AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity

School of Mathematical Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

This paper is dedicated to studying the blow-up criterion of smooth solutions to the three-dimensional Boussinesq equations with partial viscosity. By means of the Littlewood-Paley decomposition, we give an improved logarithmic Sobolev inequality and through this, we obtain the corresponding blow-up criterion in a space larger than $\dot{B}^0_{\infty,\infty}$, which extends several previous works.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Boussinesq equations; blow-up criterion; Besov space

Citation: Zhaoyang Shang. Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1

References

  • 1. D. Chae and H. S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A., 127 (1997), 935--946.
  • 2. D. Chae, S.K. Kim and H. S. Nam, Local existence and blow-up criterion of Hlder continuous solutions of the Boussinesq equations, Nagoya Math. J., 155 (1999), 55--80.
  • 3. D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497--513.
  • 4. B. Dong, S. Jiang and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity, Scientia Sinica Mathematica, 40 (2010), 1225--1236.
  • 5. B. Dong, Y. Jia and X. Zhang, Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion, Commun. Pur. Appl. Anal., 12 (2012), 923--937.
  • 6. M. Fu and C. Cai, Remarks on Pressure Blow-Up Criterion of the 3D Zero-Diffusion Boussinesq Equations in Margin Besov Spaces, Adv. Math. Phys., 2017 (2017), 1--7.
  • 7. S. Gala, M. Mechdene and M. A. Ragusa, Logarithmically improved regularity criteria for the Boussinesq equations, AIMS Math., 2 (2017), 336--347.
  • 8. T. Kato and G. Ponce, Commutator estimates and Euler and Navier-Stokes equations, Commun. Pur. Appl. Math., 41 (1988), 891--907.
  • 9. J. Fan and T. Ozawa, Regularity criterion for 3D density-dependent Boussinesq equations, Nonlinearity, 22 (2009), 553--568.
  • 10. J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq systems with partial viscosity, Appl. Math. Lett., 22 (2009), 802--805.
  • 11. J. Fan, H. Malaikah, S. Monaquel, et al. Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., 175 (2014), 127--131.
  • 12. J. Fan, F. S. Alzahrani, T. Hayat, et al. Global regularity for the 2D liquid crystal model with mixed partial viscosity, Anal. Appl. (Singap.), 13 (2015), 185--200.
  • 13. A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant lecture notes in mathematics, Vol. 9, New York (NY), AMS/CIMS, 2003.
  • 14. A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press, Cambridge, 2002.
  • 15. M. Mechdene, S. Gala, Z. Guo and A. M. Ragusa, Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure, Z. Angew. Math. Phys., 67 (2016), 120.
  • 16. N. Ishihara and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations, Math. Mod. Meth. Appl. S., 9 (1999), 1323--1332.
  • 17. T. Ogawa and Y. Taniuchi, On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain, J. Differ. Equations, 190 (2003), 39--63.
  • 18. J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987.
  • 19. H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces, Nonlinear Anal-Theor, 73 (2010), 806--815.
  • 20. W. Ren, On the blow-up criterion for the 3D Boussinesq system with zero viscosity constant, Appl. Anal., 94 (2015), 856--862.
  • 21. Q. Wu, H. Lin and G. Liu, An Osgood Type Regularity Criterion for the 3D Boussinesq Equations, The Scientific World J., 2014 (2014), 563084.
  • 22. Z. Ye, Blow-up criterion of smooth solutions for the Boussinesq equations, Nonlinear Anal-Theor, 110 (2014), 97--103.
  • 23. Z. Ye, On the regularity criteria of the 2D Boussinesq equations with partial dissipation, Comput. Math. Appl., 72 (2016), 1880--1895.
  • 24. Z. Zhang and S. Gala, Osgood type regularity criterion for the 3D Newton-Boussinesq equation, Electron. J. Differ. Equ., 2013 (2013), 1--6.

 

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved