AIMS Mathematics, 2017, 2(4): 692-705. doi: 10.3934/Math.2017.4.692.

Research article

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

Fractional calculus and the ESR test

1 Department of Applied Mathematics, Imecc–Unicamp, Sérgio Buarque de Holanda, 651 13083–859, Campinas, SP, Brazil
2 Department of Medical Genetics, School of Medical Sciences–Unicamp, 13083–887, Campinas, SP, Brazil

## Abstract    Full Text(HTML)    Figure/Table    Related pages

We consider the partial differential equation of a mathematical model proposed by Sharmaet al. [1] to describe the concentration of nutrients in blood, a factor which influences erythrocytesedimentation rate. Introducing in it a fractional derivative in the Caputo sense, we create a new, timefractionalmathematical model which contains, as a particular case, the original model. We obtainan analytic solution of this time-fractional partial differential equation in terms of Mittag-Leffler andWright functions and to show that our model is more realistic than the Sharma model.
Figure/Table
Supplementary
Article Metrics

Citation: J. Vanterler da C. Sousa, E. Capelas de Oliveira, L. A. Magna. Fractional calculus and the ESR test. AIMS Mathematics, 2017, 2(4): 692-705. doi: 10.3934/Math.2017.4.692

References

• 1. G. C. Sharma, M. Jain, R. N. Saral, A mathematical model for concentration of blood affecting erythrocyte sedimentation, Comput. Biol. Med. 26 (1996), 1–7.
• 2. E. Kucharz, The forgotten contribution of dr. Edmund Faustyn Biernacki (1866-1911) to the discovery of the erythrocyte sedimentation rate, J. Lab. Clin. Med. 112 (1988), 279–280.
• 3. E. J. Kucharz, Edmund Biernacki and erythrocyte sedimentation rate, J. Lab. Clin. Med. 329 (1987), 696.
• 4. A. Grzybowski, J. J. Sak, Who discovered the erythrocyte sedimentation rate? J. Rheumatol. 38 (2011), 1521–1522.
• 5. E. Biernacki, Die spontane blutsedimentirung als eine wissenschaftliche und praktischklinische untersuchungsmethode? Deut. Med. Wochenschr., Georg Thieme Verlag, Stuttgart, 23 (1897), 769–772.
• 6. E. Biernacki, Samoistna sedymentacja krwi, jako naukowa i praktyczno-kliniczna metoda badania (spontaneous sedimentation of red blood cells in clinical practice), Gazeta Lekarska, 36 (1897), 962–968.
• 7. A. Westergren, Studies of the suspension stability of the blood in pulmonary tuberculosis1, Acta Medica Scandinavica, Wiley Online Library, 54 (2009), 247–282.
• 8. A. Westergren, The technique of the red cell sedimentation reaction, Am. Rev. Tuberc, 14 (1926), 94–101.
• 9. R. Fahraeus, The suspension-stability of blood, Acta Med. Scand. 55 (1921), 1–228.
• 10. R. Fahraeus, The suspension stability of the blood, Physiol. rev. 9 (1929), 241–274.
• 11. M. Brigden, The erythrocyte sedimentation rate: still a helpful test when used judiciously, Postgrad. Med. Taylor and Francis, 103 (1998), 257–274.
• 12. N. Van den Broek, E. Letsky, Pregnancy and the erythrocyte sedimentation rate, Brit. J. Obstet. Gynaec. Elsevier, 108 (2001), 1164–1167.
• 13. J. S. Olshaker, D. A. Jerrard, Pregnancy and the erythrocyte sedimentation rate, J. Emerg. Med. Elsevier, 108 (1997), 869–874.
• 14. S. E. Bedell, B. T. Bush, Erythrocyte sedimentation rate. from folklore to facts, Am. J. Med. Elsevier, 78 (1985), 1001–1009.
• 15. M. Morris, F. Davey, Basic examination of blood, Clinical diagnosis and management by laboratory methods, WB Saunders Company Philadelphia, 20 (2001), 479–519.
• 16. P. Chaturani, S. Narasimbham, R. Puniyani, et al. A comparative study of erythrocyte sedimentation rate of hypertension and normal controls, In: Physiol. Fluid Dynamics II: Tata McGraw Hill New Delhi, 20 (1987), 265–280.
• 17. I. Talstad, P. Scheie, H. Dalen, J. Roli, Influence of plasma proteins on erythrocyte morphology and sedimentation, Scand. J. Haematol. Wiley Online Library, 31 (1983), 478–484.
• 18. S. Nayha, Normal variation in erythrocyte sedimentation rate in males over 50 years old, Scand. J. Prim. Health, Taylor and Francis, 5 (1987), 5–8.
• 19. International Committee for Standardization in Haematology, for Standardization in. Reference method for the erythrocyte sedimentation rate (ESR) test on human blood, Brit. J. Haematol. 24 (1973), 671–673.
• 20. International Committee for Standardization in Haematology, Recommendations for measurement of erythrocyte sedimentation rate, J. Clin. Pathol. 46 (1993), 198–203.
• 21. K. V. Boroviczeny, L. Bottiger, B. Bull, et al. Recommendation for measurement of erythrocyte sedimentation rate of human blood: International Committee for Standardization in Haematology, Am. J. Clin. Pathol. The Oxford University Press, 68 (1977), 505–507.
• 22. B. S. Bull, G. Brecher, An evaluation of the relative merits of the wintrobe and westergren sedimentation methods, including hematocrit correction, Am. J. Clin. Pathol. 62 (1974), 502–510.
• 23. J. Whelan, C. R. Huang, A. L. Copley, Concentration profiles in erythrocyte sedimentation in human whole blood, Biorheology, 7 (1971), 205–212.
• 24. C. R. Huang, J. Whelan, H. H. Wang, et al. A mathematical model of sedimentation analysis applied to human whole blood, Biorheology, 8 (1971), 157–163.
• 25. W. K. Sartory, Prediction of concentration profiles during erythrocyte sedimentation by a hindered settling model, Biorheology, 11 (1974), 253–264.
• 26. A. Reuben, A. Shannon, Some problems in the mathematical modelling of erythrocyte sedimentation, Math. Med. Biol. IMA, 11 (1990) 145–156.
• 27. E. N. Lightfoot, Transport Phenomena in Living Systems, Wiley, New York, 1996.
• 28. E. K. Lenzi, L. C. Malacarne, R. S. Mendes, et al. Anomalous diffusion, nonlinear fractional fokker-planck equation and solutions, Physica A, 319 (2003), 245–252.
• 29. F. Mainardi, G. Pagnini, The Wright functions as solution of the time-fractional diffusion equation, Appl. Math. Comput. 141 (2003), 51–62.
• 30. R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), 1–77.
• 31. J. Vanterler da C. Sousa, Erythrocyte sedimentation: A fractional model, Phd Thesis, Imecc-Unicamp, Campinas, 2017.
• 32. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, 198, 1999.
• 33. M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento, 1 (1971), 161–178.
• 34. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer, Wien and New York, 54 (2008), 223–276.
• 35. L. Debnath, D. Bhatta, Integral Transforms and Their Applications, Second Edition, Chapman & Hall/CRC, Taylor and Francis Group, Boca Raton, 2007.
• 36. P. Dyke, An Introduction to Laplace Transforms and Fourier Series, Springer, New York, 2001.
• 37. M. El-Shahed, A. Salem, An extension of wright function and its properties, J. Math. Hindawi Publishing Corporation, 2015.
• 38. R. Figueiredo Camargo, E. Capelas de Oliveira, J. Vaz Jr., On anomalous diffusion and the fractional generalized langevin equation for a harmonic oscillator, J. Math. Phys. 50 (2009), 123518.
• 39. J. M. Harris, J. L. Hirst, M. J. Mossinghoff, Combinatorics and Graph Theory, Springer, New York, 2008.
• 40. R. Gorenflo, A. A. Kilbas, F. Mainardi, et al. Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014.
• 41. W. N. Schirmer, H. de M. Lisboa, R. d. F. P. M. Moreira, et al. Modeling of adsorption of volatile organic compounds on the carbon nanotubes cup-stacked using the model linear driving force (in portuguese), Acta Scientiarum. Technology, 32 (2010), 159–166.
• 42. J. Grote, R. Susskind, P. Vaupel, Oxygen diffusivity in tumor tissue ds-carcinosarcoma under temperature conditions within the range of 2040 c, Pflgers Archiv, Springer, 72 (1977), 37–42.
• 43. D. Aksnes, J. Egge, A theoretical model for nutrient uptake in phytoplankton, Marine Ecology Progress Series, Oldendorf, 70 (1991), 65–72.
• 44. F. Silva Costa, E. Capelas de Oliveira, J. Vaz Jr, On a class of inverse Laplace transform, not published.

• 1. J. Vanterler da C. Sousa, E. Capelas de Oliveira, Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation, Computational and Applied Mathematics, 2018, 10.1007/s40314-018-0639-x
• 2. J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the $$\psi$$ψ-Hilfer operator, Journal of Fixed Point Theory and Applications, 2018, 20, 3, 10.1007/s11784-018-0587-5
• 3. S. Harikrishnan, Kamal Shah, Dumitru Baleanu, K. Kanagarajan, Note on the solution of random differential equations via ψ-Hilfer fractional derivative, Advances in Difference Equations, 2018, 2018, 1, 10.1186/s13662-018-1678-8
• 4. J. Vanterler da C. Sousa, Magun N. N. dos Santos, L. A. Magna, E. Capelas de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Computational and Applied Mathematics, 2018, 10.1007/s40314-018-0717-0