AIMS Mathematics, 2017, 2(3): 458-478. doi: 10.3934/Math.2017.2.458.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Localized Orthogonal Decomposition for two-scale Helmholtz-typeproblems

Applied Mathematics, University of Münster, D-48149 Münster, Germany

In this paper, we present a Localized Orthogonal Decomposition (LOD) in Petrov-Galerkinformulation for a two-scale Helmholtz-type problem. The two-scale problem is, for instance, motivatedfrom the homogenization of the Helmholtz equation with high contrast, studied together with acorresponding multiscale method in a previous paper of the authors. There, an unavoidable resolutioncondition on the mesh sizes in terms of the wave number has been observed, which is known as “pollutione ect” in the finite element literature. Following ideas of Gallistl and Peterseim, we use standardfinite element functions for the trial space, whereas the test functions are enriched by solutions of subscsaleproblems (solved on a finer grid) on local patches. Provided that the oversampling parameterm, which indicates the size of the patches, is coupled logarithmically to the wave number, we obtain aquasi-optimal method under a reasonable resolution of a few degrees of freedom per wave length, thusovercoming the pollution effect. In the two-scale setting, the main challenges for the LOD lie in thecoupling of the function spaces and in the periodic boundary conditions.
  Article Metrics

Keywords Multiscale method; pollution e ect; Helmholtz equation; finite elements; numericalhomogenization

Citation: Mario Ohlberger, Barbara Verfürth. Localized Orthogonal Decomposition for two-scale Helmholtz-typeproblems. AIMS Mathematics, 2017, 2(3): 458-478. doi: 10.3934/Math.2017.2.458


  • 1. A. Abdulle and P. Henning, Localized orthogonal decomposition method for the wave equationwith a continuum of scales, Math. Comp., 86 (2017), 549-587.
  • 2. G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.    
  • 3. I. M. Babuška and S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtzequation considering high wave numbers?, SIAM Rev., 42 (2000), 451-484.
  • 4. G. Bouchitté, C. Bourel, and D. Felbacq, Homogenization of the 3D Maxwell system near resonancesand artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576.    
  • 5. G. Bouchitté and D. Felbacq, Homogenization near resonances and artificial magnetism fromdielectrics, C. R. Math. Acad. Sci. Paris, 339 (2004), 377-382.    
  • 6. G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations in a split ring geometry,Multiscale Model. Simul., 8 (2010), 717-750.    
  • 7. G. Bouchitté and B. Schweizer, Plasmonic waves allow perfect transmission through subwavelengthmetallic gratings, Netw. Heterog. Media, 8 (2013), 857-878.    
  • 8. D. L. Brown, D. Gallistl, and D. Peterseim, Multiscale Petrov-Galerkin method for highfrequencyheterogeneous Helmholtz equations, In M. Griebel and M. A. Schweitzer, editors,Meshfree Methods for Partial Differential Equations VII, Lecture Notes in Computational Scienceand Engineering, 2016.
  • 9. H. Chen, P. Lu, and X. Xu, A hybridizable discontinuous Galerkin method for the Hlmholtzequation with high wave number, SIAM J. Numer. Anal., 51 (2013), 2166-2188.    
  • 10. K. Cherednichenko and S. Cooper, Homogenization of the system of high-contrast Maxwell equations,Mathematika, 61 (2015), 475-500.
  • 11. A. Efros and A. Pokrovsky, Dielectric photonic crystal as medium with negative electric permittivityand magnetic permeability, Solid State Communications, 129 (2004), 643-647.    
  • 12. D. Elfverson, V. Ginting, and P. Henning, On multiscale methods in Petrov-Galerkin formulation,Numer. Math., 131 (2015), 643-682.    
  • 13. C. Engwer, P. Henning, A.Målqvist, and D. Peterseim, Effcient implementation of the localizedorthogonal decomposition method, arXiv.
  • 14. S. Esterhazy and J. M. Melenk, On stability of discretizations of the Helmholtz equation, Numericalanalysis of multiscale problems of Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, 83(2012), 285-324,    
  • 15. D. Felbacq and G. Bouchitté, Homogenization of a set of parallel fibres, Waves Random Media,7 (1997), 245-256.    
  • 16. D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for highfrequency acoustic scattering, Comput. Methods Appl. Mech. Engrg., 295 (2015), 1-17.    
  • 17. R. Griesmaier and P. Monk, Error analysis for a hybridizable discontinuous Galerkin method forthe Helmholtz equation, J. Sci. Comput., 49 (2011), 291-310.    
  • 18. F. Hellman, P. Henning, and A. Målqvist, Multiscale mixed finite elements, Discrete Contin. Dyn.Syst. Ser. S, 9 (2016), 12691298.
  • 19. P. Henning, P. Morgenstern, and D. Peterseim, Multiscale partition of unity of Lecture Notesin Computational Science and Engineering, chapter Meshfree Methods for Partial DifferentialEquations VII, Springer International Publishing, 100 (2014), 185-204.
  • 20. P. Henning , M.Ohlberger, and B.Verfürth, A new Heterogeneous Multiscale Method for timeharmonicMaxwell's equations, SIAM J. Numer. Anal., 54 (2016), 3493-3522.    
  • 21. P. Henning and A. Persson, A multiscale method for linear elasticity reducing Poisson locking,Comput. Methods Appl. Mech. Engrg., 310 (2016),156171.
  • 22. P. Henning and A. Målqvist, Localized orthogonal decomposition techniques for boundary valueproblems, SIAM J. Sci. Comput., 36 (2014), A1609-A1634.
  • 23. R. Hiptmair, A. Moiola, and I. Perugia, A Survey of Trefftz methods for the Helmholtz Equation,Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial DifferentialEquations (eds. G. R. Barrenechea, A. Cangiani and E. H. Geogoulis), Lecture Notes inComputational Science and Engineering (LNCSE), Springer, Accepted for publication; PreprintarXiv:1505.04521.
  • 24. R. Hiptmair, A. Moiola, and I. Perugia, Plane Wave Discontinuous Galerkin Methods: ExponentialConvergence of the hp-version, Found. Comp. Math., 16 (2016), 637675.
  • 25. T. J. R. Hughes and G. Sangalli, Variational multiscale analysis: the fine-scale Green's function,projection, optimization, localization, and stabilized methods, SIAM J. Numer. Anal., 45 (2007),539-557.    
  • 26. T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J. B. Quincy, The variational multiscale method-aparadigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), 3-24.    
  • 27. P. C. Jr. and C. Stohrer, Finite Element Heterogeneous Multiscale Method for the classicalHelmholtz Equation, C. R. Acad. Sci., 352 (2014), 755-760.    
  • 28. A. Lamacz and B. Schweizer, A negative index meta-material for Maxwell's equations, SIAM J.Math. Anal., 48 (2016), 41554174.
  • 29. C. Luo, S. G. Johnson, J. Joannopolous, and J. Pendry, All-angle negative refraction withoutnegative effective index, Phys. Rev. B, 65 (2011).
  • 30. A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp., 83(2014), 2583-2603.    
  • 31. A. Målqvist and D. Peterseim, Computation of eigenvalues by numerical upscaling, Numer.Math., 130 (2015), 337-361.    
  • 32. J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizationsof the Helmholtz equation, SIAM J. Numer. Anal., 49 (2011), 1210-1243.    
  • 33. S. O'Brien and J. B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites,Journal of Physics: Condensed Matter, 14 (2002), 4035.
  • 34. M. Ohlberger and B. Verfürth, A new Heterogenous Multiscale Method for the Helmholtz equationwith high contrast, arXiv, 2016.
  • 35. M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element methodfor elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), 88-114.    
  • 36. I. Perugia, P. Pietra, and A. Russo, A Plane Wave Virtual Element Method for the HelmholtzProblem, ESAIM Math. Model. Numer. Anal., 50 (2016), 783-808.    
  • 37. D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction,Math. Comp., 86 (2017), 1005-1036.
  • 38. D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors,Springer, 114 (2016).
  • 39. A. Pokrovsky and A. Efros, Diffraction theory and focusing of light by a slab of left-handedmaterial, Physica B: Condensed Matter, 338 (2003), 333-337,    
  • 40. S. A. Sauter, A refined finite element convergence theory for highly indefinite Helmholtz problems,Computing, 78 (2006), 101-115.    


Reader Comments

your name: *   your email: *  

Copyright Info: © 2017, Barbara Verfürth, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved