AIMS Mathematics, 2018, 3(1): 12-20. doi: 10.3934/Math.2018.1.12

Research Article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Results on spirallike p-valent functions

Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Pakistan

In this paper, we introduce two new subclasses of p-valent spirallike functions of order α:We prove necessary and suffcient conditions for these newly defined classes and also point out someknown consequences of our results.
  Figure/Table
  Supplementary
  Article Metrics

References

1. M. Arif, J. Dziok, M. Raza, et al. On products of multivalent close-to-star functions, J. Ineq. appl., 2015 (2015), 1–14.

2. N. Khan, B. Khan, Q. Z. Ahmad, et al. Some Convolution properties of multivalent analytic functions, AIMS Math., 2 (2017), 260–268.

3. R. J. Libera, Univalent spiral functions, Cand. J. Math., 19 (1967), 725–733.

4. S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex Plane, J. Math. Anal. Appl., 65 (1978), 289–305.

5. K. I. Noor, N. Khan and M. A. Noor, On generalized spiral-like analytic functions, Filomat, 28 (2014), 1493–1503.

6. K. I. Noor and N. Khan, Some convolution properties of a subclass of p-valent functions, Maejo Int. J. Sci. Technol., 9 (2015), 181–192.

7. K. I. Noor, N. Khan and Q. Z. Ahmad, Coeffcient bounds for a subclass of multivalent functions of reciprocal order, AIMS Math., 2 (2017), 322–335.

8. K. I. Noor, Q. Z. Ahmad and N. Khan, On a subclasses of meromorphic function define by fractional derivative opretor, Italian J. Pure Appl. Math., 38 (2017), 127–136.

9. M. Nunokawa, J. Sokoł, On the multivalency of certain analytic functions, J. Ineq. appl., 2014 (2014), 1–9.

10. M. Nunokawa, S. Hussain, N. Khan, et al. A subclass of analytic functions related with conic domain, J. Clas. Anal., 9 (2016), 137–149.

11. M. Obradovic and S. Owa, On some results for spiral functions of order α, Internat. J. Math. Math. Sci., 9 (1986), 439–446.

12. S. Owa, K. Ochiai and H. M.Srivastava, Some coeffcients inequalities and distortion bounds associated with certain new subclasses of analytic functions, Math. Ineq. Appl., 9 (2006), 125–135.

13. S. Owa and F. S. M. Kamali, On some results for subclass of β-spirallike functions of order α, Tamsui Oxford J. Inf. Math. Sci., 28 (2012), 79–93.

14. Y. Polatoglu and A. Sen, Some results on subclasses of Janowski λ-spirallike functions of complex order, Gen. Math., 15 (2007), 88–97.

15. L. Špaček, Příspĕvek k teorii funkcí prostých, Časopis pro pĕstováni matematiky a fysiky, 62 (1933), 12–19.

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved