Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

When is the algorithm concept pertinent – and when not? Thoughts about algorithms and paradigmatic examples, and about algorithmic and non-algorithmic mathematical cultures1

Section for philosophy and Science Studies, Roskilde University, Denmark

Until some decades ago, it was customary to discuss much pre-Modern mathematics as “algebra”, without agreement between workers about what was to be understood by that word. Then this view came under heavy fire, rarely with more precision.
Now, instead, it has become customary to classify pre-Modern practical arithmetic as “algorithmic mathematics”. In so far as any computation in several steps can be claimed to follow an underlying algorithm (just as it can be explained from an “underlying theorem”, for instance from proportion theory, or from a supposedly underlying algebraic calculation), this can no doubt be justified. Traditionally, however, historians as well as the sources would speak of a rule.
The paper first goes through some of the formative appeals to the algebraic interpretation – Eisenlohr, Zeuthen, Neugebauer – as well as some of the better argued attacks on it (Rodet, Mahoney).
Next it asks for the reasons to introduce the algorithmic interpretation, and discusses the adequacy or inadequacy of some uses. Finally, it investigates in which sense various pre-modern mathematical cultures can be characterized globally as “algorithmic”, concluding that this characterization fits ancient Chinese and Sanskrit mathematics but neither early second-millennium Mediterranean practical arithmetic (including Fibonacci and the Italian abbacus tradition), nor the Old Babylonian corpus.
  Article Metrics

Keywords historiography of mathematics; algebraic interpretation of early mathematics; algorithmic interpretation of early mathematics; algorithmic cultures; paradigm-based mathematics teaching; classical Chinese mathematics; classical Sanskrit mathematics; Babylonian mathematics; abbacus mathematics; rule of three; Fibonacci

Citation: Jens Høyrup. When is the algorithm concept pertinent – and when not? Thoughts about algorithms and paradigmatic examples, and about algorithmic and non-algorithmic mathematical cultures1. AIMS Mathematics, 2018, 3(1): 211-232. doi: 10.3934/Math.2018.1.211


  • 1. Acerbi, Fabio, & Bernard Vitrac (ed., trans.), 2014. Héron d'Alexandrie, Metrica. Pisa & Roma: Fabrizio Serra.
  • 2. Aydin, Nuh, & Lakhdar Hammoudi, 2015. Root Extraction by Al-Kashi and Stevin. Arch Hist Exact Sci 69, 291–310.
  • 3. Barrow, Isaac, 1659. Euclidis Elementorum libri XV. Canterbury: William Nealand.
  • 4. Boncompagni, Baldassare (ed.), 1857. Scritti di Leonardo Pisano matematico del secolo decimoterzo. I. Il Liber abbaci di Leonardo Pisano. Roma: Tipografia delle Scienze Matematiche e Fisiche.
  • 5. Brack-Bernsen, Lis, & Hermann Hunger, 2008. BM 42484+42294 and the Goal-Year method. SCIAMUS 9, 3–23.
  • 6. Bullynck, Maarten, 2016. [Essay Review of Jean‑Luc Chabert et al (eds), Histories of algorithms: Past, present and future. Histoire d'algorithmes. Du caillou à la puce. Second edition. Paris: Belin, 2010]. Hist Math 43, 332–341.
  • 7. Cantor, Moritz, 1880. Vorlesungen über Geschichte der Mathematik. Erster Band, von den ältesten Zeiten bis zum Jahre 1200 n. Chr. Leipzig: Teubner.
  • 8. Chemla, Karine, 1987. Should They Read Fortran As If It Were English? Bulletin of Chinese Studies 1, 301–316.
  • 9. Chemla, Karine, 1991. Theoretical Aspects of the Chinese Algorithmic Tradition (First to Third Centuries). Historia Scientiarum 42, 75–98.
  • 10. Chemla, Karine, & Guo Shuchun (eds), 2004. Les neuf chapitres. Le Classique mathématique de la Chine ancienne et ses commentaires. Paris: Dunod.
  • 11. Colebrooke, H. T. (ed., trans.), 1817. Algebra, with Arithmetic and Mensuration from the Sanscrit of Brahmagupta and Bhascara. London: John Murray.
  • 12. Cormen, Thomas, et al, 2009. Introduction to Algorithms. Third Edition. Cambridge, Mass., & London: MIT Press.
  • 13. Curtze, Maximilian (ed.), 1897. Petri Philomeni de Dacia in Algorismum vulgarem Johannis de Sacrobosco Commentarius, una cum algorismo ipso. København: Høst og Søn.
  • 14. Eisenlohr, A., 1877. Ein mathematisches Handbuch der alten Ägypter (Papyrus Rhind des British Museum) übersetzt und erklärt. I. Kommentar. II. Tafeln. Leipzig: J. C. Hinrichs.
  • 15. Friberg, Jöran, 1997. "Seed and Reeds Continued". Another Metro-Mathematical Topic Text from Late Babylonian Uruk. Baghdader Mitteilungen 28, 251–365, pl. 45–46.
  • 16. Friberg, Jöran, Hermann Hunger & Farouk N. H. al-Rawi, 1990.
  • 17. Fried, Michael N., & Sabetai Unguru, 2001. Apollonius of Perga's Conica. Text, Context, Subtext. Leiden etc.: Brill.
  • 18. Gohlman, William E. (ed., trans.), 1974. The Life of ibn Sina. Albany: State University of New York Press.
  • 19. Hayashi, Takao, 1995. The Bakhshālī Manuscript: An Ancient Indian Mathematical Treatise. Groningen: Egbert Forsten.
  • 20. Høyrup, Jens, 2001. On a Collection of Geometrical Riddles and Their Role in the Shaping of Four to Six
  • 21. Høyrup, Jens, 2002a. Lengths, Widths, Surfaces: A Portrait of Old Babylonian Algebra and Its Kin. New York: Springer.
  • 22. Høyrup, Jens, 2002b. A Note on Old Babylonian Computational Techniques. Hist Math 29, 193–198.
  • 23. Høyrup, Jens, 2006. Artificial Language in Ancient Mesopotamia – a Dubious and a Less Dubious Case. Journal of Indian Philosophy 34, 57–88.
  • 24. Høyrup, Jens, 2007. Jacopo da Firenze's Tractatus Algorismi and Early Italian Abbacus Culture. Basel etc.: Birkhäuser.
  • 25. Høyrup, Jens, 2012a. A Hypothetical History of Old Babylonian Mathematics: Places, Passages, Stages, Development. Gaṇita Bhāratī 34, 1–23.
  • 26. Høyrup, Jens, 2012b. Sanskrit‑Prakrit Interaction in Elementary Mathematics As Reflected in Arabic and Italian Formulations of the Rule of Three – and Something More on the Rule Elsewhere. GaGanita Bhāratī 34, 144–172.
  • 27. Høyrup, Jens, 2017. What Is
  • 28. Høyrup, Jens, forthcoming. In Which Way Can We Speak of Algebra when Describing Babylonian Sources? To be published in a volume edited by Karine Chemla and Tian Miao.
  • 29. Hudecek, Jiri, 2012. Ancient Chinese Mathematics in Action: Wu Wen-Tsun's Nationalist Historicism after the Cultural Revolution. East Asian Science, Technology and Society 6, 41–64.
  • 30. Hudecek, Jiri, 2014. Reviving Ancient Chinese Mathematics: Mathematics, History and Politics in the Work of Wu Wen-Tsun. London & New York: Routledge.
  • 31. Hughes, Barnabas B. (ed.), 1986. Gerard of Cremona's Translation of al-Khwārizmī's Al-Jabr: A Critical Edition. Mediaeval Studies 48, 211–263.
  • 32. Hughes, Barnabas B. (ed.), 1989. Robert of Chester's Latin translation of al-Khwārizmī's Al-jabr. A New Critical Edition. Wiesbaden: Franz Steiner.
  • 33. Hughes, Barnabas B. (ed.), 2001. A Treatise on Problem Solving from Early Medieval Latin Europe. Mediaeval Studies 63, 107–141.
  • 34. Imhausen, Annette, 2003. Ägyptische Algorithmen. Eine Untersuchung zu den mittelägyptischen mathematischen Aufgabentexten. Wiesbaden: Harrassowitz.
  • 35. Imhausen, Annette, 2016. Mathematics in Ancient Egypt: A Contextual History. Princeton and Oxford: Princeton University Press.
  • 36. Keller, Agathe, 2006. Expounding the Mathematical Seed. A Translation of Bhāskara I on the Mathematical Chapter of the Āryabhaṭīya. 2 vols. Basel etc.: Birkhäuser.
  • 37. Kline, Morris, 1972. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press.
  • 38. Knuth, Donald E., 1972. Ancient Babylonian Algorithms. Communications of the Association of Computing Machinery 15, 671–677, with correction of an erratum in 19 (1976), 108.
  • 39. Libri, Guillaume, 1838. Histoire des mathématiques en Italie. 4 vols. Paris: Jules Renouard, 1838–1841.
  • 40. Littré, Émile, 1873. Dictionnaire de la langue française. 4 vols. + suppl. Paris: Hachette, 1873–1877.
  • 41. Mahoney, Michael S., 1971. Babylonian Algebra: Form vs. Content. [Essay Review of the 1969 reprint edition of O. Neugebauer 1934]. Stud Hist Philos Sci 1, 369–380.
  • 42. Maresca, Paolo, 2003. Introduction to the Fundamentals of Algorithms, pp. 1–16 in Shi-Kuo Chang, Data Structures and Algorithms. New Jersey etc.: World Scientific.
  • 43. MKT: O. Neugebauer, Mathematische Keilschrift-Texte. 3 vols. Berlin: Julius Springer, 1935, 1935, 1937.
  • 44. Neugebauer, Otto, 1932. Studien zur Geschichte der antiken Algebra I. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien 2 (1932–33), 1–27.
  • 45. Neugebauer, Otto, 1934. Vorlesungen über Geschichte der antiken mathematischen Wissenschaften. I: Vorgriechische Mathematik. Berlin: Julius Springer.
  • 46. Neugebauer, O., 1936. Zur geometrischen Algebra (Studien zur Geschichte der antiken Algebra III). Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien 3 (1934–36), 245–259.
  • 47. Proust, Christine. 2012. Interpretation of Reverse Algorithms in Several Mesopotamian Texts, pp. 384–412 in Karine Chemla (ed.), History of Mathematical Proof in Ancient Traditions. Cambridge: Cambridge University Press.
  • 48. Raṇgācārya, M. (ed., trans.), 1912. The Gaṇita-sāra-sangraha of Mahāvīrācārya with English Translation and Notes. Madras: Government Press.
  • 49. Rashed, Roshdi (ed., trans.), 2007. Al-Khwārizmī, Le Commencement de l'algèbre. Paris: Blanchard.
  • 50. Reichenbach, Hans, 1939. Experience and Prediction: An Analysis of the Foundations and the Structure of Knowledge. Chicago: University of Chicago Press.
  • 51. Ritter, Jim, 2004. Reading Strasbourg 368: A Thrice-Told Tale, pp. 177–200 in Karine Chemla (ed.), History of Science, History of Text. Dordrecht: Kluwer.
  • 52. Rodet, Léon, 1881. Les prétendus problèmes d'algèbre du manuel du calculateur égyptien (Papyrus Rhind). Journal asiatique, septième série 18, 184–232, 390–559.
  • 53. Sachs, Abraham J., 1947. Babylonian Mathematical Texts. I: Reciprocals of Regular Sexagesimal Numbers. Journal of Cuneiform Studies 1, 219–240.
  • 54. Sapori, Armando, 1955. Studi di storia economica: (secoli XIII-XIV-XV). 3 vols. Firenze: Sansoni, 1955–67.
  • 55. Sarma, Sreeramula Rajeswara, 2010. Mathematical Literature in the Regional Languages of India, pp. 201–211 in B. S. Yadav (ed.), Ancient Indian Leaps in the Advent of mathematics. Basel: Birkhäuser.
  • 56. Siu, Man-Keung, & Alexeï Volkov, 1999. Official Curriculum in Traditional Chinese Mathematics: How Did Candidates Pass the Examinations? Historia Scientiarum 9, 85–99.
  • 57. Szabó, Árpád, 1969. Anfänge der griechischen Mathematik. München & Wien: R. Oldenbourg/ Budapest: Akadémiai Kiadó.
  • 58. Tannery, Paul, 1882. De la solution géométrique des problemes du second degré avant Euclide. Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 2e Série, 4, 395–416. Consulted via the reprint in Tannery 1912.
  • 59. Tannery, Paul, 1887. La géométrie grecque. Comment son histoire nous est parvenue et ce que nous en savons. Essai critique. Première partie, Histoire générale de la géométrie élémentaire. Paris: Gauthiers-Villars.
  • 60. Tannery, Paul, 1912. Mémoires scientifiques. I. Sciences exactes dans l'Antiquité, 1876–1884. Toulouse: Édouard Privat / Paris: Gauthier-Villars.
  • 61. Tropfke, Johannes, 1902. Geschichte der Elementar-Mathematik in systematischer Darstellung. 2 vols. Leipzig: von Veit, 1902–1903.
  • 62. Zeuthen, Hieronimus Georg, 1886. Die Lehre von den Kegelschnitten im Altertum. København: Höst & Sohn.
  • 63. Zeuthen, Hans Georg, 1896. Geschichte der Mathematik im Altertum und im Mittelalter. Vorlesungen. København: Höst & Sön.


Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved