AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96

Research article

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

On the Sum of Unitary Divisors Maximum Function

1 Department of Mathematics, B.P.Chaliha College, Assam-781127, India
2 Department of Mathematics, Gauhati University, Assam-781014, India

## Abstract    Full Text(HTML)    Figure/Table

It is well-known that a positive integer $d$ is called a unitary divisor of an integer $n$ if $d|n$ and gcd$\left(d,\frac{n}{d}\right)=1$. Divisor function $\sigma^{*}(n)$ denote the sum of all such unitary divisors of $n$. In this paper we consider the maximum function $U^{*}(n)=\max\{k\in\mathbb{N}:\sigma^{*}(k)|n\}$and study the function $U^{*}(n)$ for $n=p^{m}$, where $p$ is a prime and $m\geq 1$.
Figure/Table
Supplementary
Article Metrics

# References

1. C. Ashbacker, An introduction to the Smarandache function, Erhus Univ. Press ,Vail, AZ, 1995.

2. David M. Burton, Elementary number theory, Tata McGraw-Hill Sixth Edition, 2007.

3. E. Cohen, Arithmetical functions associated with the unitary divisors of an integer. Math. Zeits., 74 (1960), 66-80.

4. P. Moree, H. Roskam, On an arithmetical function related to Euler's totient and the discriminator. Fib. Quart., 33 (1995), 332-340.

5. J. Sandor, On certain generalizations of the Smarandnche function. Notes Num. Th. Discr. Math., 5 (1999), 41-51.

6. J. Sandor, A note on two arithmetic functions. Octogon Math. Mag., 8 (2000), 522-524.

7. J. Sandor, On a dual of the Pseudo-Smarandache function. Smarandnche Notition Journal, 13 (2002).

8. J. Sandor, A note on exponential divisors and related arithmetic functions. Sci. Magna, 1 (2005), 97-101.

9. J. Sandor, The unitary totient minimum and maximum functions. Sci. Studia Univ. "Babes-Bolyai", Mathematica, 2 (2005), 91-100.

10. J. Sandor, The product of divisors minimum and maximum function. Scientia Magna, 5 (2009), 13-18.

11. J. Sandor, On the Euler minimum and maximum functions. Notes Num. Th. Discr. Math., 15 (2009), 1-8.