
AIMS Mathematics, 2018, 3(2): 263287. doi: 10.3934/Math.2018.2.263
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Time periodic solutions of CahnHilliard systems with dynamic boundary conditions
Graduate School of Education, Kyoto University of Education 1 Fujinomori, Fukakusa, Fushimiku,Kyoto 6128522, Japan
Received: , Accepted: , Published:
References
1. T. Aiki, Twophase Stefan problems with dynamic boundary conditions, Adv. Math. Sci. Appl., 2 (1993), 253–270.
2. T. Aiki, Multidimensional Stefan problems with dynamic boundary conditions, Appl. Anal., 56 (1995), 71–94.
3. T. Aiki, Periodic stability of solutions to some degenerate parabolic equations with dynamic boundary conditions, J. Math. Soc. Japan, 48 (1996), 37–59.
4. G. Akagi and U. Stefanelli, Periodic solutions for doubly nonlinear evolution equations, J. Di er. Equations, 251 (2011), 1790–1812.
5. V. Barbu, Nonlinear di erential equations of monotone types in Banach spaces, Springer, London, 2010.
6. H. Br´ezis, Op´erateurs maximaux monotones et semigroupes de contractions dans les especes de Hilbert, NorthHolland, Amsterdam, 1973.
7. F. Brezzi and G. Gilardi, Chapters 1–3 in Finite element handbook, H. Kardestuncer and D. H. Norrie (Eds.), McGrawHill Book Co., New York, 1987.
8. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. interfacial free energy, J. Chem. Phys., 2 (1958), 258–267.
9. L. Calatroni and P. Colli, Global solution to the AllenCahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013), 12–27.
10. L. Cherfils, A. Miranville and S. Zelik, The CahnHilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561–596.
11. P. Colli and T. Fukao, Equation and dynamic boundary condition of CahnHilliard type with singular potentials, Nonlinear Anal., 127 (2015), 413–433.
12. P. Colli, G. Gilardi and J. Sprekels, On the CahnHilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972–994.
13. A. Damlamian and N. Kenmochi, Evolution equations associated with nonisothermal phase separation: a subdi erential approach, Ann. Mat. Pura Appl., 176 (1999), 167–190.
14. T. Fukao, Convergence of CahnHilliard systems to the Stefan problem with dynamic boundary conditions, Asymptot. Anal., 99 (2016), 1–21.
15. T. Fukao, CahnHilliard approach to some degenerate parabolic equations with dynamic boundary conditions, In: L. Bociu, JA. D´esid´eri and A. Habbal (Eds.), System Modeling and Optimization, Springer, Switzerland, 2016, pp. 282–291.
16. T. Fukao and T. Motoda, Abstract approach to degenerate parabolic equations with dynamic boundary conditions, to appear in Adv. Math. Sci. Appl., 27 (2018), 29–44.
17. C. Gal, A CahnHilliard model in bounded domains with permeable walls, Math. Methods Appl. Sci., 29 (2006), 2009–2036.
18. G. Gilardi, A. Miranville and G. Schimperna, On the CahnHilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881–912.
19. G. R. Goldstein and A. Miranville, A CahnHilliardGurtin model with dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 387–400.
20. G. R. Goldstein, A. Miranville and G. Schimperna, A CahnHilliard model in a domain with nonpermeable walls, Phys. D, 240 (2011), 754–766.
21. A. Grigor'yan, Heat kernel and analysis on manifolds, American Mathematical Society, International Press, Boston, 2009.
22. N. Kajiwara, Maximal Lp regularity of a CahnHilliard equation in bounded domains with permeable and nonpermeable walls, preprint, 2017.
23. N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, M. Chipot (Ed.), Handbook of di erential equations: Stationary partial di erential equations, North Holland, Amsterdam, 4 (2007), 203–298.
24. N. Kenmochi, M. Niezg´odka and I. Pawłow, Subdi erential operator approach to the Cahn Hilliard equation with constraint, J. Di erential Equations, 117 (1995), 320–354.
25. M. Kubo, The CahnHilliard equation with timedependent constraint, Nonlinear Anal., 75 (2012), 5672–5685.
26. Y. Li and Y. Jingxue, The viscous CahnHilliard equation with periodic potentials and sources, J. Fixed Point Theory Appl., 9 (2011), 63–84.
27. Y. Li, L. Yinghua, H. Rui and Y. Jingxue, Time periodic solutions for a CahnHilliard type equation, Math. Comput. Modelling, 48 (2008), 11–18.
28. J. Liu, Y. Wang and J. Zheng, Periodic solutions of a multidimensional CahnHilliard equation, Electron. J. Di erential Equations, 2016 (2016), 1–23.
29. C. Liu and H. Wu, An energetic variational approach for the CahnHilliard equation with dynamic boundary conditions: derivation and analysis, preprint arXiv:1710.08318v1 [math.AP], 2017, pp. 1–68.
30. J. Simon, Compact sets in the spaces L^{p}(0; T; B), Ann. Mat. Pura. Appl., 146 (1987), 65–96.
31. Y. Wang and J. Zheng, Periodic solutions to the CahnHilliard equation with constraint, Math. Methods Apply. Sci., 39 (2016), 649–660.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)