentials , Math. Nachr., 280 (2007), 1475–1509.

7. L. Cherfils, A. Miranville and S. Peng, Higher-order models in phase separation , J. Appl. Anal. Comput., 7 (2017), 39–56.

8. L. Cherfils, A. Miranville and S. Peng, Higher-order generalized Cahn-Hilliard equations , Electron. J. Qual. Theo., 9 (2017), 1–22.

9. A. Miranville, Some mathematical models in phase transition , Discrete Cont. Dyn-S, 7 (2014), 271–306.

10. A. Miranville, On the conserved phase-field model , J. Math. Anal. Appl., 400 (2013), 143–152.

11. A. Miranville, On higher-order anisotropic conservative Caginalp phase-field systems , Appl. Math. Opt., 77 (2018), 1–18.

12. A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system , Appl. Anal., 88 (2009), 877–894.

13. A. Miranville and R. Quintanilla, A conserved phase-field system based on the Maxwell-Cattaneo law , Nonlinear Anal-Real, 14 (2013), 1680–1692.

14. A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type III heat conduction with two temperatures , Quart. Appl. Math., 74 (2016), 375–398.

15. A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law , Nonlinear Anal-Theor, 71 (2009), 2278–2290.

16. A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions , Discrete cont. Dyn-A, 28 (2010), 275–310.

17. A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains , In: Handbook of Differential Equations, Evolutionary Partial Differential Equations, C. M. Dafermos, M. Pokorny eds., Elsevier, Amsterdam, 4 (2008), 103–200.

18. A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials , Math. Methods Appl. Sci., 27 (2004), 545–582.

19. J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law , J. Math. Anal. Appl., 341 (2008), 149–169.

20. J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795–801.

21. A. E. Green, P. M. Naghdi, On Undamped heat waves in an elastic solid , J. Therm. Stresses, 15 (1992), 253–264.

22. A. J. Ntsokongo, D. Moukoko, F. D. R. Langa, et al. On higher-order anisotropic conservative Caginalp phase-field type models , AIMS Mathematics, 2 (2017), 215–229.

23. A. J. Ntsokongo and N. Batangouna, Existence and uniqueness of solutions for a conserved phasefield type model , AIMS Mathematics, 1 (2016), 144–155.

24. A. Morro, L. E. Payne and B. Straughan, Decay, growth, continuous dependence and uniqueness results in generalized heat conduction theories , Appl. Anal., 38 (1990), 231–243.

25. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics , Second edition, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved