Citation: Ken Shirakawa, Hiroshi Watanabe. Solvability for the non-isothermal Kobayashi–Warren–Carter system[J]. AIMS Mathematics, 2017, 2(1): 161-194. doi: 10.3934/Math.2017.1.161
[1] | Zhongying Liu, Yang Liu, Yiqi Jiang . Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695 |
[2] | Yasir Nadeem Anjam . The qualitative analysis of solution of the Stokes and Navier-Stokes system in non-smooth domains with weighted Sobolev spaces. AIMS Mathematics, 2021, 6(6): 5647-5674. doi: 10.3934/math.2021334 |
[3] | Joseph L. Shomberg . Well-posedness and global attractors for a non-isothermal viscous relaxationof nonlocal Cahn-Hilliard equations. AIMS Mathematics, 2016, 1(2): 102-136. doi: 10.3934/Math.2016.2.102 |
[4] | Bengisen Pekmen Geridonmez . RBF simulation of natural convection in a nanofluid-filled cavity. AIMS Mathematics, 2016, 1(3): 195-207. doi: 10.3934/Math.2016.3.195 |
[5] | Özge Arıbaş, İsmet Gölgeleyen, Mustafa Yıldız . On the solvability of an initial-boundary value problem for a non-linear fractional diffusion equation. AIMS Mathematics, 2023, 8(3): 5432-5444. doi: 10.3934/math.2023273 |
[6] | Santiago Cano-Casanova . Positive weak solutions for heterogeneous elliptic logistic BVPs with glued Dirichlet-Neumann mixed boundary conditions. AIMS Mathematics, 2023, 8(6): 12606-12621. doi: 10.3934/math.2023633 |
[7] | Doaa Filali, Mohammad Dilshad, Mohammad Akram . Generalized variational inclusion: graph convergence and dynamical system approach. AIMS Mathematics, 2024, 9(9): 24525-24545. doi: 10.3934/math.20241194 |
[8] | A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160 |
[9] | Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367 |
[10] | Yun-guang Lu, Xian-ting Wang, Richard De la cruz . Cauchy problem for isothermal system in a general nozzle with space-dependent friction. AIMS Mathematics, 2021, 6(6): 6482-6489. doi: 10.3934/math.2021381 |
Let 0<T<∞ be a constant of time, and let N∈N be a constant of spatial dimension such that 1≤N≤3. Let Ω⊂RN be a bounded domain such that Γ:=∂Ω is smooth when N>1. Besides, let us denote by Q:=(0,T)×Ω the product space of the time-interval (0,T) and the spatial domain Ω, and similarly, let us set Σ:=(0,T)×Γ.
In this paper, we fix a constant ν≥0, and consider the following system of initial-boundary value problems of parabolic types, denoted by (S)ν.
(S)ν:
{[u−λ(w)]t−Δu=f in Q, Du⋅nΓ+n0(u−fΓ)=0 on Σ, u(0,x)=u0(x), x∈Ω; | (1.1) |
{wt−Δw+∂γ(w)+gw(w,η)+λ′(w)u +αw(w,η)|Dθ|+ν2βw(w,η)|Dθ|2∋0 in Q,Dw⋅nΓ=0 on Σ,w(0,x)=w0(x), x∈Ω; | (1.2) |
{ηt−Δη+gη(w,η)+αη(w,η)|Dθ|+ν2βη(w,η)|Dθ|2=0 in Q,Dη⋅nΓ=0 on Σ,η(0,x)=η0(x), x∈Ω; | (1.3) |
{α0(w,η)θt−div(α(w,η)Dθ|Dθ|+2ν2β(w,η)Dθ)=0 in Q,(α(w,η)Dθ|Dθ|+2ν2β(w,η)Dθ)⋅nΓ=0 on Σ,θ(0,x)=θ0(x), x∈Ω. | (1.4) |
Here, Du, Dw, Dη and Dθ denote, respectively, the (distributional) gradients of the unknowns u, w, η and θ on Ω. f=f(t,x) is the source term on Q, fΓ=fΓ(t,x) is the boundary source on Σ. u0=u0(x), w0=w0(x), η0=η0(x) and θ0=θ0(x) are given initial data on Ω. ∂γ is the subdifferential of a proper lower semi-continuous (l.s.c.) and convex function γ=γ(w) on R. λ=λ(w), g=g(w,η), α0=α0(w,η), α=α(w,η) and β=β(w,η) are given real-valued functions, and the scripts "'", "w" and "η" denote differentials with respect to the corresponding variables. n0 is a given positive constant, and nΓ is the unit outer normal on Γ.
The system (S)ν is based on the non-isothermal model of grain boundary motion by Warren et al. [36], which was derived as an extending version of the "Kobayashi-Warren-Carter model" of grain boundary motion by Kobayashi et al. [22,23]. Hence, the study of this paper is based on the previous works related to the Kobayashi-Warren-Carter model (e.g., [13,15,16,17,20,21,22,23,25,26,28,29,30,31,32,36,37,39]).
According to the modeling method of [36], the system (S)ν is roughly configured as a coupled system of the heat equation in (1.1), and a gradient system {(1.2)-(1.4)} of the following governing energy, called free-energy:
εν(u,w,η,θ):=12∫Ω|Dw|2dx+∫Ωγ(w)dx+∫Ωuλ(w)dx+12∫Ω|Dη|2dx+∫Ωg(w,η)dx+∫Ωα(w,η)d|Dθ|+∫Ωβ(w,η)|D(νθ)|2dx, | (1.5) |
for [u,w,η,θ]∈L2(Ω)×H1(Ω)×H1(Ω)×BV(Ω) with νθ∈H1(Ω).
In this context, the unknown u=u(t,x) is the relative temperature with the critical degree 0, and the unknown w=w(t,x) is an order parameter to indicate the solidification order of the polycrystal. The term u−λ(w) in (1.1) is the so-called enthalpy, and then the term λ(w) corresponds to the effect of the latent heat. The unknowns η=η(t,x) and θ=θ(t,x) are components of the vector field
(t,x)∈Q↦η(t,x)[ cosθ(t,x),sinθ(t,x)]∈R2, |
which was adopted in [22,23] as a vectorial phase field to reproduce the crystalline orientation in Q. Here, the components η and θ are order parameters to indicate, respectively, the orientation order and angle of the grain. In particular, w and η are taken to satisfy the constraints 0≤w,η≤1 in Q, and the cases [w,η]≈[1,1] and [w,η]≈[0,0] are respectively assigned to "the solidified-oriented phase" and "the liquefied-disoriented phase" which correspond to two stable phases in physical.
In view of these, we suppose that
(g0) the function w ∈ [0, 1] 7→ λ(w) ∈ R is increasing, and if the temperature u is closed to the critical
value, i.e. u ≈ 0, then the function
[u,w,η]∈R2↦γ(w)+g(w,η)−λ(w)u∈(−∞,∞] |
has two minimums, around [1,1] and [0,0].
Besides, referring to the previous works on phase transitions (e.g., [7,8,14,18,19,34,35]), we can exemplify the following settings as possible expressions of the functions λ, γ and g in the above (g0):
(g1) (constrained setting by logarithmic function; cf. [14,34,35])
{λ(w)=Lw, γ(w):=12(wlogw+(1−w)log(1−w))with γ(0)=γ(1):=1,g(w,η):=−L2(w−12)2+c2(w−η)2, for w,η∈R, |
(g2) (setting with non-smooth constraint; cf. [7,8,18,19,35])
{λ(w)=Lw,γ(w):=I[0,1](w),g(w,η):=−L2(w−12)2+c2(w−η)2, for w,η∈R. |
Here, L and c are positive constants, and R→{0,∞} is the indicator function on the compact interval [0,1].
Now, the objective of this study is to generalize the line of recent results [25,26,28,29,30,31,32,37,39], and to obtain an enhanced theory which enables the versatile analysis for Kobayashi-Warren-Carter type systems, under various situations. To this end, we set the goal of this paper to specify the assumptions, which can cover the settings as in (g1)-(g2), and can guarantee the validity of the following Main Theorem.
Main Theorem: the existence theorem of the solution [u,w,η,θ] to the systems (S)ν, for any ν≥0, which behaves in the range of C([0,T];L2(Ω)4), with the L2-based sources f∈L2(0,T;L2(Ω)) and fΓ∈L2(0,T;L2(Γ)).
The main theorem is somehow to enhance the results [25,31,32] concerned with qualitative properties of isothermal/non-isothermal Kobayashi-Warren-Carter type systems.
First we elaborate the notations which is used throughout this paper.
Notation 1 (Real analysis). For arbitrary a0, b0 ∈ [-∞, ∞], we define
Fix d∈N as a constant of dimension. Then, we denote by |x| and x⋅y the Euclidean norm of x∈Rd and the standard scalar product of x,y∈Rd, respectively, as usual, i.e.:
|x|:=√x21+⋯+x2d and x⋅y:=x1y1+⋯+xdyd for all x=[x1,…,xd], y=[y1,…,yd]∈Rd. |
The d-dimensional Lebesgue measure is denoted by Ld, and unless otherwise specified, the measure theoretical phrases, such as "a.e.", "dt", "dx", and so on, are with respect to the Lebesgue measure in each corresponding dimension. Also, in the observations on a smooth surface S⊂Rd, the phrase "a.e." is with respect to the Hausdorff measure in each corresponding Hausdorff dimension, and the area element on S is denoted by dS.
For a (Lebesgue) measurable function f:B→[−∞,∞] on a Borel subset B⊂Rd, we denote by [f]+ and [f]−, respectively, the positive and negative parts of f, i.e.,
[f]+(x):=f(x)∨0 and [f]−(x):=−(f(x)∧0), a.e. x∈B. |
Notation 2 (Abstract functional analysis). For an abstract Banach space X, we denote by |⋅|X the norm of X, and when X is a Hilbert space, we denote by (⋅,⋅)X its inner product. For a subset A of a Banach space X, we denote by int(A) and ¯A the interior and the closure of A, respectively.
Fix 1<d∈N. Then, for a Banach space X, the topology of the product Banach space Xd is endowed with the norm:
|z|Xd:=∑dk=1|zk|X, for z=[z1,…,zd]∈Xd. |
However, if X is a Hilbert space, then the topology of the product Hilbert space Xd is endowed with the inner product:
(z,˜z)Xd:=∑dk=1(zk,˜zk)X, for z=[z1,…,zd]∈Xd and ˜z=[˜z1,…,˜zd]∈Xd, |
and hence, the norm in this case is provided by
|z|Xd:=√(z,z)Xd=(d∑k=1|zk|2X)1/2,for z=[z1,…,zd]∈Xd. |
For a Banach space X, we denote the dual space by X∗. For a single-valued operator A:X→X∗, we write
Az=[Az1,…,Azd]∈[X∗]d for any z=[z1,…,zd]∈Xd. |
For any proper lower semi-continuous (l.s.c. hereafter) and convex function Ψ defined on a Hilbert space X, we denote by D(Ψ) its effective domain, and denote by ∂Ψ its subdifferential. The subdifferential ∂Ψ is a set-valued map corresponding to a weak differential of Ψ, and it has a maximal monotone graph in the product Hilbert space X2. More precisely, for each z0∈X, the value ∂Ψ(z0) is defined as the set of all elements z∗0∈X that satisfy the variational inequality
(z∗0,z−z0)X≤Ψ(z)−Ψ(z0) for any z∈D(Ψ), |
and the set D(∂Ψ):={z∈X∣∂Ψ(z)≠∅} is called the domain of ∂Ψ. We often use the notation "[z0,z∗0]∈∂Ψ in X2, " to mean "z∗0∈∂Ψ(z0) in X with z0∈D(∂Ψ)" by identifying the operator ∂Ψ with its graph in X2.
Notation 3 (Basic elliptic operators). Let V=H1(Ω) be a Hilbert space endowed with the inner product:
(w,z)V:=∫Ω∇w⋅∇zdx+n0∫ΓwzdΓ, for [w,z]∈V2, |
and let CV>0 be the embedding constant of V⊂L2(Ω).
Let ⟨⋅,⋅⟩ be the duality pairing between V and the dual space V∗, and let F: V→V∗ be the duality mapping defined by
⟨Fw,z⟩:=(w,z)V, for [w,z]∈V2. |
Note that V∗ forms a Hilbert space endowed with the inner product:
(w∗,z∗)V∗:=⟨w∗,F−1z∗⟩, for [w∗,z∗]∈(V∗)2. |
For any ϱ∈L2(Ω) and any ϱΓ∈L2(Γ), we can regard the vectorial function ϱ∗:=[ϱ,ϱΓ]∈L2(Ω)×L2(Γ) as an element of V∗, via the following variational form:
⟨ϱ∗,z⟩:=(ϱ,z)L2(Ω)+n0(ϱΓ,z)L2(Γ)forz∈V. | (2.1) |
Note that for any ϱ∗=[ϱ,ϱΓ]∈L2(Ω)×L2(Γ), the variational form (2.1) enables the following identification:
Fω=ϱ∗inV∗,iff.ω∈H2(Ω)and{−Δω=ϱinL2(Ω)Dω⋅nΓ+n0(ω−ϱΓ)=0inL2(Γ). |
On this basis, the product space L2(Ω)×L2(Γ) can be regarded as a subspace of V∗, and the restriction F|H2(Ω):H2(Ω)→L2(Ω)×L2(Γ) can be regarded as a bijective linear operator associated with the Laplacian, subject to Robin type boundary condition (cf. [24]).
In the meantime, we denote by ΔN the Laplacian operator subject to the zero-Neumann boundary condition, i.e.,
ΔN:z∈WN:={z∈H2(Ω)Dz⋅nΓ=0 in L2(Γ)}⊂L2(Ω)↦Δz∈L2(Ω). |
Remark 1. We here show some representative examples of the subdifferentials, which is intimately related to our study.
(Ex.1) The quadratic functional u∈L2(Ω)↦12|u|2L2(Ω) can be regarded as a proper l.s.c. and convex function on V∗, via the standard ∞-extension, and then, the V∗-subdifferential of this function coincides with the duality map F:V→V∗, i.e.:
[u,u∗]∈∂[12|⋅|2L2(Ω)] in [V∗]2, iff. u∈V and u∗=Fu in V∗. |
(Ex.2) Let d∈N, and let γ0:Rd→R be a convex function defined as
y=[y1,…,yd]∈Rd↦γ0(y):=γ1(y1)+γ2(y2)+⋯+γd(yd), |
by using proper l.s.c. and convex functions γk:R→(−∞,∞], for k=1,…,d. Let Ψdγ0:L2(Ω)d→(−∞,∞] be a proper l.s.c. and convex function defined as:
z∈L2(Ω)d↦Ψdγ0(z):={12∫Ω|Dz|2RN×ddx+∫Ωγ0(z)dx,ifz∈H1(Ω)d∞, otherwise. |
Then, with regard to the subdifferential ∂Ψdγ0⊂[L2(Ω)d]2, it is known (see, e.g., [4,6]) that
z∈L2(Ω)d↦∂Ψdγ0(z)={z∗∈L2(Ω)d|z∗+ΔNz∈∂γ0(z)inRd,a.e.inΩ}ifz∈WdN,∅,otherwise. |
This fact is often summarized as ∂Ψdγ0=−ΔN+∂γ0 in [L2(Ω)d]2.
Notation 4 (BV theory; cf. [2,3,11,12]). Let d∈N, and let U⊂Rd be an open set. We denote by M(U) the space of all finite Radon measures on U. The space M(U) is known as the dual space of the Banach space C0(U), i.e., M(U)=C0(U)∗, where C0(U) is the closure of the class of test functions C∞c(U) in the topology of C(¯U).
A function z∈L1(U) is called a function of bounded variation on U, iff. its distributional gradient Dz is a finite Radon measure on U, namely, Dz∈M(U)d. Here, for any z∈BV(U), the Radon measure Dz is called the variation measure of z, and its total variation |Dz| is called the total variation measure of z. Additionally, for any z∈BV(U), it holds that
|Dz|(U)=sup{∫Uzdivφdxφ∈C1c(U)d and |φ|≤1 on U}. |
The space BV(U) is a Banach space, endowed with the norm
|z|BV(U):=|z|L1(U)+|Dz|(U) for any z∈BV(U), |
and we say that zn→z weakly-∗ in BV(U), iff. z∈BV(U), {zn}∞n=1⊂BV(U), zn→z in L1(U) and Dzn→Dz weakly-∗ in M(U)d, as n→∞.
The space BV(U) has another topology, called "strict topology", which is provided by the following distance (cf.[2, Definition 3.14]):
[φ,ψ]∈BV(U)2↦|φ−ψ|L1(U)+||Dφ|(U)−|Dψ|(U)|. |
In this regard, we say that zn→z strictly in BV(U) iff. z∈BV(U), {zn}∞n=1⊂BV(U), zn→z in L1(U) and |Dzn|(U)→|Dz|(U), as n→∞.
Specifically, when the boundary ∂U is Lipschitz, the Banach space BV(U) is continuously embedded into Ld/(d−1)(U) and compactly embedded into Lp(U) for any 1≤p<d/(d−1) (see, e.g., [2, Corollary 3.49] or [3, Theorems 10.1.3-10.1.4]). Furthermore, if 1≤q<∞, then the space C∞(¯U) is dense in BV(U)∩Lq(U) for the intermediate convergence, i.e., for any z∈BV(U)∩Lq(U), there exists a sequence {zn}∞n=1⊂C∞(¯U) such that zn→z in Lq(U) and strictly in BV(U), as n→∞ (see, e.g., [3, Definition 10.1.3 and Theorem 10.1.2]).
Notation 5 (Weighted total variation; cf. [1,2]). For any nonnegative ϱ∈H1(Ω)∩L∞(Ω) (i.e. any 0≤ϱ∈H1(Ω)∩L∞(Ω)) and any z∈L2(Ω), we call the value Varϱ(z)∈[0,∞], defined as,
Varϱ(v):=sup[∫Ωvdivϖdx|ϖ∈L∞(Ω)Nwithacompactsupport,and|ϖ|⩽ϱa.e.inΩ]∈[0,∞], |
"the total variation of v weighted by ϱ", or the "weighted total variation" in short.
Remark 2. Referring to the general theories (e.g., [1,2,5]), we can confirm the following facts associated with the weighted total variations.
(Fact 1)(Cf.[5, Theorem 5]) For any 0≤ϱ∈H1(Ω)∩L∞(Ω), the functional z∈L2(Ω)↦Varϱ(z)∈[0,∞] is a proper l.s.c. and convex function that coincides with the lower semi-continuous envelope of
z∈W1,1(Ω)∩L2(Ω)↦∫Ωϱ|Dz|dx∈[0,∞). |
(Fact 2) (Cf. [1, Theorem 4.3] and [2, Proposition 5.48]) If 0≤ϱ∈H1(Ω)∩L∞(Ω) and z∈BV(Ω)∩L2(Ω), then there exists a Radon measure |Dz|ϱ∈M(Ω) such that
|Dz|ϱ(Ω)=∫Ωd|Dz|ϱ=Varϱ(z), |
and
{|Dz|ϱ(A)≤|ϱ|L∞(Ω)|Dz|(A)|Dz|ϱ(A)=inf{liminfn→∞∫Aϱ|D˜zn|dx|{˜zn}∞n=1⊂W1.1(A)∩L2(A)suchthat˜zn→zinL2(A)asn→∞} | (2.2) |
for any open set A⊂Ω.
(Fact 3) If ϱ∈H1(Ω)∩L∞(Ω), cϱ:=essinfx∈Ωϱ>0, and z∈BV(Ω)∩L2(Ω), then for any open set A⊂Ω, it follows that
{|Dz|ϱ(A)≥cϱ|Dz|(A)foranyopensetA⊂ΩD(Varϱ)=BV(Ω)∩L2(Ω),andVarϱ(z)=sup{∫Ωzdiv(ϱϖ)dx|ϖ∈L∞(Ω)Nwithacompactsupport,and|ϖ|≤1a.e.inΩ} | (2.3) |
Moreover, the following properties can be inferred from (2.2)-(2.3):
· |Dz|c=c|Dz| in M(Ω) for any constant c≥0 and z∈BV(Ω)∩L2(Ω);
· |Dz|ϱ=ϱ|Dz|LN in M(Ω), if 0≤ϱ∈H1(Ω)∩L∞(Ω) and z∈W1,1(Ω)∩L2(Ω).
Notation 6 (Generalized weighted total variation; cf. [25, Section 2]). For any linebreak ϱ∈H1(Ω)∩L∞(Ω) and any z∈BV(Ω)∩L2(Ω), we define a real-valued Radon measure [ϱ|Dz|]∈M(Ω), as follows:
[ϱ|Dz|](B):=|Dz|[ϱ]+(B)−|Dz|[ϱ]−(B) for any Borel set B⊂Ω. |
Note that [ϱ|Dz|](Ω) can be configured as a generalized total variation of z∈BV(Ω)∩L2(Ω) by the possibly sign-changing weight ϱ∈H1(Ω)∩L∞(Ω).
Remark 3. With regard to the generalized weighted total variations, the following facts are verified in [25, Section 2].
(Fact 4) (Strict approximation) Let ϱ∈H1(Ω)∩L∞(Ω) and z∈BV(Ω)∩L2(Ω) be arbitrary fixed functions, and let {zn}∞n=1⊂C∞(¯Ω) be a sequence such that
zn→z in L2(Ω) and strictly in BV(Ω) as n→∞. |
Then
∫Ωϱ|Dzn|dx→∫Ωd[ϱ|Dz|] as n→∞. |
(Fact 5) For any z∈BV(Ω)∩L2(Ω), the mapping
ϱ∈H1(Ω)∩L∞(Ω)↦∫Ωd[ϱ|Dz|]∈R |
is a linear functional, and moreover, if φ∈H1(Ω)∩C(¯Ω) and ϱ∈H1(Ω)∩L∞(Ω), then
∫Ωd[φϱ|Dz|]=∫Ωφd[ϱ|Dz|]. |
Finally, we mention the notion of functional convergences.
Definition 1 (Mosco convergence; cf. [27]). Let X be an abstract Hilbert space. Let Ψ:X→(−∞,∞] be a proper l.s.c. and convex function, and let {Ψn}∞n=1 be a sequence of proper l.s.c. and convex functions Ψn:X→(−∞,∞], n=1,2,3,…. We say that Ψn→Ψ on X, in the sense of Mosco, as n→∞, iff. the following two conditions are fulfilled.
The condition of lower bound: lim infn→∞Ψn(z∘n)≥Ψ(z∘), if z∘∈X, {z∘n}∞n=1⊂X, and z∘n→z∘ weakly in X as n→∞.
The condition of optimality: for any z∙∈D(Ψ), there exists a sequence {z∙n}∞n=1⊂X such that z∙n→z∙ in X and Ψn(z∙n)→Ψ(z∙) as n→∞.
Definition 2 (Γ-convergence; cf. [9]). Let X be an abstract Hilbert space, Ψ:X→(−∞,∞] be a proper functional, and {Ψn}∞n=1 be a sequence of proper functionals Ψn:X→(−∞,∞], n=1,2,3,…. We say that Ψn→Ψ on X, in the sense of Γ-convergence, as n→∞, iff. the following two conditions are fulfilled.
The condition of lower bound: lim infn→∞Ψn(z∘n)≥Ψ(z∘), if z∘∈X, {z∘n}∞n=1⊂X, and z∘n→z∘ (strongly) in X as n→∞.
The condition of optimality: for any z∙∈D(Ψ), there exists a sequence {z∙n}∞n=1⊂X such that z∙n→z∙ in X and Ψn(z∙n)→Ψ(z∙) as n→∞.
Remark 4. Note that if the functionals are convex, then Mosco convergence implies Γ-convergence, i.e., the Γ-convergence of convex functions can be regarded as a weak version of Mosco convergence. Additionally, in the Γ-convergence of convex functions, we can see the following:
(Fact 6) Let Ψ:X→(−∞,∞] and Ψn:X→(−∞,∞] be proper l.s.c. and convex functions on a Hilbert space X such that Ψn→Ψ on X, in the sense of Γ-convergence, as n→∞. If it holds that:
{∈X2,[zn,z∗n]∈∂ΨninX2,n=1,2,3,…,zn→zinXandz∗n→z∗weaklyinX,asn→∞ |
then [z,z∗]∈∂Ψ in X2 and Ψn(zn)→Ψ(z) as n→∞.
Throughout the paper, we set the following assumptions.
(A1) Let f∈L2(0,T;L2(Ω)) and fΓ∈L2(0,T;L2(Γ)) be given functions, and let f∗:=[f,fΓ]∈L2(0,T;L2(Ω)×L2(Γ)) be a time-dependent vectorial function which is regarded as f∗∈L2(0,T;V∗), via (2.1) applied to ϱ∗=f∗(t) for a.e. t>0.
(A2) Let λ∈W2,∞loc(R) be a function, and let A∗>0 be a constant which is defined as:
A∗:=14(1+C2V|λ|2W2,∞(0,1)), |
by using the embedding constant CV>0 of V⊂L2(Ω).
(A3) Let α0∈W1,∞loc(R2) and α,β∈C2(R2) be functions, such that:
· α and β are convex on R2;
· δ∗:=inf[α0(R2)∪α(R2)∪β(R2)]>0;
· αη(w,0)≤0, βη(w,0)≤0, αη(w,1)≥0, and βη(w,1)≥0, for any w∈[0,1].
(A4) Let γ : R→(−∞,∞] be a proper l.s.c. and convex function, such that D(γ)=[0,1].
(A5) Let g∈C2(R2) be a function such that
gη(w,0)≤0 and gη(w,1)≥0, for any w∈[0,1] |
(A6) There exists a constant c∗ such that
γ(w)+g(v)≥c∗, for any v=[w,η]∈R2 |
(A7) Let [u0,v0,θ0]=[u0,w0,η0,θ0] is a quartet of initial data, such that:
[u0,w0,η0,θ0]∈{D0:={[˜u,˜w,˜η,˜θ]|˜u∈L2(Ω),˜w,˜η∈H1(Ω),˜θ∈BV(Ω)∩L∞(Ω),and0⩽˜w,˜η⩽1a.e.inΩ},ifν=0D1:=D0∩[L2(Ω)×H1(Ω)×H1(Ω)×H1(Ω)],ifν>0. |
Now, for simplicity of description, we prepare the following notations:
{G(u;v)=G(u;w,η):=g(w,η)+uλ(w),[∇g](v)=[∇g](w,η):=[gw(w,η),gη(w,η)],[∇G](u;v)=[∇G](u;w,η):=[gw(w,η)+uλ′(w),gη(w,η)], |
and
{[∇α](v)=[∇α](w,η):=[αw(w,η),αη(w,η)],[∇β](v)=[∇β](w,η):=[βw(w,η),βη(w,η)], for u∈R and v=[w,η]∈R2. |
For any ν≥0 and any v=[w,η]∈[H1(Ω)∩L∞(Ω)]2, we define a proper l.s.c. and convex function Φν(v;⋅) on L2(Ω) by letting:
θ∈L2(Ω)↦Φν(v;θ)=Φν(w,η;θ):={∫Ωd[α(v)|Dθ|]+∫Ωβ(v)|D(νθ)|2dx,ifθ∈BV(Ω)andνθ∈H1(Ω),∞, otherwise. |
Additionally, we set:
B∗:=1+A∗2,byusingtheconstantA∗asin(A2), | (3.1) |
and define a functional Fν on L2(Ω)4 by letting:
[u,v,θ]=[u,w,η,θ]∈L2(Ω)4↦F(u,v,θ)=F(u,w,η,θ):=B∗|u|2L2(Ω)+Ψ2γ(v)+∫Ω(g(v)−c∗)dx+Φν(v;θ), | (3.2) |
where Ψ2γ is the convex function Ψdγ0 in Remark 1 in the case when d=2 and γ0=γ. The above functional Fν is a modified version of the free-energy as in (1.5), and the assumptions (A3)-(A6) guarantee the non-negativity of this functional, i.e. Fν≥0 on L2(Ω)4.
Based on these, we define the solutions to the systems (S)ν, for ν≥0, as follows.
Definition 3. For any ν≥0, a quartet [u,v,θ]=[u,w,η,θ]∈L2(0,T;L2(Ω)4) with v=[w,η] is called a solution to (S)ν, iff. [u,v,θ] fulfills the following (S1)-(S6).
(S1) u∈W1,2(0,T;V∗)∩L∞(0,T;L2(Ω))∩L2(0,T;V)⊂C([0,T];L2(Ω)).
(S2) v=[w,η]∈W1,2(0,T;L2(Ω)2)∩L∞(0,T;H1(Ω)2), and 0≤w(t,x)≤1 and 0≤η(t,x)≤1, a.e. (t,x)∈Q.
(S3) θ∈W1,2(0,T;L2(Ω))∩L∞(Q), |Dθ(⋅)|(Ω)∈L∞(0,T), νθ∈L∞(0,T;H1(Ω)), and |θ|≤|θ0|L∞(Ω) a.e. in Q.
(S4) u satisfies the following variational form:
⟨[u−λ(w)]t(t),z⟩+(Du(t),Dz)L2(Ω)N+n0(u(t),z)L2(Γ)=(f(t),z)L2(Ω)+n0(fΓ(t),z)L2(Γ), for any z∈V, and a.e. t∈(0,T), |
with the initial condition u(0)=u0 in L2(Ω).
(S5) v=[w,η] satisfies the following two variational forms:
(wt(t)+gw(v)(t)+u(t)λ′(w(t)),w(t)−φ)L2(Ω)+(Dw(t),D(w(t)−φ))L2(Ω)N+∫Ωd[(w(t)−φ)αw(v(t))|Dθ(t)|]+∫Ω(w(t)−φ)βw(v(t))|D(νθ)(t)|2dx+∫Ωγ(w(t))dx≤∫Ωγ(φ)dx, for any φ∈H1(Ω)∩L∞(Ω) and a.e. t∈(0,T), |
and
(ηt(t)+gη(v)(t),ψ)L2(Ω)+(Dη(t),Dψ)L2(Ω)N+∫Ωd[ψαη(v(t))|Dθ(t)|]+∫Ωψβη(v(t))|D(νθ)(t)|2dx=0,for any ψ∈H1(Ω)∩L∞(Ω) and a.e. t∈(0,T), |
with the initial condition v(0)=[w(0),η(0)]=v0=[w0,η0] in L2(Ω)2.
(S6) θ satisfies the following variational form:
(α0(v(t))θt(t),θ(t)−ω)L2(Ω)+Φν(v(t);θ(t))≤Φν(v(t);ω),for any ω∈D(Φν(v(t);⋅)) and a.e. t∈(0,T), |
with the initial condition θ(0)=θ0 in L2(Ω).
Remark 5. The variational identity in the above (S4) can be reformulated as:
[u−λ(w)]t(t)+Fu(t)=f∗(t)inV∗,fora.e.t∈(0,T). | (3.3) |
Also, two variational forms in (S5) can be reduced to:
(vt(t)+[∇G](u;v(t)),v(t)−ϖ)L2(Ω)2+(Dv(t),D(v(t)−ϖ))L2(Ω)N×2+∫Ωd[|Dθ(t)|(v(t)−ϖ)⋅[∇α](v(t))]+∫Ω|D(νθ)(t)|2(v(t)−ϖ)⋅[∇β](v(t))dx+∫Ωγ(v(t))dx≤∫Ωγ(ϖ)dx,foranyϖ=[φ,ψ]∈[H1(Ω)∩L∞(Ω)]2anda.e.t∈(0,T), | (3.4) |
by using the identification
γ(˜v):=γ(˜w), for all ˜v=[˜w,˜η]∈R2, |
and by using the abbreviation:
∫Ωd[|D˜θ|ϖ⋅˜v]:=∫Ωd[φ˜w|D˜θ|]+∫Ωd[ψ˜η|D˜θ|],for˜v=[˜w,˜η],ϖ=[φ,ψ]∈[H1(Ω)∩L∞(Ω)]2and˜θ∈BV(Ω)∩L2(Ω) | (3.5) |
Furthermore, the variational form in (S6) is equivalent to the following evolution equation:
α0(v(t))θt(t)+∂Φν(v(t);θ(t))∋0inL2(Ω),a.e.t∈(0,T), | (3.6) |
governed by the subdifferential ∂Φν(v(t);⋅)⊂L2(Ω)2 of the time-dependent convex function Φν(v(t);⋅), for t∈(0,T).
Now, our Main Theorem is stated as follows.
Main Theorem Let ν≥0 be a fixed constant. Then, under (A1)-(A7), the system (S)ν admits at least one solution [u,v,θ]=[u,w,η,θ]∈L2(0,T;L2(Ω)4) with v=[w,η].
Remark 6. Note that the presence of mobilities α0=α0(w,η), α=α(w,η) and β=β(w,η) makes the uniqueness problems for the systems (S)ν, ν≥0, be quite tough. In fact, even if we overview the kindred works to this study, we can find only two cases [15, Theorem 2.2] and [40, Theorem 2.2] that obtained the uniqueness results under some restricted situations.
Finally, we devote the remaining part of this Section to show the sketch of the demonstration scenario, since the proof of the Main Theorem is going to be extended.
In this paper, the Main Theorem will be obtained as a consequence of some approximating approaches, and then, the approximating problems will be associated with the time-discretization versions of (3.3)-(3.6), under positive setting of the constant ν. Hence, when we consider the approximating problems, we suppose ν>0, and fix the constant of time-step h∈(0,1]. Also, we denote by [f]ex0∈L2(R;L2(Ω)), [fΓ]ex0∈L2(R;L2(Γ)) and [f∗]ex0∈L2(R;V∗) the zero-extensions of f, fΓ and f∗ (=[f,fΓ]), respectively.
On this basis, the approximating problem for our system (S)ν is denoted by (AP)νh, and stated as follows.
(AP)νh: to find a sequence {[uνi,vνi,θνi]}∞i=1⊂D1 with {vνi}∞i=1={[wνi,ηνi]}∞i=1, which fulfills that
uνi−uνi−1h−λ′(wνi)wνi−wνi−1h+Fuνi=[f∗i]hinV∗, | (3.7) |
1h(vνi−vνi−1,vνi−ϖ)L2(Ω)2+(Dvνi,D(vνi−ϖ))L2(Ω)N×2+([∇G](uνi;vνi),vνi−ϖ)L2(Ω)2+∫Ωγ(vνi)dx+∫Ω(vνi−ϖ)⋅(|Dθνi−1|[∇α](vνi)+ν2|Dθνi−1|2[∇β](vνi))dx | (3.8) |
≤∫Ωγ(ϖ)dx,foranyϖ∈[H1(Ω)∩L∞(Ω)]2,α0(vνi)θνi−θνi−1h+∂Φν(vνi;θνi)∋0inL2(Ω), | (3.9) |
for i=1,2,3,…, starting from the initial data:
[uν0,vν0,θν0]∈D1 with vν0=[wν0,ην0]. |
In the context, for any i∈N, [f∗i]h=[fhi,fhΓ,i]∈L2(Ω)×L2(Γ) (⊂V∗), consists of the components:
fhi:=1h∫ih(i−1)h[f]ex0(τ)dτ in L2(Ω) and fhΓ,i:=1h∫ih(i−1)h[fΓ]ex0(τ)dτ in L2(Γ). |
Hence, before the proof of Main Theorem, it will be needed to verify the following theorem.
Theorem 1 (Solvability of the approximating problem). There exists a small constant h∘1∈(0,1] such that if ν>0 and h∈(0,h∘1], then the approximating problem (AP)νh admits a unique solution {[uνi,vνi,θνi]}∞i=1⊂D1, and moreover,
A∗2h|uνi−uνi−1|2V∗+12h|vνi−vνi−1|2L2(Ω)2+1h|√α0(vνi)(θνi−θνi−1)|2L2(Ω)+h2|uνi|2V+F(uνi,vνi,θνi)≤F(uνi−1,vνi−1,θνi−1)+h|[f∗i]h|2V∗,fori=1,2,3,… | (3.10) |
where A∗ is the constant as in (A2).
However, due to the presence of L1-terms ν2|Dθi−1|2[∇β](vνi)∈L1(Ω)2, i=1,2,3,…, in (3.8), the above Theorem 1 will not be a straightforward consequence of standard variational method, and in fact, this theorem will be obtained via further approximating approach by means of some relaxed systems for (AP)νh.
In the observation of the relaxed system, we first fix a large constant M>(N+2)/2, and fix a small constant ε∈(0,1] as the relaxation index. Besides, we define
DM:=D1∩[L2(Ω)×H1(Ω)×H1(Ω)×HM(Ω)], |
and for any ˜v∈L2(Ω)2, we define a relaxed functional Φνε(˜v;⋅) for Φν(˜v;⋅), by letting:
θ∈L2(Ω)↦Φνε(˜v;θ):={Φν(˜v;θ)+ε22|θ|2HM(Ω), ifθ∈HM(Ω),∞,otherwise. |
Note that for any ˜v∈L2(Ω)2, the functional Φνε(˜v;⋅) is proper l.s.c. and convex on L2(Ω), such that:
D(Φνε(˜v;⋅))=HM(Ω)⊂W1,∞(Ω), |
and hence, the L2-subdifferential ∂Φνε(˜v;⋅) is a maximal monotone graph in L2(Ω)2.
On this basis, we denote by (RX)ε the relaxed system for (AP)νh, and prescribe the system (RX)ε as follows.
(RX)ε:to find a sequence {[uνε,i,vνε,i,θνε,i]}∞i=1⊂DM with {vνε,i}∞i=1={[wνε,i,ηνε,i]}∞i=1, which fulfills that
uνε,i−uνε,i−1h−λ′(wνε,i)wνε,i−wνε,i−1h+Fuνε,i=[f∗i]hinV∗, | (3.11) |
vνε,i−vνε,i−1h−ΔNvνε,i+∂γ(vνε,i)+[∇G](uνε,i;vνε,i)+|Dθνε,i−1|[∇α](vνε,i)+ν2|Dθνε,i−1|2[∇β](vνε,i)∋0inL2(Ω)2, | (3.12) |
α0(vνε,i)θνε,i−θνε,i−1h+∂Φνε(vνε,i;θνε,i)∋0inL2(Ω), | (3.13) |
for i=1,2,3,…, starting from the initial data:
[uνε,0,vνε,0,θνε,0]∈DM with vνε,0=[wνε,0,ηνε,0]. |
Then, we can see that
|Dθνε,i−1|∈L∞(Ω) and ν2|Dθνε,i−1|2[∇β](vνε,i)∈L∞(Ω)2, i=1,2,3,…. |
It implies that the general theories of L2-subdifferentials will be available for the relaxed system (RX)ε.
Thus, it will be needed to verify the following proposition, as the first task to proving the Main Theorem.
Proposition 1. There exists a small constant h∘0∈(0,1], such that if h∈(0,h∘0], then the system (RX)ε admits a unique solution {[uνε,i,vνε,i,θνε,i]}∞i=1⊂DM with {vνε,i}∞i=1= {[wνε,i,ηε,i]ν}∞i=1.
In view of these, we set the demonstration scenario of the Main Theorem, by assigning the proofs of Proposition 1, Theorem 1 and Main Theorem to Sections 4, 5 and 6, respectively.
Before we start the proof, we need to show some lemmas.
Lemma 1. Let us put Δ∙:=[0,1]×[−1,2]⊂R2, and let us assume
0<h≤h∘2:=12(1+|g|C2(Δ∘)+5|λ|2W2,∞(0,1)). | (4.1) |
Let us fix f∗0∈V∗, [u∘0,η∘0,w∘0,θ∘0]∈L2(Ω)×H1(Ω)×H1(Ω)×W1,∞(Ω) and w∘∈H1(Ω), and let us assume that 0≤w∘0,w∘≤1 a.e. in Ω. Then, the following auxiliary system:
u−u∘0h−λ′(w∘)w−w∘0h+Fu=f∗0inV∗, | (4.2) |
w−w∘0h−ΔNw+∂γ(w)+gw(w,η)+αw(w,η)|Dθ∘0|+ν2βw(w,η)|Dθ∘0|2∋−λ′(w∘)uinL2(Ω), | (4.3) |
η−η∘0h−ΔNη+∂I[−1,2](η)+gη(w,η)+αη(w,η)|Dθ∘0|+ν2βη(w,η)|Dθ∘0|2=0ΔinL2(Ω), | (4.4) |
admits a unique solution [u,w,η]∈V×H1(Ω)2, where ∂I[−1.2] is the subdifferential of the indicator function I[−1.2]:R→{0,∞} on the compact interval [−1,2], and this is an additional term to guarantee the boundedness of the range η(Ω) for the component η.
Proof. First, we put:
e:=u−λ′(w∘)w, e∘0:=u∘0−λ′(w∘)w∘0,and v∘0=[w∘0,η∘0],[˜w,˜η]∈R↦γ∙(˜w,˜η):=γ(˜w)+I[−1,2](˜η), |
and reformulate the system {(4.2)-(4.4)} as follows:
e−e∘0h+F(e+λ′(w∘)w)=f∗0inV∗, | (4.5) |
v−v∘0h+∂Ψ2γ∙(v)+[∇g](w,η)+|Dθ∘0|[∇α](v)+ν2|Dθ∘0|2[∇β](v)∋[−λ′(w∘)(e+λ′(w∘)w)0]inL2(Ω)2, | (4.6) |
where Ψ2γ∙ is the functional Ψdγ0 as in Remark 1 (Ex.2), in the case when d=2 and γ0=γ∙ on R2, and ∂Ψ2γ∙ is the subdifferential of Ψ2γ∙ in L2(Ω)2. Then, in the light of Remark 1, we can associate the auxiliary system {(4.2)-(4.4)} with a minimization problem for the following functional:
[e,v]=[e,w,η]∈V∗×L2(Ω)2↦Ψ∙0(w∘;e,v)=Ψ∙0(w∘;e,w,η):={12h|e−e∘0|2V∗+12h|v−v∘0|2L2(Ω)2+12|e+λ′(w∘)w|2L2(Ω)+Ψ2γ∙(v)+∫Ω(α(v)|Dθ∘0|+ν2β(v)|Dθ∘0|2)dx+∫Ωg(v)dx−(f∗0,e)V∗,if[e,v]=[e,w,η]∈L2(Ω)×D(Ψ2γ∙),∞,otherwise, | (4.7) |
via its stationary system {(4.5)-(4.6)}. Then, taking into account (A2)-(A6), (4.1) and (4.7), we find a positive constant C∘0, independent of the variables [e,v]=[e,w,η] and w∘, such that:
Ψ∙0(w∘;e,v)≥C∘0(|e|2L2(Ω)+|v|2H1(Ω)2−1),forall[e,v]∈D(Ψ∙0(w∘;⋅)). | (4.8) |
Now, the above coercivity enables us to apply the standard minimization argument to Ψ∙0 (cf. [3,10]), and to obtain the solution [u,w,η]=[e+λ′(w∘)w,w,η] to {(4.2)-(4.4)}, via the minimizer [e,v]=[e,w,η]∈V×H1(Ω)2 of Ψ∙0(w∘;⋅), with v=[w,η]∈D(Ψ2γ∙).
In the meantime, the uniqueness can be seen by using the standard method, i.e. by taking the difference of two solutions [ek,vk]=[ek,wk,ηk]∈V∗×L2(Ω)2 with vk=[wk,ηk]∈D(Ψ2γ), k=1,2, to the stationary system {(4.5)-(4.6)}. In fact, multiplying the both sides of the subtraction of (4.5) by e1−e2 in V∗, multiplying the both sides of the subtraction of (4.6) by v1−v2 in L2(Ω)2, and using (A2)-(A5), (4.8) and Schwartz's inequality, we have:
1h|e1−e2|2V∗+1h(1−h|[∇g]|W1,∞(Δ∙)2)|v1−v2|2L2(Ω)2+|D(v1−v2)|2L2(Ω)N×2+|(e1−e2)+λ′(w∘)(w1−w2)|2L2(Ω)≤0. | (4.9) |
Since the assumption (4.1) implies (1−h, we can deduce from (4.9) the uniqueness for the system {(4.2)-(4.4)}.
Lemma 2. Let w∘∈H1(Ω) be the function as in Lemma 1, and let Ψ∙0(w∘;⋅) be the functional on V∗×L2(Ω)2 given in (4.7). Also, let us take a sequence {w∘n}∞n=1⊂H1(Ω) such that 0≤w∘n≤1 a.e. in Ω, for n=1,2,3,…, and let us define a sequence {Ψ∙0(w∘n;⋅)}∞n=1 of functionals on V∗×L2(Ω)2, by putting w∘=w∘n in (4.7), for n=1,2,3,…. Besides, let us assume that:
w∘n→w∘inthepointwisesensea.e.inΩ,asn→∞. | (4.10) |
Then, Ψ∙0(w∘n;⋅)→Ψ∙0(w∘;⋅) on V∗×L2(Ω)2, in the sense of Γ-convergence, as n→∞.
Proof. The condition of lower-bound will be seen, immediately, from the lower semi-continuity of the following functional (of 4-variables):
[w∘,e,v]∈L2(Ω)×V∗×L2(Ω)2↦Ψ∙0(w∘;e,v)∈(−∞,∞]. |
The condition of optimality will be verified by taking the singleton {[e,v]} for any [e,v]∈D(Ψ∙0(w∘;⋅)) =D(Ψ∙0(w∘n;⋅)) for all n≥1 as the sequence corresponding to {z∙n}∞n=1 in Definition 2.
Lemma 3. Under the assumptions as in the previous Lemmas 1-2, let us take the solution [e,v]=[e,w,η]∈V×H1(Ω)2 to the stationary system {(4.5)-(4.6)} with v=[w,η], and for any n∈N, let us denote by [en,vn]=[en,wn,ηn]∈V×H1(Ω)2 the solution to {(4.5)-(4.6)} with vn=[wn,ηn], when w∘=w∘n. Then, the assumption (4.10) implies that:
[en,vn]=[en,wn,ηn]→[e,v]=[e,w,η]inV∗×L2(Ω)2,andweaklyinL2(Ω)×H1(Ω)2,asn→∞ | (4.11) |
Proof. In the light of Lemma 1 (including the proof), we can see that:
Ψ∙0(˜w∘;˜e,˜v)=Ψ∙0(˜w∘;˜e,˜w,˜η)≤Ψ∙0(˜w∘;0,0,0)≤C∘1:=12h(|e∘0|2V∗+|v∘0|2L2(Ω)2)+LN(Ω)(|γ(0)|+|g(0,0)|)+α(0,0)|θ∘0|W1,1(Ω)+ν2β(0,0)|θ∘0|2H1(Ω), | (4.12) |
for any ˜w∘∈H1(Ω) with 0≤˜w∘≤1 a.e. in Ω, and
solution [˜e,˜v]=[˜e,˜w,˜η] to {(4.5)-(4.6)} with ˜v=[˜w,˜η] when w∘=˜w∘.
Since the constant C∘1 is independent of the choice of ˜w∘, the convergence (4.11) will be observed by taking into account (4.8), (4.12) and the uniqueness for {(4.5)-(4.6)}, and by applying Lemma (cf. [3,11]), and the general theories of the compact embeddings (cf. [3,11]) and the Γ convergence (cf. [9]).
Lemma 4. Let h∘2 be the constant as in (4.1). Let f∗0∈V∗, u∘0∈L2(Ω), v∘0=[w∘0,η∘0]∈H1(Ω)2 and θ∘0∈W1,∞(Ω) be the functions as in Lemma 1. Then, for any h∈(0,h∘2], the following system:
u−u∘0h−λ′(w)w−w∘0h+Fu=f∗0inV∗, | (4.13) |
v−v∘0h−ΔNv+[∂γ(w)0]+[∇g](v)+|Dθ∘0|[∇α](v)+ν2|Dθ∘0|2[∇β](v)∋[−λ′(w)u0]inL2(Ω)2, | (4.14) |
admits at least one solution [u,v]=[u,w,η]∈V×H1(Ω)2 with v=[w,η].
Proof. Let us set a compact set K∙1 in L2(Ω), by letting:
K∙1:={˜w∈H1(Ω)|0≤˜w≤1 a.e. in Ω,and12h|˜w−w∘0|2L2(Ω)+12|D˜w|2L2(Ω)N≤C∘1+|c∗|LN(Ω)+12h|e∘0|2V∗+h|f∗0|2V∗}, |
and let us consider an operator P∙1:K∙1→L2(Ω), which maps any w∘∈K∙1 to the component w of the solution [u,w,η]∈V×H1(Ω)×H1(Ω) to {(4.2)-(4.4)}. Then, on account of (A3), (A6), Lemma 3, (4.7) and (4.12), it will be seen that P∙1K∙1⊂K∙1 and P∙1 is a continuous operator in the topology of L2(Ω). So, applying Schauder's fixed point theorem, we find a fixed point w∙∈K∙1 for P∙1, i.e. w∙=P∙1w∙ in L2(Ω).
Now, let us denote by [u∙,w∙,η∙]∈V×H1(Ω)×H1(Ω) the solution to {(4.2)-(4.4)}, involved in the fixed point w∙. Then, this triplet [u∙,w∙,η∙] must be a special solution to {(4.2)-(4.4)} such that w∙=w∘. Hence, our remaining task will be to show that
0≤η∙≤1a.e.inΩ, | (4.15) |
namely, the subdifferential ∂I[−1,2] in (4.4) will not affect for η∙.To this end, we check two inequalities:
0−η∘0h+gη(w∙,0)+|Dθ∘0|αη(w∙,0)+ν2|Dθ∘0|2βη(w∙,0)≤0inL2(Ω), | (4.16) |
1−η∘0h+gη(w∙,1)+|Dθ∘0|αη(w∙,1)+ν2|Dθ∘0|2βη(w∙,1)≤0inL2(Ω), | (4.17) |
with use of the assumptions (A3), (A5) and 0≤η∘0≤1 a.e. in Ω.
On this basis, let us take the difference from (4.16) to (4.4) when η=η∙ and w=w∘=w∙ (resp. from (4.4) to (4.17) when η=η∙ and w=w∘=w∙), and multiply the both sides by [−η∙]+ (resp. by [η∙−1]+). Then, with the assumptions (A3), (A5) and ∂I[−1,2](0)={0} (resp. ∂I[−1,2](1)={0}) in mind, it is inferred that:
1h(1−h|gηη|C(Δ∙))|[−η∙]+|2L2(Ω)+|D[−η∙]+|2L2(Ω)N≤0(resp.1h(1−h|gηη|C(Δ∙))|[η∙−1]+|2L2(Ω)+|D[η∙−1]+|2L2(Ω)N≤0). | (4.18) |
Since the assumption (4.1) implies 1−h|gηη|C(Δ∙)≥12, we can deduce (4.15) from (4.18), and conclude that the triplet [u∙,v∙]=[u∙,η∙,w∙] with v∙:=[w∙,η∙] solves the system {(4.13)-(4.14)}.
Lemma 5. Let f∗0∈V∗ and θ∘0∈HM(Ω) be fixed functions, and let [u,v]=[u,w,η]∈V×H1(Ω)2 be a solution to the system {(4.13)-(4.14)} with v=[w,η]. Then, the inclusion
α0(v)θ−θ∘0h+∂Φνε(v;θ)∋0inL2(Ω) | (4.19) |
admits a unique solution θ∈HM(Ω).
Proof. We omit the proof, because this lemma is obtained, immediately, just as a direct consequence of [31, Lemma 3.4].
Lemma 6. Under the assumption (4.1), let us take a quartet [u,v,θ]=[u,w,η,θ]∈DM with v=[w,η]∈H1(Ω)2, which solves the coupled system {(4.13)-(4.14), (4.19)}. Then, the following energy-inequality holds:
A∗2h|u−u∘0|2V∗+12h|v−v∘0|2L2(Ω)2+1h|√α0(v)(θ−θ∘0)|2L2(Ω)+h2|u|2V+Fνε(u,v,θ)≤Fνε(u∘0,v∘0,θ∘0)+h|f∗0|2V∗, | (4.20) |
where A∗>0 is the constant as in (A2), and Fνε is the relaxed version of the functional Fν, defined as:
[u,v,θ]=[u,w,η,θ]∈L2(Ω)4↦Fνε(u,v,θ)=Fνε(u,w,η,θ)=B∗|u|2L2(Ω)+Ψ2γ(v)+∫Ω(g(v)−c∗)dx+Φνε(v;θ), | (4.21) |
with the constant B∗=(1+A∗)/2 as in (3.1).
Proof. First, let us rewrite the equation (4.13) as follows:
(u−u∘0,z)L2(Ω)+h⟨Fu,z⟩=h⟨f∗0,z⟩+(λ′(w)(w−w∘0),z)L2(Ω),foranyz∈V, | (4.22) |
and let us put z=u. Then, by using Schwarz's inequality, we have:
12|u|2L2(Ω)+h2|u|2V≤12|u∘0|2L2(Ω)+h2|f∗0|2V∗+(λ′(w)(w−w∘0),u)L2(Ω). | (4.23) |
Alternatively, if we rewrite the equation (4.13) to:
1h(u−u∘0,z∗)V∗+⟨z∗,u⟩=(f∗0,z∗)V∗+1h(λ′(w)(w−w∘0),z∗)V∗, |
for any z∗∈V∗,
and put z∗=A∗(u−u∘0)∈V, then we also see that:
A∗2h|u−u∘0|2V∗+A∗2|u|2L2(Ω)≤A∗2|u∘0|2L2(Ω)+A∗h|f∗0|2V∗+14h|w−w∘0|2L2(Ω). | (4.24) |
Next, let us multiply the both sides of the inclusion (4.14) by v−v∘0. Then, in the light of (A2)-(A5) and Taylor's theorem, we infer that:
1h(1−h2|g|C2([0,1]2))|v−v∘0|2L2(Ω)2+12|Dv|2L2(Ω)N×2+∫Ωγ(w)dx+∫Ωg(v)dx+∫Ωα(v)|Dθ∘0|dx+ν2∫Ωβ(v)|Dθ∘0|2dx≤12|Dv∘0|2L2(Ω)N×2+∫Ωγ(w∘0)dx+∫Ωg(v∘0)dx.+∫Ωα(v∘0)|Dθ∘0|dx+ν2∫Ωβ(v∘0)|Dθ∘0|2dx−(λ′(w)(w−w∘0),u)L2(Ω). | (4.25) |
Furthermore, applying the both sides of (4.19) by θ−θ∘0, it follows that:
1h|√α0(v)(θ−θ∘0)|2L2(Ω)+Φνε(v;θ)≤Φνε(v;θ∘0). | (4.26) |
Now, since (4.1) implies 1−h2|g|C2([0,1]2)2≥34, the energy-inequality (4.20) can be obtained by taking the sum of (4.23)-(4.26) with (A2) in mind.
Lemma 7. By the restriction 1≤N≤3 of the spatial dimension, there exists a positive constant C∘2, such that under the notations and assumptions as in Lemma 6, the condition:
C∘2h13(1+2(Fνε(u∘0,v∘0,θ∘0)+h|f∗0|2V∗)23)≤12,and0<h≤h∘2, | (4.27) |
implies the uniqueness of the solution [u,v,θ]=[u,w,η,θ]∈DM to the system {(4.13)-(4.14), (4.19)} with v=[w,η].
Proof. In the light of the uniqueness of θ as in Lemma 5, it is enough to focus only on the uniqueness for the component [u,v]=[u,w,η]∈V×H1(Ω)2 with v=[w,η]. To this end, we take two triplets [uk,vk]=[uk,wk,ηk]∈DM with vk=[wk,ηk], k=1,2, that fulfill (4.13)-(4.14).
First, with the equivalence of (4.13) and (4.22) in mind, we take the difference between two variational forms (4.22) for uk, k=1,2, and put z=u1−u2 in V. Then:
|u1−u2|2L2(Ω)+h|u1−u2|2V=(λ′(w1)w1−λ′(w2)w2,u1−u2)L2(Ω)−((λ′(w1)−λ′(w2))w∘0,u1−u2)L2(Ω), |
so that by using (A2) and Schwarz's inequality, we have:
14|u1−u2|2L2(Ω)+h|u1−u2|2V≤3|λ′|2W1,∞(0,1)|w1−w2|2L2(Ω). | (4.28) |
Secondly, let us take the difference between two inclusions (4.14) for vk=[wk,ηk], k=1,2, and multiply the both sides by v1−v2 in L2(Ω)2. Then, by using (A2)-(A5) and Schwarz's inequality, it is computed that:
1h(1−h|[∇g]|C1([0,1]2)2)|v1−v2|2L2(Ω)2+|D(v1−v2)|2L2(Ω)N×2≤−(λ′(w1)u1−λ′(w2)u2,w1−w2)L2(Ω)≤|λ′|L∞(0,1)|u1−u2|L2(Ω)|w1−w2|L2(Ω)+(u1(λ′(w1)−λ′(w2)),w1−w2)L2(Ω)≤18|u1−u2|2L2(Ω)+2|λ′|2L∞(0,1)|w1−w2|2L2(Ω)+|λ″ | (4.29) |
Here, the dimensional restriction 1 \leq N \leq 3 and the assumption (4.27) enable to apply the analytic technique as in [19, Lemma 3.1], and to find a constant C_2^\circ > 0 , independent of h and triplets [u_0^\circ, v_0^\circ] and [u_k, v_k] , k=1, 2 , such that:
|\lambda ''{|_{{L^\infty }(0,1)}}\int_\Omega | {u_1}||{w_1} - {w_2}{|^2}dx \le \frac{1}{2}|D({w_1} - {w_2})|_{{L^2}(\Omega )}^2 + C_2^ \circ (1 + |{u_1}|_V^{\frac{4}{3}})|{w_1} - {w_2}|_{{L^2}(\Omega )}^2. | (4.30) |
Furthermore, under (4.27), the inequality (4.20) enables to derive that:
\begin{array}{l} C_2^ \circ (1 + |{u_1}|_V^{\frac{4}{3}})|{w_1} - {w_2}|_{{L^2}(\Omega )}^2 = C_2^ \circ {h^{\frac{1}{3}}}({h^{\frac{2}{3}}} + {(h|{u_1}|_V^2)^{\frac{2}{3}}}) \cdot \frac{1}{h}|{w_1} - {w_2}|_{{L^2}(\Omega )}^2\\ \;\;\;\; \le C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_0^ \circ ,\mathit{\boldsymbol{v}}_0^ \circ ,\theta _0^ \circ ) + h|f_0^*|_{{V^*}}^2)^{\frac{2}{3}}}) \cdot \frac{1}{h}|{w_1} - {w_2}|_{{L^2}(\Omega )}^2\\ \;\;\;\; \le \frac{1}{{2h}}|{w_1} - {w_2}|_{{L^2}(\Omega )}^2. \end{array} | (4.31) |
Now, taking sum of (4.28)-(4.29) with (4.30)-(4.31) in mind, we obtain that:
\begin{array}{l} \frac{1}{8}|{u_1} - {u_2}|_{{L^2}(\Omega )}^2 + h|{u_1} - {u_2}|_V^2\\ + \frac{1}{h}\left( {\frac{1}{2} - h\left( {|g{|_{{C^2}({{[0,1]}^2})}} + 5|\lambda |_{{W^{2,\infty }}(0,1)}^2} \right)} \right)|{\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{v}}_2}|_{{L^2}{{(\Omega )}^2}}^2\\ + \frac{1}{2}|D({\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{v}}_2})|_{{L^2}{{(\Omega )}^{N \times 2}}}^2 \le 0. \end{array} | (4.32) |
This implies the required uniqueness, because \frac{1}{2} -h (|g|_{C^2([0, 1]^2)^2} +5|\lambda|_{W^{2, \infty}(0, 1)}^2) > 0 follows from the assumption (4.1) and (4.27).
Proof of Proposition 1. Let us take a positive constant h_{2}^{\circ} defined by (4.1). Let us set a positive constant h_0^\circ , so small to satisfy that:
C_2^\circ (h_0^\circ)^{\frac{1}{3}} \bigl( 1 +2(F_\varepsilon^\nu(u_0^\circ, v_0^\circ, \theta_0^\circ) +h_0^\circ |[f^*]_0^{\rm ex}|_{L^2(0, T; V^*)}^2 )^{\frac{2}{3}} \bigr) \leq \frac{1}{2}, \mbox{ and } 0 < h_0^\circ \leq h_2^\circ. |
Then, from (4.20), it will be observed that:
\begin{array}{l} C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_{\varepsilon ,i - 1}^\nu ,\mathit{\boldsymbol{v}}_{\varepsilon ,i - 1}^\nu ,\theta _{\varepsilon ,i - 1}^\nu ) + h|{[f_i^*]^h}|_{{V^*}}^2)^{\frac{2}{3}}})\\ \;\;\;\; \le C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_{\varepsilon ,i - 2}^\nu ,{\rm{ }}\mathit{\boldsymbol{v}}_{\varepsilon ,i - 2}^\nu ,\theta _{\varepsilon ,i - 2}^\nu ) + h(|{[f_i^*]^h}|_{{V^*}}^2 + |{[f_{i - 1}^*]^h}|_{{V^*}}^2))^{\frac{2}{3}}})\\ \;\;\;\; \le \cdots \le C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_{\varepsilon ,0}^\nu ,{\rm{ }}\mathit{\boldsymbol{v}}_{\varepsilon ,0}^\nu ,\theta _{\varepsilon ,0}^\nu ) + |[{f^*}]_0^{{\rm{ex}}}|_{{L^2}(0,T;{V^*})}^2)^{\frac{2}{3}}})\\ \;\;\;\; \le \frac{1}{2},{\rm{ }}\;{\rm{for}}\;{\rm{all}}\;0 < h \le h_2^ \circ \;( \le h_2^ \circ )\;{\rm{and}}\;i = 1,2,3, \ldots . \end{array} | (4.33) |
In view of this, the Proposition 1 will be concluded by means of the following algorithm.
(Step 0) Let h \in (0, h_0^\circ] , let i=1, and let [u_{\varepsilon, 0}^{\nu}, v_{\varepsilon, 0}^{\nu}, \theta_{\varepsilon, 0}^{\nu}] \in D_{M}.
(Step 1) Obtain the quartet [u_{\varepsilon, i}^\nu, v_{\varepsilon, i}^\nu, \theta_{\varepsilon, i}^\nu] \in D_M as the unique solution to the system {(4.13)-(4.14), (4.19)}, by applying Lemmas 4-7 to the case when:
\begin{align} & f_{0}^{*}={{[f_{i-1}^{*}]}^{h}}in\ {{V}^{*}}, u_{0}^{{}^\circ }=u_{\varepsilon, i-1}^{\nu }\ in\ {{L}^{2}}(\Omega ), \\ & v_{0}^{{}^\circ }=\text{ }v_{\varepsilon, i-1}^{\nu }\text{ }in\ {{H}^{1}}{{(\Omega )}^{2}}\ and\ \theta _{0}^{{}^\circ }=\theta _{\varepsilon, i-1}^{\nu }\ in\ {{H}^{M}}(\Omega ). \\ \end{align} |
(Step 2) Iterate the value of i and return to (Step 1).
Note that (4.33) let the assumption h \in (0, h_0^\circ] be a uniform condition to make sense (Step 1), for all i=1, 2, 3, \dots
Let us set h_1^\circ :=h_0^\circ i.e. the constant as in Proposition 1, and let us fix \nu > 0 , h \in (0, h_{1}^{\circ}] and the initial value [u_{0}^{\nu}, v_{0}^{\nu}, \theta_{0}^{\nu}]=[u_{0}^{\nu}, w_{0}^{\nu}, \eta_{0}^{\nu}, \theta_{0}^{\nu}] \in D_{1} with v_{0}^{\nu}=[w_{0}^{\nu}, \eta_{0}^{\nu}] . Besides, we recall the following lemmas obtained in [31].
Lemma 8. (cf. [31, Lemma 4.1]) Assume v^\circ \in [H^1(\Omega) \cap L^\infty (\Omega)]^2 , \{ v_\varepsilon^\circ \}_{0 < \varepsilon \leq 1} \subset [H^1(\Omega) \cap L^\infty (\Omega)]^2 , and
\left\{ \begin{align} & v_{\varepsilon }^{{}^\circ }\to {{v}^{{}^\circ }}in\ the\ pointwise\ sense\ a.e.\ in\ \Omega \ \varepsilon \downarrow 0, \\ & {{\{\text{ }v_{\varepsilon }^{{}^\circ }\}}_{0<\varepsilon \le 1}}\ is\ bounded\text{ }in\ {{L}^{\infty }}{{(\Omega )}^{2}}. \\ \end{align} \right. |
Then, for the sequence of convex functions \{ \Phi_{\varepsilon}^{\nu}(v_\varepsilon^\circ; \cdot\, ) \}_{0 < \varepsilon \leq 1} , it holds that \Phi_{\varepsilon}^{\nu}(v_\varepsilon^\circ; {}\cdot\, ) \to \Phi_\nu (v^\circ; \cdot\, ) on L^2(\Omega) , in the sense of Mosco, as \varepsilon \downarrow 0 .
Lemma 9. (cf. [31, Lemma 4.2]) Assume that
\left\{ \begin{align} & {{v}^{{}^\circ }}\in {{[{{H}^{1}}(\Omega )\cap {{L}^{\infty }}(\Omega )]}^{2}}, {{\{v_{\varepsilon }^{{}^\circ }\}}_{0<\varepsilon \le 1}}\subset {{[{{H}^{1}}(\Omega )\cap {{L}^{\infty }}(\Omega )]}^{2}}, \\ & {{\{v_{\varepsilon }^{{}^\circ }\}}_{0<\varepsilon \le 1}}\ is\text{ }bounded\text{ }in\ {{L}^{\infty }}{{(\Omega )}^{2}}, \\ & v_{\varepsilon }^{{}^\circ }\to {{v}^{{}^\circ }}\ in\text{ }the\text{ }po\operatorname{int}wise\text{ }sense, \text{ }a.e.\ in\text{ }\Omega \ as\ \varepsilon \downarrow 0, \\ \end{align} \right. |
and
\left\{ \begin{align} & {{\theta }^{{}^\circ }}\in {{H}^{1}}(\Omega ), {{\{\theta _{\varepsilon }^{{}^\circ }\}}_{0<\varepsilon \le 1}}\subset {{H}^{1}}(\Omega ), \\ & \theta _{\varepsilon }^{{}^\circ }\to {{\theta }^{{}^\circ }}\ in\ {{L}^{2}}(\Omega )\ and\ \Phi _{\varepsilon }^{\nu }(v_{\varepsilon }^{{}^\circ };\theta _{\varepsilon }^{{}^\circ })\to {{\Phi }_{\nu }}({{v}^{{}^\circ }};{{\theta }^{{}^\circ }}), as\ \varepsilon \downarrow 0 \\ \end{align} \right. |
Then, \theta_\varepsilon^\circ \to \theta^\circ in H^1(\Omega) and {\varepsilon} \theta_\varepsilon^\circ \to 0 in H^M (\Omega) , as \varepsilon \downarrow 0 .
Lemma 10. (cf. [31, Lemma 4.4]) Let v^{\circ} \in [H^{1}(\Omega) \cap L^{\infty}(\Omega)]^{2} and \check{\theta}_{0}^{\circ}, \hat{\theta}_{0}^{\circ} \in H^{1}(\Omega) be fixed functions, and let [\check{\theta}, \check{\theta}^{\ast}], [\hat{\theta}, \hat{\theta}^{\ast}] \in L^{2}(\Omega)^{2} be pairs of functions such that
\left\{ \begin{array}{l} [\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } ,{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } }^ * }] \in \partial {\Phi _\nu }({\mathit{\boldsymbol{v}}^ \circ }; \cdot ){\rm{ in }}{L^2}{(\Omega )^2}{\rm{ and }}\frac{1}{h}{\alpha _0}({\mathit{\boldsymbol{v}}^ \circ })(\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } - \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } _0^ \circ ) + {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } }^ * } \le 0{\rm{ a}}{\rm{.e}}{\rm{. in }}\Omega ,\\ [\hat \theta ,{{\hat \theta }^ * }] \in \partial {\Phi _\nu }({\mathit{\boldsymbol{v}}^ \circ }; \cdot ){\rm{ in }}{L^2}{(\Omega )^2}{\rm{ and }}\frac{1}{h}{\alpha _0}({\mathit{\boldsymbol{v}}^ \circ })(\hat \theta - \hat \theta _0^ \circ ) + {{\hat \theta }^ * } \ge 0{\rm{ a}}{\rm{.e}}{\rm{. in }}\Omega , \end{array} \right. | (5.1) |
respectively. Then, it follows that
|\sqrt{\alpha_{0}(v^{\circ})}[\check{\theta}-\hat{\theta}]^{+}|_{L^{2}(\Omega)}^{2} \le |\sqrt{\alpha_{0}(v^{\circ})}[\check{\theta}_{0}^{\circ}-\hat{\theta}_{0}^{\circ}]^{+}|_{L^{2}(\Omega)}^{2}, |
and therefore, if \check{\theta}_{0}^{\circ} \le \hat{\theta}_{0}^{\circ} in \Omega, then the inequality \check{\theta} \leq \hat{\theta} a.e. in \Omega also follows from (A3).
Moreover, if the both inequalities in (5.1) hold as equalities, then:
|\sqrt{\alpha_{0}(v^{\circ})}(\check{\theta}-\hat{\theta})|_{L^{2}(\Omega)}^{2} \le |\sqrt{\alpha_{0}(v^{\circ})}(\check{\theta}_{0}^{\circ}-\hat{\theta}_{0}^{\circ})|_{L^{2}(\Omega)}^{2}, |
Based on these, we divide the proof of Theorem 1 in two parts: the part of existence; the part of uniqueness and energy inequality.
The part of existence. Let \nu > 0 be a fixed constant. By Lemma 8, there exists a sequence \{\tilde{\theta}_{\varepsilon, 0}^{\nu} \}_{0 < \varepsilon \leq 1} \subset H^{M}(\Omega) such that
\tilde{\theta}_{\varepsilon, 0}^{\nu} \to \theta_{0}^{\nu} \mbox{ in } H^{1}(\Omega) \mbox{ and } \Phi_{\varepsilon}^{\nu}(v_{0}^{\nu} ; \tilde{\theta}_{\varepsilon, 0}^{\nu}) \to \Phi_{\nu}(v_{0}^{\nu}; \theta_{0}^{\nu}) \mbox{ as } \varepsilon \downarrow 0. |
So, by virtue of Proposition 1 we can take a class \{ [\tilde{u}_{\varepsilon, i}^\nu, \tilde{\mathit{\pmb{v}}}_{\varepsilon, i}^\nu, \tilde{\theta}_{\varepsilon, i}^\nu] \, | \, i \in \mathbb{N}, ~\varepsilon \in (0, 1] \} consisting of solutions \{ [\tilde{u}_{\varepsilon, i}^\nu, \tilde{\mathit{\pmb{v}}}_{\varepsilon, i}^\nu, \tilde{\theta}_{\varepsilon, i}^\nu] \}_{i=1}^\infty=\{ [\tilde{u}_{\varepsilon, i}^\nu, \tilde{w}_{\varepsilon, i}^\nu, \tilde{\eta}_{\varepsilon, i}^\nu, \tilde{\theta}_{\varepsilon, i}^\nu] \}_{i=1}^\infty \subset {D_M} to (RX)_\varepsilon with \{ \tilde{\mathit{\pmb{v}}}_{\varepsilon, i}^\nu \}_{i=1}^\infty=\{ [\tilde{w}_{\varepsilon, i}^\nu, \tilde{\eta}_{\varepsilon, i}^\nu] \}_{i=1}^{\infty} , starting from the initial data [u_{\varepsilon, 0}^{\nu}, \mathit{\pmb{v}}_{\varepsilon, 0}^{\nu}, \theta_{\varepsilon, 0}^{\nu}]=[u_{0}^{\nu}, \mathit{\pmb{v}}_{0}^{\nu}, \tilde{\theta}_{\varepsilon, 0}^{\nu}] for 0 < \varepsilon \leq 1 . Then, with Lemma 6 and the algorithm (Step 0)-(Step 2) in mind, we remark the following energy-inequality:
\begin{array}{l} \frac{{{A_*}}}{{2h}}|\tilde u_{\varepsilon ,i}^\nu - \tilde u_{\varepsilon ,i - 1}^\nu |_{{V^*}}^2 + \frac{1}{{2h}}|\mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i}^\nu - \mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i - 1}^\nu |_{{L^2}{{(\Omega )}^2}}^2 + \frac{1}{h}|\sqrt {{\alpha _0}(\mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i}^\nu )} (\tilde \theta _{\varepsilon ,i}^\nu - \tilde \theta _{\varepsilon ,i - 1}^\nu )|_{{L^2}(\Omega )}^2\\ + \frac{h}{2}|\tilde u_{\varepsilon ,i}^\nu |_V^2 + {\mathscr{F}}_\varepsilon ^\nu (\tilde u_{\varepsilon ,i}^\nu ,\mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i}^\nu ,\tilde \theta _{\varepsilon ,i}^\nu ) \le {\mathscr{F}}_\varepsilon ^\nu (\tilde u_{\varepsilon ,i - 1}^\nu ,\mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i - 1}^\nu ,\tilde \theta _{\varepsilon ,i - 1}^\nu ) + h|{[\mathit{\boldsymbol{f}}_i^*]^h}|_{{V^*}}^2,\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{for all}}\;0 < \varepsilon \le 1\;{\rm{and}}\;i = 1,2,3, \ldots . \end{array} | (5.2) |
In the light of (A3)-(A6), (4.21) and (5.2), the class \{ [\tilde{u}_{\varepsilon, i}^{\nu}, \tilde{\mathit{\pmb{v}}}_{\varepsilon, i}^{\nu}, \tilde{\theta}_{\varepsilon, i}^{\nu}]\ |\ i \in \mathbb{N}, ~\varepsilon \in (0, 1] \} is bounded in V \times H^{1}(\Omega)^{3}. Therefore, applying a diagonal argument and the general theories of compactness (cf. [3,11]), we find sequences \{\varepsilon_{n} \}_{n=1}^\infty \subset (0, 1] , \{[u_{i}^{\nu}, \mathit{\pmb{v}}_{i}^{\nu}, \theta_{i}^{\nu}] \}_{i=1}^\infty=\{ [u_{i}^{\nu}, w_{i}^{\nu}, \eta_{i}^{\nu}, \theta_{i}^{\nu}] \}_{i=1}^\infty \subset V \times H^{1}(\Omega)^{2} \times H^1(\Omega) , with \{ \mathit{\pmb{v}}_i^\nu \}_{i=1}^\infty=\{ [w_i^\nu, \eta_i^\nu] \}_{i=1}^\infty , such that
\left\{ \begin{array}{l} 1 \ge {\varepsilon _1} > \cdots > {\varepsilon _n} \downarrow 0{\rm{ as }}n \to \infty ,\\ \tilde u_{i,n}^\nu : = \tilde u_{{\varepsilon _n},i}^\nu \to u_i^\nu {\rm{ in}}\;{L^2}(\Omega ),\;{\rm{ weakly}}\;{\rm{in}}\;\mathit{V}\;{\rm{as}}\;n \to \infty \\ \mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu : = \mathit{\boldsymbol{\widetilde v}}_{{\varepsilon _n},i}^\nu \to {\rm{ }}\mathit{\boldsymbol{v}}_i^\nu {\rm{ in}}\;{L^2}{(\Omega )^2},{\rm{ weakly}}\;{\rm{in }}{H^1}{(\Omega )^2},{\rm{ weakly - }} * {\rm{ in}}\;{L^\infty }{(\Omega )^2},\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{and}}\;{\rm{in}}\;{\rm{the}}\;{\rm{pointwise}}\;{\rm{sense}}\;{\rm{a}}{\rm{.e}}{\rm{. in}}\;\Omega {\rm{, as}}\;n \to \infty ,\\ \tilde \theta _{i,n}^\nu \equiv \tilde \theta _{{\varepsilon _n},i}^\nu \to \theta _i^\nu {\rm{ in }}{L^2}(\Omega ),{\rm{ weakly}}\;{\rm{in }}{H^1}(\Omega )\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{and}}\;{\rm{in}}\;{\rm{the}}\;{\rm{pointwise}}\;{\rm{sense}}\;{\rm{a}}{\rm{.e}}{\rm{. in }}\Omega {\rm{, as }}n \to \infty \\ \le w_i^\nu \le 1{\rm{ and }}0 \le \eta _i^\nu \le 1{\rm{ }}\;{\rm{a}}{\rm{.e}}{\rm{.in}}\;\Omega ;\;{\rm{for}}\;{\rm{all}}\;i = 0,1,2, \ldots . \end{array} \right. | (5.3) |
Moreover, by (3.13), (5.3), Lemmas 8-9 and Remark 4 (Fact 6), we infer that
\left\{ \begin{array}{l} [\theta _i^\nu , - \frac{1}{h}{\alpha _0}(\mathit{\boldsymbol{v}}_i^\nu )(\theta _i^\nu - \theta _{i - 1}^\nu )] \in \partial {\Phi _\nu }(\mathit{\boldsymbol{v}}_i^\nu ; \cdot ){\rm{ in}}\;{L^2}{(\Omega )^2},\\ \Phi _{{\varepsilon _n}}^\nu (\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ;\tilde \theta _{i,n}^\nu ) \to {\Phi _\nu }(\mathit{\boldsymbol{v}}_i^\nu ;\theta _i^\nu ),\tilde \theta _{i,n}^\nu \to \theta _i^\nu {\rm{ in }}{H^1}(\Omega )\;\;\;\;\;for\;\mathit{i = }{\rm{0,1,2,}}\\ \;\;\;\;\;\;\;\;{\rm{and}}\;{\varepsilon _n}\tilde \theta _{i,n}^\nu \to 0\;{\rm{in}}\;{H^M}(\Omega ),{\rm{as}}\;n \to \infty \end{array} \right. \cdots | (5.4) |
Also, since
\begin{equation*} [c, 0] \in \partial\Phi_{\nu}(\mathit{\pmb{v}}_{i}^{\nu};\cdot) \ \ \mbox{ in } L^{2}(\Omega)^{2}, \mbox{ for all $c \in \mathbb{R}$ and $ i = 0, 1, 2, \dots $, } \end{equation*} |
it is observed that
\begin{equation*} \theta_{i}^{\nu} \le |\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)} \ (\mbox{resp. } \theta_{i}^{\nu} \ge - |\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)}) \mbox{ a.e. in } \Omega, \mbox{ for any $i \in \mathbb{N}$, } \end{equation*} |
by applying Lemma 10 as the case when
\begin{equation*} \left\{ \begin{array}{l} \mathit{\pmb{v}}^{\circ} = \mathit{\pmb{v}}_{i}^{\nu}, \\ \check{\theta}_{0}^{\circ} = \theta_{i-1}^{\nu}, ~ \hat{\theta}_{0}^{\circ} = |\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)} \ (\mbox{resp. } \check{\theta}_{0}^{\circ} = -|\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)}, ~\hat{\theta}_{0}^{\circ} = \theta_{i-1}^{\nu}), \\ [\check{\theta}, \check{\theta}^{\ast}] = [\theta_{i}^{\nu}, -\frac{1}{h}\alpha_{0}(\mathit{\pmb{v}}_{i}^{\nu})(\theta_{i}^{\nu}-\theta_{i-1}^{\nu})] \ (\mbox{resp. } [\check{\theta}, \check{\theta}^{\ast}] = [-|\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)}, 0]), \\ [\hat{\theta}, \hat{\theta}^{\ast}] = [|\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)}, 0] \ \left(\mbox{resp. } [\hat{\theta}, \hat{\theta}^{\ast}] = \bigl[\theta_{i}^{\nu}, -\frac{1}{h}\alpha_{0}(\mathit{\pmb{v}}_{i}^{\nu})(\theta_{i}^{\nu}-\theta_{i-1}^{\nu}) \bigr] \right). \end{array} \right. \end{equation*} |
Having in mind (A2)-(A5), (3.11)-(3.12) and (5.3)-(5.4), we can see that
\begin{equation*} \begin{array}{ll} \frac{1}{h}(u_{i}^{\nu} - u_{i-1}^{\nu}, z)_{L^{2}(\Omega)} - \frac{1}{h}(\lambda'(w_{i}^{\nu})(w_{i}^{\nu}-w_{i-1}^{\nu}), z)_{L^{2}(\Omega)} +(u_i^\nu, z)_V \\ = \lim_{n \to \infty} \left[\frac{1}{h}(\tilde{u}_{i, n}^{\nu}-\tilde{u}_{i-1, n}^{\nu}, z)_{L^{2}(\Omega)}-\frac{1}{h}(\lambda'(\tilde{w}_{i, n}^{\nu})(\tilde{w}_{i, n}^{\nu}-\tilde{w}_{i-1, n}^{\nu}), z)_{L^{2}(\Omega)} +(\tilde{u}_{i, n}^{\nu}, z)_{V} \right] \\ = \langle [{\mathit{\pmb{f}}}_{i}^*]^{h}, z \rangle, \mbox{ for any $z \in V$ and $ i = 1, 2, 3, \dots $, } \end{array} \end{equation*} |
and
\begin{array}{l} {(D\mathit{\boldsymbol{v}}_i^\nu ,D(\mathit{\boldsymbol{v}}_i^\nu - \varpi ))_{{L^2}{{(\Omega )}^{N \times 2}}}} + \int_\Omega \gamma (w_i^\nu ){\mkern 1mu} dx - \int_\Omega \gamma (\varphi ){\mkern 1mu} dx\\ \le \mathop {\lim \inf }\limits_{n \to \infty } {(D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ,D(\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi ))_{{L^2}{{(\Omega )}^{N \times 2}}}} + \mathop {\lim \inf }\limits_{n \to \infty } \int_\Omega \gamma (\tilde w_{i,n}^\nu )dx - \int_\Omega \gamma (\varphi ){\mkern 1mu} dx\\ \le \mathop {\lim \sup }\limits_{n \to \infty } {(D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ,D(\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi ))_{{L^2}{{(\Omega )}^{N \times 2}}}} + \mathop {\lim \inf }\limits_{n \to \infty } \int_\Omega \gamma (\tilde w_{i,n}^\nu )dx - \int_\Omega \gamma (\varphi ){\mkern 1mu} dx\\ \le - \mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{h}{{(\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \mathit{\boldsymbol{\widetilde v}}_{i - 1,n}^\nu ,\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi )}_{{L^2}{{(\Omega )}^2}}} + \int_\Omega {[\nabla G](\tilde u_{i,n}^\nu ;\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ) \cdot (\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi )dx} } \right)\\ - \mathop {\lim }\limits_{n \to \infty } \int_\Omega {([\nabla \alpha ](} \mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu )|D\tilde \theta _{i - 1,n}^\nu | + {\nu ^2}[\nabla \beta ](\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu )|D\tilde \theta _{i - 1,n}^\nu {|^2}) \cdot (\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi )dx\\ \le - \frac{1}{h}{(\mathit{\boldsymbol{v}}_i^\nu - \mathit{\boldsymbol{v}}_{i - 1}^\nu ,\mathit{\boldsymbol{v}}_i^\nu - \varpi )_{{L^2}{{(\Omega )}^2}}} - \int_\Omega {[\nabla G](u_i^\nu ;\mathit{\boldsymbol{v}}_i^\nu ) \cdot (\mathit{\boldsymbol{v}}_i^\nu - \varpi )dx} \\ - \int_\Omega {([\nabla \alpha ](\mathit{\boldsymbol{v}}_i^\nu )|D\theta _{i - 1}^\nu | + {\nu ^2}[\nabla \beta ](\mathit{\boldsymbol{v}}_i^\nu )|D\theta _{i - 1}^\nu {|^2})} \cdot (\mathit{\boldsymbol{v}}_i^\nu - \varpi )dx,\\ {\rm{for}}\;{\rm{any}}\;\varpi = [\varphi ,\psi ] \in {[{H^1}(\Omega ) \cap {L^\infty }(\Omega )]^2},{\rm{and}}\;i = 1,2,3, \ldots . \end{array} | (5.5) |
The above calculations imply that the limiting sequence \{[u_{i}^{\nu}, \mathit{\pmb{v}}_{i}^{\nu}, \theta_{i}^{\nu}] \}_{i=1}^\infty is a solution to the approximating system (AP)_{h}^{\nu} .
The part of uniqueness and energy inequality. By putting {\varpi}=\mathit{\pmb{v}}_i^\nu in (5.5), for i \in \mathbb{N} , one can see from (5.3) that:
\begin{array}{l} |D\mathit{\boldsymbol{v}}_i^\nu |_{{L^2}{{(\Omega )}^{N \times 2}}}^2 \le \mathop {\lim \inf }\limits_{n \to \infty } |D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu |_{{L^2}{{(\Omega )}^{N \times 2}}}^2 \le \mathop {\lim \sup }\limits_{n \to \infty } |D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu |_{{L^2}{{(\Omega )}^{N \times 2}}}^2\\ \le \mathop {\lim }\limits_{n \to \infty } {(D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ,D\mathit{\boldsymbol{v}}_i^\nu )_{{L^2}{{(\Omega )}^{N \times 2}}}} + \int_\Omega \gamma (w_i^\nu ){\mkern 1mu} dx - \mathop {\lim \inf }\limits_{n \to \infty } \int_\Omega \gamma (\tilde w_{i,n}^\nu ){\mkern 1mu} dx\\ \le |D{\rm{ }}\mathit{\boldsymbol{v}}_i^\nu |_{{L^2}{{(\Omega )}^{N \times 2}}}^2,\;{\rm{for}}\;i = 1,2,3, \ldots . \end{array} | (5.6) |
By the convergences (5.3) and (5.6), the uniform convexity of L^2 -based topologies enable to say:
\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu \to \mathit{\boldsymbol{v}}_i^\nu \;{\rm{in}}\;{H^1}{(\Omega )^2}\;{\rm{as}}\;n \to \infty ,{\rm{for}}\;i = 1,2,3, \ldots . | (5.7) |
Hence, the energy-inequality (3.10) will be obtained, immediately, by putting \varepsilon=\varepsilon_n in (5.2), for n \in \mathbb{N} , and letting n \to \infty with (5.3) and (5.7) in mind.
In the meantime, we note that the condition (4.33) is still available in the proof of Theorem 1. Also, the regularity \theta_0^\circ \in H^M (\Omega) will not necessary in the calculations (4.29)-(4.32), and the line of these calculations will work even if \theta_0^\circ \in H^1(\Omega) .
In view of these, the verification part of the uniqueness for (AP)_h^\nu will be a slight modification of that as in (Step 1) in the previous section. Then, the principal modifications will be to replace the application parts of Lemma 5 and the energy-inequality (4.20), by those of Lemma 10 and (3.10), respectively.
Let \nu \geq 0 be a fixed constant, and let h_{1}^\circ \in (0, 1] be the constant as in Theorem 1. Also, we refer to [31] to recall the following lemma.
Lemma 11. (Γ-convergence; [31, Lemma 6.2]) Assume \mathit{\pmb{v}}^\bullet \in [H^1(\Omega) \cap L^\infty (\Omega)]^2 , \{ \mathit{\pmb{v}}_{\tilde{\nu}}^\bullet \}_{\tilde{\nu} > 0} \subset [H^1(\Omega) \cap L^\infty (\Omega)]^2 , and
\left\{ \begin{align} & \mathit{\pmb{v}}_{{\tilde{\nu }}}^{\bullet }\to {{\mathit{\pmb{v}}}^{\bullet }}\ in\ the\ pointwise\ sense, \ a.e.\ in\ \Omega, as\ \tilde{\nu }\downarrow 0, \\ & {{\{\mathit{\pmb{v}}_{{\tilde{\nu }}}^{\bullet }\}}_{\tilde{\nu }>0}}\ is\ bounded\ in\ {{L}^{\infty }}{{(\Omega )}^{2}}. \\ \end{align} \right. |
Then, for the sequence of convex functions \{ \Phi_{\tilde{\nu}}(\mathit{\pmb{v}}_{\tilde{\nu}}^\bullet; {}\cdot\, ) \}_{\tilde{\nu} > 0} , it holds that \Phi_{\tilde{\nu}}(\mathit{\pmb{v}}_{\tilde{\nu}}^\bullet; \cdot\, ) \to \Phi_0(\mathit{\pmb{v}}^\bullet; {}\cdot\, ) on L^2(\Omega) , in the sense of {\mit \Gamma} -convergence, as \tilde{\nu} \downarrow 0 .
Based on Lemma 11 and [31, Remark 6.1], we take a sequence \{ \vartheta_0^{\tilde{\nu}} \}_{\tilde{\nu} > 0} \subset H^1(\Omega) , such that:
\begin{equation*} |\theta_0^{\tilde{\nu}}| \leq |\theta_0|_{L^\infty(\Omega)} \mbox{ a.e. in $ \Omega $, for any $ \tilde{\nu} > 0 $, } \end{equation*} |
and
\begin{equation*} \left\{ \begin{array}{l} \vartheta_0^{\tilde{\nu}} \to \theta_0 \mbox{ in $ L^2(\Omega) $ and }\Phi_{\tilde{\nu}}(\mathit{\pmb{v}}_0; \vartheta_0^{\tilde{\nu}}) \to \Phi_0(\mathit{\pmb{v}}_0; \theta_0), \mbox{ as $ \tilde{\nu} \downarrow 0 $, if $ \nu = 0 $, } \\[1ex] \vartheta_0^{\tilde{\nu}} = \theta_0 \mbox{ in $ H^1(\Omega) $ for $ \tilde{\nu} > 0 $, if $ \nu > 0 $, } \end{array} \right. \end{equation*} |
and for any h \in (0, h_1^\circ] and any \tilde{\nu} \in (0, \nu +1] , let us take the solution \{[u_{i}^{\tilde{\nu}}, \mathit{\pmb{v}}_{i}^{\tilde{\nu}}, \theta_{i}^{\tilde{\nu}}]\}_{i=0}^{\infty} to (AP)_{h}^{\tilde{\nu}} with \{ \mathit{\pmb{v}}_i^{\tilde{\nu}} \}_{i=1}^\infty=\{ [w_i^{\tilde{\nu}}, \eta_i^{\tilde{\nu}}] \}_{i=1}^\infty , under the initial condition [u_{0}^{\tilde{\nu}}, \mathit{\pmb{v}}_{0}^{\tilde{\nu}}, \theta_{0}^{\tilde{\nu}}]=[u_{0}, \mathit{\pmb{v}}_{0}, \vartheta_{0}^{\tilde{\nu}}] \in D_{1} with \mathit{\pmb{v}}_0^{\tilde{\nu}}=[w_0^{\tilde{\nu}}, \eta_0^{\tilde{\nu}}]=[w_0, \eta_0] . As is easily seen,
\begin{equation*} F_0^\nu := \sup_{0 < \tilde{\nu} \leq \nu +1} \mathscr{F}_{\tilde{\nu}}(u_0, \mathit{\pmb{v}}_0, \vartheta_0^{\tilde{\nu}}) < \infty. \end{equation*} |
For any h \in (0, h_1^\circ] and any \tilde{\nu} \in (0, \nu +1] , we define the following time-interpolations:
\begin{equation*} \begin{array}{l} {\mathit{\pmb{f}}}_h^*(t) = [f_h(t), {\mathit{\pmb{f}}}_{\Gamma, h}(t)] := [{f}_i^*]^h = [f_i^h, f_{\Gamma, i}^h] \mbox{ in $ V^* $ (in $ L^2(\Omega) \times L^2(\Gamma) $), } \\ \hspace{5mm}\mbox{ for all } t \ge 0 \mbox{ and } 0 \le i \in \mathbb{Z} \mbox{ satisfying } t \in ((i-1)h, ih], \end{array} \end{equation*} |
and
\left\{ \begin{array}{l} [\bar u_h^{{\kern 1pt} \tilde \nu }(t),\mathit{\boldsymbol{\overline v}} _h^{{\kern 1pt} \tilde \nu }(t),\bar \theta _h^{{\kern 1pt} \tilde \nu }(t)] = [\bar u_h^{{\kern 1pt} \tilde \nu }(t),\bar w_h^{{\kern 1pt} \tilde \nu }(t),\bar \eta _h^{{\kern 1pt} \tilde \nu }(t),\bar \theta _h^{{\kern 1pt} \tilde \nu }(t)]: = [u_i^{\tilde \nu },{\rm{ }}\mathit{\boldsymbol{v}}_i^{\tilde \nu },\theta _i^{\tilde \nu }]\;{\rm{in}}\;{L^2}{(\Omega )^4},\\ \;\;\;\;{\rm{for all}}\;t \ge 0\;{\rm{and}}\;0 \le i \in \mathbb{Z}\;{\rm{satisfying}}\;t \in ((i - 1)h,ih],\\ [\mathit{\underline u} _{{\kern 1pt} h}^{\tilde \nu }(t),\mathit{\boldsymbol{\underline v}} _{{\kern 1pt} h}^{\tilde \nu }(t),\underline \theta _{{\kern 1pt} h}^{\tilde \nu }(t)] = [\mathit{\underline u} _{{\kern 1pt} h}^{\tilde \nu }(t),\underline w _{{\kern 1pt} h}^{\tilde \nu }(t),\underline \eta _{{\kern 1pt} h}^{\tilde \nu }(t),\underline \theta _{{\kern 1pt} h}^{\tilde \nu }(t)]: = [u_{i - 1}^{\tilde \nu },{\rm{ }}\mathit{\boldsymbol{v}}_{i - 1}^{\tilde \nu },\theta _{i - 1}^{\tilde \nu }]\;{\rm{in}}\;{L^2}{(\Omega )^4},\\ \;\;\;\;{\rm{for all}}\;t \ge 0\;{\rm{and}}\;0 \le i \in \mathbb{Z}\;{\rm{satisfying}}\;t \in \left[ {(i - 1)h,ih} \right),\\ [\hat u_h^{{\kern 1pt} \tilde \nu }(t),\mathit{\boldsymbol{\widehat v}}_h^{{\kern 1pt} \tilde \nu }(t),\hat \theta _h^{{\kern 1pt} \tilde \nu }(t)] = [\hat u_h^{{\kern 1pt} \tilde \nu }(t),\hat w_h^{{\kern 1pt} \tilde \nu }(t),\hat \eta _h^{{\kern 1pt} \tilde \nu }(t),\hat \theta _h^{{\kern 1pt} \tilde \nu }(t)]\\ \;\;\;\;: = \frac{{ih - t}}{h}[u_{i - 1}^{\tilde \nu }(t),\mathit{\boldsymbol{v}}_{i - 1}^{\tilde \nu }(t),\theta _{i - 1}^{\tilde \nu }(t)] + \frac{{t - (i - 1)h}}{h}[u_i^{\tilde \nu },{\rm{ }}\mathit{\boldsymbol{v}}_i^{\tilde \nu },\theta _i^{\tilde \nu }]\;{\rm{in}}\;{L^2}{(\Omega )^4},\\ \;\;\;\;{\rm{ for all }}t \ge 0{\rm{ and }}0 \le i \in \mathbb{Z}{\rm{ satisfying }}t \in [(i - 1)h,ih).{\rm{ }} \end{array} \right. | (6.1) |
Besides, we define:
{{D}_{\nu }}({{\theta }_{0}}):=\left\{ \begin{align} & \left\{ [\tilde{u}, \widetilde{v}, \tilde{\theta }]\in {{D}_{0}}\left| |\tilde{\theta }{{|}_{{{L}^{\infty }}(\Omega )}}\le |{{\theta }_{0}}{{|}_{{{L}^{\infty }}(\Omega )}} \right. \right\}, \ \text{if}\ \ v=0, \\ & \left\{ [\tilde{u}, \widetilde{v}, \tilde{\theta }]\in {{D}_{1}}\left| |\tilde{\theta }{{|}_{{{L}^{\infty }}(\Omega )}}\le |{{\theta }_{0}}{{|}_{{{L}^{\infty }}(\Omega )}} \right. \right\}, \ \text{if}\ \ v>0, \\ \end{align} \right.\ |
and we note that:
\begin{equation*} \begin{array}{c} \bigl\{ [\overline{u}_{h}^{\, \tilde{\nu}}(t), \overline{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}}(t), \overline{\theta}_{h}^{\, \tilde{\nu}}(t)], [\underline{u}_{\, h}^{\, \tilde{\nu}}(t), \underline{\mathit{\pmb{v}}}_{\, h}^{\, \tilde{\nu}}(t), \underline{\theta}_{\, h}^{\, \tilde{\nu}}(t)], [\widehat{u}_{h}^{\, \tilde{\nu}}(t), \widehat{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}}(t), \widehat{\theta}_{h}^{\, \tilde{\nu}}(t)] \bigr\} \\[1ex] \subset D_\nu(\theta_0), \mbox{ for all $ t \geq 0 $, $ 0 < h \leq h_1^\circ $ and $ 0 < \tilde{\nu} \leq \nu +1 $.} \end{array} \end{equation*} |
Then, from the energy-inequality (3.10) in Theorem 1, it is checked that
\begin{equation*} \begin{array}{c} \frac{A_*}{2} \int_s^t |(\widehat{u}_{h}^{\, \tilde{\nu}})_t|_{V^*} \, d\tau +\frac{1}{2}\int_{s}^{t}|(\widehat{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}})_t(\tau)|_{L^{2}(\Omega)^{2}}^{2}d\tau + \int_{s}^{t} |{\textstyle \sqrt{\alpha_{0}(\overline{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}})}}(\widehat{\theta}_{h}^{\, \tilde{\nu}})_t(\tau)|_{L^{2}(\Omega)}^{2}d\tau \\[2ex] + \frac{1}{2}\int_{s}^{t}|\overline{u}_{h}^{\, \tilde{\nu}}(\tau)|_{V}^{2}d\tau + \mathscr{F}_{\tilde{\nu}}(\overline{u}_{h}^{\, \tilde{\nu}}, \overline{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}}, \overline{\theta}_{h}^{\, \tilde{\nu}})(t) \le \mathscr{F}_{\tilde{\nu}}(\underline{u}_{\, h}^{\tilde{\nu}}, \underline{\mathit{\pmb{v}}}_{\, h}^{\tilde{\nu}}, \underline{\theta}_{\, h}^{\tilde{\nu}})(s) + \int_{s}^{t} |{f}_h^*(\tau)|_{V^{\ast}}^{2} d\tau \\[2ex] \mbox{for all $0 \le s \le t \le T$, $ 0 < h \leq h_1^\circ $ and $ 0 < \tilde{\nu} \leq \nu +1 $, } \end{array} \end{equation*} |
and additionally, from (A1)-(A6) and (3.2), it follows that
\begin{array}{l} {B_*}|\bar u_h^{{\kern 1pt} \tilde \nu }(t)|_{{L^2}(\Omega )}^2 + \frac{1}{2}|D\mathit{\boldsymbol{\overline v}} _h^{{\kern 1pt} \tilde \nu }(t)|_{{L^2}{{(\Omega )}^{N \times 2}}}^2 + {\delta _*}(|D\bar \theta _h^{{\kern 1pt} \tilde \nu }(t)|(\Omega ) + |D(\tilde \nu \bar \theta _h^{{\kern 1pt} \tilde \nu })(t)|_{{L^2}{{(\Omega )}^{N \times 2}}}^2)\\ \;\;\;\;\;\; \le \mathscr{F}{_{\tilde \nu }}(\bar u_h^{{\kern 1pt} \tilde \nu },\mathit{\boldsymbol{\overline v}} _h^{{\kern 1pt} \tilde \nu },\bar \theta _h^{{\kern 1pt} \tilde \nu })(t) \vee \mathscr{F}{_{\tilde \nu }}(\underline u _{{\kern 1pt} h}^{\tilde \nu },\mathit{\boldsymbol{\underline v}} _{{\kern 1pt} h}^{\tilde \nu },\underline \theta _{{\kern 1pt} h}^{\tilde \nu })(t)\\ \;\;\;\;\;\; \le F_ * ^\nu : = F_0^\nu + |{\mathit{\boldsymbol{f}}^*}|_{{L^2}(0,T;{V^*})}^2,\;{\rm{for}}\;{\rm{all}}\;0 \le t \le T\;{\rm{and}}\;0 < \tilde \nu \le \nu + 1. \end{array} | (6.2) |
Based on these, one can see that:
(\sharp 1) the class \{\widehat{u}_{h}^{\, \tilde{\nu}} \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in the space W^{1, 2}(0, T; V^{\ast}) \cap C ([0, T]; L^{2}(\Omega)) \cap L^{2}(0, T; V).
(\sharp 2) the class \{ \widehat{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}} \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in the space W^{1, 2}(0, T; L^{2}(\Omega)^{2}) \cap L^{\infty}(0, T; H^{1}(\Omega)^{2}) \cap L^\infty (Q)^2.
(\sharp 3) the class \{ \widehat{\theta}_{h}^{\, \tilde{\nu}} \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in the space W^{1, 2}(0, T; L^2(\Omega)) \cap L^\infty (Q) , and \{ \Phi_{\tilde{\nu}}(\mathit{\pmb{v}}_h^{\, \tilde{\nu}}; \theta_h^{\, \tilde{\nu}}) \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in L^\infty (0, T) , i.e. \{ |D \overline{\theta}_h^{\, \tilde{\nu}}({}\cdot{})|(\Omega) \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in L^\infty (0, T) , and \{ D (\tilde{\nu} \overline{\theta}_h^{\, \tilde{\nu}}) \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in L^\infty (0, T; L^2(\Omega)^N) .
Hence, by applying the general theories of compactness, as in [2,3,11,33], we find a quartet of functions [u, \mathit{\pmb{v}}, \theta]=[u, w, \eta, \theta] \in L^{2}(0, T; L^{2}(\Omega)^{4}) with \mathit{\pmb{v}}=[w, \eta] and sequences \{h_{n}\}_{n=1}^{\infty} \subset (0, h_1^\circ] and \{ \nu_n \}_{n=1}^\infty \subset (0, \nu +1] , with the subsequences:
\begin{equation*} \left \{ \begin{array}{l} \{[\overline{u}_{n}, \overline{\mathit{\pmb{v}}}_{n}, \overline{\theta}_{n}]\}_{n=1}^{\infty} = \{[\overline{u}_{n}, \overline{w}_{n}, \overline{\eta}_{n}, \overline{\theta}_{n}]\}_{n=1}^{\infty} := \{[\overline{u}_{h_n}^{\nu_n}, \overline{\mathit{\pmb{v}}}_{h_n}^{\nu_n}, \overline{\theta}_{h_n}^{\nu_n}]\}_{n=1}^{\infty}, \\ \{[\underline{u}_{\, n}, \underline{\mathit{\pmb{v}}}_{\, n}, \underline{\theta}_{\, n}]\}_{n=1}^{\infty} = \{[\underline{u}_{\, n}, \underline{w}_{\, n}, \underline{\eta}_{\, n}, \underline{\theta}_{\, n}]\}_{n=1}^{\infty} := \{[\underline{u}_{\, h_n}^{\nu_n}, \underline{\mathit{\pmb{v}}}_{\, h_n}^{\nu_n}, \underline{\theta}_{\, h_n}^{\nu_n}]\}_{n=1}^{\infty}, \\ \{[\widehat{u}_{n}, \widehat{\mathit{\pmb{v}}}_{n}, \widehat{\theta}_{n}]\}_{n=1}^{\infty} = \{[\widehat{u}_{n}, \widehat{w}_{n}, \widehat{\eta}_{n}, \widehat{\theta}_{n}]\}_{n=1}^{\infty} := \{[\widehat{u}_{h_n}^{\nu_n}, \widehat{\mathit{\pmb{v}}}_{h_n}^{\nu_n}, \widehat{\theta}_{h_n}^{\nu_n}]\}_{n=1}^{\infty}, \\ \end{array}\right. \end{equation*} |
such that:
h_1^ \circ \ge {h_1} > {h_2} > \cdots > {h_n} \downarrow 0\;{\rm{and}}\;{\nu _n} \to \nu ,{\rm{as}}\;n \to \infty , | (6.3) |
\left\{ \begin{array}{l} u \in {W^{1,2}}(0,T;{V^ * }) \cap {L^\infty }(0,T;{L^2}(\Omega )) \cap {L^2}(0,T;V) \subset C([0,T];{L^2}(\Omega )),\\ \mathit{\boldsymbol{v}} \in {W^{1,2}}(0,T;{L^2}{(\Omega )^2}) \cap {L^\infty }(0,T;{H^1}{(\Omega )^2}) \cap {L^\infty }{(Q)^2},\\ \theta \in {W^{1,2}}(0,T;{L^2}(\Omega )) \cap {L^\infty }(Q),{\Phi _\nu }(\mathit{\boldsymbol{v}};\theta ) \in {L^\infty }(0,T),\\ [u(t),\mathit{\boldsymbol{v}}(t),\theta (t)] \in {D_\nu }({\theta _0}){\rm{ for all }}t \ge 0,\\ [u(0),\mathit{\boldsymbol{v}}(0),\theta (0)] = [{u_0},{\mathit{\boldsymbol{v}}_0},{\theta _0}]{\rm{ in }}{L^2}{(\Omega )^4}, \end{array} \right. | (6.4) |
\left\{ \begin{array}{l} {{\hat u}_n} \to u\;{\rm{in}}\;{L^2}(I;{L^2}(\Omega )),{\rm{ weakly}}\;{\rm{in }}{W^{1,2}}(I;{V^ * }),\\ \;\;\;\;\;\;{\rm{weakly}} - *\;{\rm{in}}\;{L^\infty }(I;V),\\ {\mathit{\boldsymbol{\widehat v}}_n} \to \mathit{\boldsymbol{v}}\;{\rm{in}}\;C(\bar I;{L^2}{(\Omega )^2}),{\rm{weakly}}\;{\rm{in}}\;{W^{1,2}}(I;{L^2}{(\Omega )^2}),\\ \;\;\;\;\;\;{\rm{weakly}} - *\;{\rm{in}}\;{L^\infty }(I;{H^1}{(\Omega )^2})\;{\rm{and}}\;{\rm{weakly}} - *{\rm{in}}\;{L^\infty }{(Q)^2},\\ {{\hat \theta }_n} \to \theta \;{\rm{in}}\;C(\bar I;{L^2}(\Omega )),{\rm{weakly}}\;{\rm{in}}\;{W^{1,2}}(I;{L^2}(\Omega )),\\ \;\;\;\;\;\;{\rm{weakly}} - *\;{\rm{in}}\;{L^\infty }\left( Q \right),\\ {\nu _n}{{\hat \theta }_n} \to \nu \theta {\rm{weakly}}\;{\rm{in}}\;{L^2}(I;{H^1}(\Omega )), \end{array} \right. | (6.5) |
\mathit{\boldsymbol{f}}_{{h_n}}^* \to {\rm{ }}{\mathit{\boldsymbol{f}}^*}\;{\rm{in}}\;{L^2}(I;{V^*})([{f_{{h_n}}},{f_{\Gamma ,{h_n}}}] \to [f,{f_\Gamma }]\;{\rm{in}}\;{L^2}(I;{L^2}(\Omega ) \times {L^2}(\Gamma ))), | (6.6) |
as n \to \infty , for any open interval I \subset (0, T) , and
\left\{ \begin{array}{l} {{\bar u}_n}(t) \to u(t)\;{\rm{and}}\;{\underline u _{{\kern 1pt} n}}(t) \to u(t)\;{\rm{in}}\;{L^2}(\Omega ),{\rm{weakly}}\;{\rm{in}}\;V,\\ {\mathit{\boldsymbol{\overline v}} _n}(t) \to \mathit{\boldsymbol{v}}(t)\;{\rm{and}}\;{\mathit{\boldsymbol{\underline v}} _{{\kern 1pt} n}}(t) \to \mathit{\boldsymbol{v}}(t)\;{\rm{in}}\;{L^2}{(\Omega )^2},{\rm{weakly}}\;{\rm{in}}\;{H^1}{(\Omega )^2}\\ \;\;\;\;\;\;\;\;{\rm{and}}\;{\rm{weakly}} - *\;{\rm{in}}\;{L^\infty }{(\Omega )^2},\\ {{\bar \theta }_n}(t) \to \theta (t)\;{\rm{in}}\;{L^2}(\Omega ),{\rm{weakly}}\;{\rm{in}}\; - *\;{\rm{in}}\;BV(\Omega ),\\ {\nu _n}{{\bar \theta }_n}(t) \to \nu \theta (t){\rm{ weakly}}\;{\rm{in}}\;{H^1}(\Omega ), \end{array} \right. | (6.7) |
as n \to \infty for a.e. t \in (0, T).
Now, we recall some lemmas which will act key-roles in the proof of Main Theorem.
Lemma 12. Let I \subset (0, T) be an open interval, and let \nu \geq 0 and \{ \nu_n \}_{n=1}^\infty be the sequence as in (6.3). Let \zeta \in L^2(I; L^2(\Omega)) be a function such that
\begin{equation*} |D \zeta({}\cdot{})|(\Omega) \in L^1(I) \mbox{ and } \nu \zeta \in L^{2}(I; H^{1}(\Omega)). \end{equation*} |
Then, there exists a sequence \{ \tilde{\zeta}_n \}_{n=1}^\infty \subset C^\infty (\overline{Q}) , such that:
\begin{matrix} {{{\tilde{\zeta }}}_{n}}\to \zeta \text{ }in\ {{L}^{2}}(I;{{L}^{2}}(\Omega )), \int_{I}{\left| \int_{\Omega }{|}D{{{\tilde{\zeta }}}_{n}}\left. \left( t \right) \right|dx-\int_{\Omega }{d}|D\zeta (t)| \right|}dt\to 0, \\ and\ \ {{\nu }_{n}}{{{\tilde{\zeta }}}_{n}}\to \nu \zeta \text{ }in\ {{L}^{2}}(I;{{H}^{1}}(\Omega )), \ as\ n\to \infty . \\ \end{matrix} |
Proof. When \nu > 0 , the standard C^\infty -approximation in L^2(I; H^1(\Omega)) will correspond to the required sequence. Meanwhile, when \nu=0 , this lemma is verified by taking the C^\infty -approximation as in [25, Lemma 5]{MS14} and [29, Remark 2], and by applying the diagonal argument as in [25, Lemma 8].
Lemma 13.Let I \subset (0, T) be any open interval. Assume that
\left\{ \begin{align} & \varrho\in C(\bar{I};{{L}^{2}}(\Omega ))\cap {{L}^{\infty }}(I;{{H}^{1}}(\Omega )), \ \log \varrho\in {{L}^{\infty }}(I\times \Omega ) \\ & {{\varrho}_{n}}\in C(\bar{I};{{L}^{2}}(\Omega ))\cap {{L}^{\infty }}(I;{{H}^{1}}(\Omega )), \ \log {{\varrho}_{n}}\in {{L}^{\infty }}(I\times \Omega ), \ for\ n=1, 2, 3, \ldots \\ & {{\varrho}_{n}}(t)\to \varrho(t)\ in\ {{L}^{2}}(\Omega )\ and\ weakly\ in\ {{H}^{1}}(\Omega )\ as\ n\to \infty, for\ a.e.\ t\in I, \\ \end{align} \right. |
and
\left\{ \begin{align} & \zeta \in {{L}^{2}}(I;{{L}^{2}}(\Omega ))\ with\ |D\zeta (\cdot )|(\Omega )\in {{L}^{1}}(I), \\ & \{{{\zeta }_{n}}\}_{n=1}^{\infty }\subset {{L}^{2}}(I;{{L}^{2}}(\Omega ))\ with\ \{|D{{\zeta }_{n}}(\cdot )|(\Omega )\}_{n=1}^{\infty }\subset {{L}^{1}}(I), \\ & {{\zeta }_{n}}(t)\to \zeta (t)\ in\ {{L}^{2}}(\Omega )\ as\ n\to \infty, \ a.e.\ t\in I. \\ \end{align} \right. |
Then the following items hold.
(Ⅰ) The functions:
\begin{equation*} t \in I \mapsto \int_\Omega d[\varrho(t)|D\zeta(t)|] \, dt \mbox{ and } t \in I \mapsto \int_\Omega d[\varrho_n(t)|D \zeta_n(t)|] \, dt, \mbox{ for $ n = 1, 2, 3, \dots $, } \end{equation*} |
are integrable, and
\begin{equation*} \liminf_{n \to \infty}\int_I \int_\Omega d[\varrho_n(t) |D \zeta_n(t)|] \, dt \geq \int_I \int_\Omega d[\varrho(t) |D \zeta(t)|] \, dt. \end{equation*} |
(Ⅱ) If:
\begin{equation*} \int_I \int_\Omega d [\varrho_n(t) |D \zeta_n(t)|] \, dt \to \int_I \int_\Omega d[\varrho(t) |D \zeta(t)|] \, dt \mbox{ as $ n \to \infty $} \end{equation*} |
and
\left\{ \begin{align} & \omega \in {{L}^{\infty }}(I;{{H}^{1}}(\Omega ))\cap {{L}^{\infty }}(I\times \Omega ), \{{{\omega }_{n}}\}_{n=1}^{\infty }\subset {{L}^{\infty }}(I;{{H}^{1}}(\Omega ))\cap {{L}^{\infty }}(I\times \Omega ) \\ & \{{{\omega }_{n}}\}_{n=1}^{\infty }is\ a\ bounded\ sequence\ in\ {{L}^{\infty }}(I\times \Omega ), \\ & {{\omega }_{n}}(t)\to \omega (t)in\ {{L}^{2}}(\Omega )\ and\ weakly\ in\ {{H}^{1}}(\Omega )\ as\ n\to \infty, a.e.\ t\in I, \\ \end{align} \right. |
then
\int_{I}{\int_{\Omega }{{{\omega }_{n}}}}(t)|D{{\zeta }_{n}}(t)\left| dx \right.\ dt\to \int_{I}{\int_{\Omega }{d}}[\omega (t)|D\zeta (t)|]\ \ as\ n\to \infty . |
Proof.This lemma is verified, immediately, as a consequence of [26, Lemmas 4.2-4.4] (see also [25, Section 2]).
Proof of Main Theorem. We show that the quartet [u, \mathit{\pmb{v}}, \theta]=[u, w, \eta, \theta] \in L^2(0, T; L^2(\Omega)^4) as in (6.4) fulfills the conditions (S1)-(S6) in Definition 3. Then, since (6.4) directly guarantees the conditions (S1)-(S3), we focus on the verifications of remaining (S4)-(S6).
To this end, let us fix arbitrary open interval I \subset (0, T) , and let us review (3.7)-(3.9) and (6.1), to check that:
\begin{array}{l} \int_I {\langle (} {{\hat u}_n}{)_t}(t),z\rangle {\mkern 1mu} dt + \int_I {({{\bar u}_n}(} t),z{)_V}{\mkern 1mu} dt = \int_I {{{(\lambda '({{\bar w}_n}(t)){{({{\hat w}_n})}_t}(t),z)}_{{L^2}(\Omega )}}} {\mkern 1mu} dt\\ \;\;\;\; + \int_I {\langle {\rm{ }}\mathit{\boldsymbol{f}}_{{h_n}}^*(} t),z\rangle {\mkern 1mu} dt,\;{\rm{for}}\;{\rm{any}}\;z \in V\;{\rm{and}}\;n = 1,2,3, \ldots , \end{array} | (6.8) |
\begin{equation}\label{14-13} \begin{array}{l} \int_{I}((\widehat{\mathit{\pmb{v}}}_{n})_t(t), \overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi})_{L^{2}(\Omega)^{2}} dt \\ \qquad + \int_{I} (D\overline{\mathit{\pmb{v}}}_{n}(t), D(\overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi}))_{L^{2}(\Omega)^{N \times 2}} \, dt \\[2ex] \qquad + \int_{I} ([\nabla G](\overline{u}_{n};\overline{\mathit{\pmb{v}}}_{n})(t), \overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi})_{L^{2}(\Omega)^{2}} dt \\[2ex] \qquad + \int_{I}\int_{\Omega} [\nabla\alpha](\overline{\mathit{\pmb{v}}}_{n}(t)) \cdot (\overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi}) |D\underline{\theta}_{\,n}(t)| dxdt \\[2ex] \qquad + \nu_n^2 \int_{I}\int_{\Omega} [\nabla\beta](\overline{\mathit{\pmb{v}}}_{n}(t)) \cdot (\overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi}) |D\underline{\theta}_{\,n}(t)|^{2} dxdt \\[2ex] \qquad + \int_{I}\int_{\Omega} \gamma(\overline{w}_{n}(t)) dxdt \le \int_{I}\int_{\Omega} \gamma(\varphi) dxdt, \\[3ex] \mbox{for any ${\varpi}=[\varphi,\psi] \in [H^{1}(\Omega) \cap L^{\infty}(\Omega)]^{2}$ and $ n = 1, 2, 3, \dots $,} \end{array} \end{equation} | (6.9) |
and
\begin{equation}\label{14-14} \begin{array}{l} \int_{I} (\alpha_{0}(\overline{\mathit{\pmb{v}}}_{n}(t))(\widehat{\theta}_{n})_{t}(t), \overline{\theta}_{n}(t)-\zeta(t))_{L^{2}(\Omega)} dt \\[2ex] \qquad +\int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)| \, dx dt +\nu_n^2 \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)|^2 \, dx dt \\[2ex] \leq \int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \zeta(t)| \, dx dt +\nu_n^2 \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D \zeta(t)|^2 \, dx dt \\[2ex] \qquad \mbox{for any $\zeta \in L^{2}(I; H^{1}(\Omega))$ and $ n = 1, 2, 3, \dots $.} \end{array} \end{equation} | (6.10) |
Now, let us first take the limit of (6.10) as n \to \infty . Then, from (A3), (\sharp 2)-(\sharp 3), (6.4)-(6.5), (6.7) and Lemma 13 (I), it is seen that
\begin{equation*} \begin{array}{l} \int_{I} (\alpha_{0}(\mathit{\pmb{v}}(t))\theta_{t}(t), \theta(t)-\zeta(t))_{L^{2}(\Omega)} dt + \int_I \Phi_{\nu}(\mathit{\pmb{v}}(t); \theta(t)) \, dt \\[2ex] \hspace{5mm} \le \lim_{n \to \infty} \int_{I} (\alpha_{0}(\overline{\mathit{\pmb{v}}}_{n})(\widehat{\theta}_{n})_{t}(t), \overline{\theta}_{n}(t)-\zeta(t))_{L^{2}(\Omega)} \, dt \\[2ex] \hspace{10mm} + \liminf_{n \to \infty} \left[\int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)| \, dx dt + \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \overline{\theta}_n)(t)|^2 \, dx dt \right] \\ \hspace{5mm} \le \lim_{n \to \infty} \left[\int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \zeta(t)| \, dx dt + \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \zeta)(t)|^2 \, dx dt \right] \\[2ex] \hspace{5mm}= \int_I \Phi_{\nu}(\mathit{\pmb{v}}(t); \zeta(t)) \, dt, \mbox{ for any $\zeta \in L^{2}(I;H^{1}(\Omega))$.} \end{array} \end{equation*} |
Since the open interval I \subset (0, T) is arbitrary, the above inequality implies that
\begin{equation*} \begin{array}{c} (\alpha_{0}(\mathit{\pmb{v}}(t))\theta_{t}(t), \theta(t) - \omega)_{L^{2}(\Omega)} + \Phi_{\nu}(\mathit{\pmb{v}}(t);\theta(t)) \le \Phi_{\nu}(\mathit{\pmb{v}}(t);\omega) \\[1ex] \mbox{for any $\omega \in H^{1}(\Omega)$ and a.e. $t \in (0, T)$.} \end{array} \end{equation*} |
Additionally, in the light of Remark 3 (Fact 4), we can say the above inequality holds for \omega \in BV (\Omega) \cap L^{2}(\Omega). Thus, (S6) is verified.
Next, with (6.4) and Lemma 12 in mind, let us take a sequence \{ \tilde{\theta}_{n} \}_{n=1}^\infty \subset C^{\infty}(\overline{I \times \Omega}) such that
\begin{equation*} \begin{array}{c} \tilde{\theta}_{n} \to \theta\ \ \mbox{ in } L^{2}(I; L^{2}(\Omega)), \ \ \int_I |D \tilde{\theta}_n| \, dx dt \to \int_I d|D \theta(t)| \, dt, \\[2ex] \nu_n \tilde{\theta}_n \to \nu \theta \mbox{ in $ L^2(I; H^1(\Omega)) $, as $ n \to \infty $.} \end{array} \end{equation*} |
Then, putting \zeta=\tilde{\theta}_{n} in (6.10) and letting n \to \infty , it is observed from (\sharp 2)-(\sharp 3), (6.4)-(6.5), (6.7) and Lemma 13 that:
\begin{equation*} \begin{array}{l} \int_I \int_\Omega d[\alpha({\mathit{\pmb{v}}}(t)) |D {\theta}(t)|] \, dt + \int_I \int_\Omega \beta({\mathit{\pmb{v}}}(t)) |D (\nu {\theta})(t)|^2 \, dx dt \\[2ex] \qquad \leq \liminf_{n \to \infty} \int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)| \, dx dt + \liminf_{n \to \infty} \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \overline{\theta}_n)(t)|^2 \, dx dt \\[2ex] \qquad \leq \limsup_{n \to \infty} \left[\int_I \int_\Omega {\alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)|dx} \, dt + \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \overline{\theta}_n)(t)|^2 \, dx dt \right] \\[2ex] \qquad \leq \lim_{n \to \infty} \left[\int_I \int_\Omega {\alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \tilde{\theta}_n(t)|dx} \, dt + \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \tilde{\theta}_n)(t)|^2 \, dx dt \right] \\[2ex] \qquad \qquad - \lim_{n \to \infty} \int_{I} (\alpha_{0}(\overline{\mathit{\pmb{v}}}_{n})(\widehat{\theta}_{n})_{t}(t), \overline{\theta}_{n}(t)-\tilde{\theta}_{n}(t))_{L^{2}(\Omega)} \, dt \\[2ex] \qquad = \int_I \int_\Omega d[\alpha({\mathit{\pmb{v}}}(t)) |D {\theta}(t)|] \, dt + \int_I \int_\Omega \beta({\mathit{\pmb{v}}}(t)) |D (\nu {\theta})(t)|^2 \, dx dt. \end{array} \end{equation*} |
The above inequality implies that:
\begin{equation}\label{14-18} \begin{matrix} \lim \\ n\to \infty \\ \end{matrix} \int_{I}\int_{\Omega} \alpha(\overline{\mathit{\pmb{v}}}_{n}(t))|D \overline{\theta}_{n}(t)| dxdt = \int_{I}\int_{\Omega} d[\alpha(\mathit{\pmb{v}}(t)) |D\theta(t)|]dt, \end{equation} | (6.11) |
and
\begin{equation}\label{14-18-1} \lim_{n \to \infty} \int_{I}\int_{\Omega} \beta(\overline{\mathit{\pmb{v}}}_{n}(t))|D (\nu_n \overline{\theta}_{n})(t)|^{2} dxdt = \int_{I}\int_{\Omega} \beta(\mathit{\pmb{v}}(t)) |D(\nu \theta)(t)|^2 \, dt. \end{equation} | (6.12) |
By virtue of (\sharp 2)-(\sharp 3), (6.4)-(6.5), (6.7) and (6.11), we can apply Lemma 13 to see that:
\begin{equation*} \int_{I}\int_{\Omega} |D \overline{\theta}_{n}(t)| dxdt \to \int_{I}\int_{\Omega} d|D \theta(t)| \, dt, \mbox{ as $n \to \infty$.} \end{equation*} |
Besides, (6.1)-(6.2) and (6.5) enable to check:
\begin{equation*} \left| \int_{I}\int_{\Omega} |D \overline{\theta}_{n}| dxdt - \int_{I}\int_{\Omega} |D \underline{\theta}_{\, n}|dxdt \right| \le \frac{2F_{\ast}^{\nu}}{\delta_{\ast}}h_{n} \to 0, \mbox{ as $ n \to \infty $, } \end{equation*} |
and (6.5), (6.7) and the above convergence further enable to show that:
\begin{equation}\label{14-19} \begin{array}{c} \begin{matrix} \lim \\ n\to \infty \\ \end{matrix} \int_{I}\int_{\Omega} (\overline{\mathit{\pmb{v}}}_n(t) -{\varpi}) \cdot [\nabla\alpha](\overline{\mathit{\pmb{v}}}_{n}(t))|D\underline{\theta}_{\,n}(t)| dxdt \\[2ex] = \int_{I}\int_{\Omega} d[ (\overline{\mathit{\pmb{v}}}_n(t) -{\varpi}) \cdot [\nabla\alpha](\mathit{\pmb{v}}(t))|D\theta(t)|]dt \mbox{ for any ${\varpi} \in [H^{1}(\Omega) \cap L^{\infty}(\Omega)]^{2}$,} \end{array} \end{equation} | (6.13) |
by applying Lemma (13) (Ⅱ).
Similarly, from (6.12) and the uniform convexity of L^2 -based topology, one can see that
\begin{equation*} \left\{ \begin{array}{l} \sqrt{\beta(\overline{\mathit{\pmb{v}}}_n)} D ({\nu_{n}}\overline{\theta}_n) \to \sqrt{\beta(\mathit{\pmb{v}})} D ({\nu} \theta) \mbox{ in $ L^2(I; L^2(\Omega)^N) $, and hence} \\[1ex] D (\nu_n \overline{\theta}_n) \to D (\nu \theta) \mbox{ in $ L^2(I; L^2(\Omega)^N) $, as $ n \to \infty $.} \end{array} \right. \end{equation*} |
Besides, (6.1)-(6.2) and (6.5) enable to check:
\left| \int_{I}\int_{\Omega} |D (\nu_n \overline{\theta}_{n})|^2 dxdt - \int_{I}\int_{\Omega} |D (\nu_n \underline{\theta}_{\, n})|^2 \, dxdt \right| \le \frac{2F_{\ast}^\nu} {\delta_{\ast}}h_{n} \to 0, \mbox{ as $ n \to \infty $, } |
and the above convergence further enables to show that:
\left\{ \begin{array}{*{35}{l}} D({{\nu }_{n}}{{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\theta }}}_{n}})\to D(\nu \theta )\text{ }\ in\ {{L}^{2}}(I;{{L}^{2}}{{(\Omega )}^{N}}),\text{and}\ \text{hence} \\ [1ex]({{\overline{\mathit{\pmb{v}}}}_{n}}-\varpi )\cdot [\nabla \beta ]({{\overline{\mathit{\pmb{v}}}}_{n}})D({{\nu }_{n}}{{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\theta }}}_{n}}) \\ \ \ \ \ \ \to (\mathit{\pmb{v}}-\varpi )\cdot [\nabla \beta ](\mathit{\pmb{v}})D(\nu \theta )\text{ }in\ {{L}^{2}}(I;{{L}^{2}}{{(\Omega )}^{N}}), \\ \text{for}\ \text{any}\ \varpi \in {{[{{H}^{1}}(\Omega )\cap {{L}^{\infty }}(\Omega )]}^{2}},as\ n\to \infty . \\ \end{array} \right. | (6.14) |
With (A2)-(A5), (\sharp 1)-(\sharp 3), (6.4)-(6.5), (6.7), (6.13)-(6.14) and lower semi-continuity of L^2-norm in mind, letting n \to \infty in (6.9) yields that:
\begin{equation}\label{14-21} \begin{array}{l} \int_{I}(\mathit{\pmb{v}}_t(t), \mathit{\pmb{v}}(t)-{\varpi})_{L^{2}(\Omega)^{2}} dt + \int_{I} (D\mathit{\pmb{v}}(t), D(\mathit{\pmb{v}}(t)-{\varpi}))_{L^{2}(\Omega)^{N \times 2}} dt \\ \qquad + \int_{I}\int_{\Omega} \gamma(w(t)) dxdt + \int_{I} ([\nabla G](u(t);\mathit{\pmb{v}}(t)), \mathit{\pmb{v}}(t)-{\varpi})_{L^{2}(\Omega)^{2}} dt \\ \qquad + \int_{I}\int_{\Omega} d[(\mathit{\pmb{v}}(t)-{\varpi}) \cdot [\nabla\alpha](\mathit{\pmb{v}}(t))|D\theta(t)|] dt \\ \qquad + \int_{I}\int_{\Omega} [\nabla\beta](\mathit{\pmb{v}}(t)) \cdot (\mathit{\pmb{v}}(t)-{\varpi}) |\nabla(\nu \theta)|^{2} dxdt \\ \le \int_{I}\int_{\Omega} \gamma(\varphi) dxdt , \mbox{ for any $ {\varpi} = [\varphi,\psi] \in [H^{1}(\Omega) \cap L^{\infty}(\Omega)]^{2}$.} \end{array} \end{equation} | (6.15) |
Finally, taking the limit of (6.8), and applying (6.5)-(6.7), one can see that:
\begin{equation}\label{14-22} \begin{array}{c} \int_{I} \langle {u}_t(t), z \rangle \, dt + \int_{I} ({u}(t), z)_{V} \, dt = \int_I (\lambda'({w}(t)) {w}_t(t), z )_{L^2(\Omega)} \, dt \\[2ex] +\int_{I} \langle {\mathit{\pmb{f}}}^*(t), z \rangle \, dt, \mbox{ for any $z \in V$.} \end{array} \end{equation} | (6.16) |
Since the open interval I \subset (0, T) is arbitrary, the conditions (S4)-(S5) will be verified by taking into account (6.4) and (6.15)-(6.16).
This research was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C), 16K05224, No. 26400138 and Young Scientists (B), No. 25800086. The authors express their gratitude to an anonymous referees for reviewing the original manuscript and for many valuable comments that helped clarify and refine this paper.
All authors declare no conflicts of interest in this paper.
[1] | M. Amar, G. Bellettini, A notion of total variation depending on a metric with discontinuous coeffcients. Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), no. 1, 91-133. |
[2] | L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. (2000). |
[3] | H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization. MPS-SIAM Series on Optimization, 6. SIAM and MPS, (2006). |
[4] | V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste România, Noordhoff International Publishing, (1976). |
[5] | G. Bellettini, G. Bouchitté, I. Fragalà, BV functions with respect to a measure and relaxation of metric integral functionals. J. Convex Anal., 6 (1999), no. 2, 349-366. |
[6] | H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies, 5. Notas de Matemática (50). North-Holland Publishing and American Elsevier Publishing, (1973). |
[7] | P. Colli, P. Laurençot, Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws. Phys. D, 111 (1998), 311-334. |
[8] | P. Colli, J. Sprekels, Glob al solution to the Penrose-Fife phase-field model with zero interfacial energy and Fourier law. Adv. Math. Sci. Appl., 9 (1999), no. 1, 383-391. |
[9] | G. Dal Maso, An Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, Ma, (1993). |
[10] | I. Ekeland, R. Temam, Convex analysis and variational problems. Translated from the French. Corrected reprint of the 1976 English edition. Classics in Applied Mathematics, 28. SIAM, Philadelphia, (1999). |
[11] | L. C. Evans, R. F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, (1992). |
[12] | E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, 80. Birkhäuser, (1984). |
[13] | M.-H. Giga, Y. Giga, Very singular diffusion equations: second and fourth order problems. Jpn. J. Ind. Appl. Math., 27 (2010), no. 3, 323-345. |
[14] | W. Horn, J. Sprekels, S. Zheng, Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets. Adv. Math. Sci. Appl., 6 (1996), no. 1, 227-241. |
[15] | A. Ito, N. Kenmochi, N. Yamazaki, A phase-field model of grain boundary motion. Appl. Math., 53 (2008), no. 5, 433-454. |
[16] | A. Ito, N. Kenmochi, N. Yamazaki, Weak solutions of grain boundary motion model with singularity. Rend. Mat. Appl. (7), 29 (2009), no. 1, 51-63. |
[17] | A. Ito, N.Kenmochi, N. Yamazaki, Global solvability of a model for grain boundary motion with constraint. Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), no. 1, 127-146. |
[18] | N. Kenmochi, : Systems of nonlinear PDEs arising from dynamical phase transitions. In: Phase transitions and hysteresis (Montecatini Terme, 1993), pp. 39-86, Lecture Notes in Math., 1584, Springer, Berlin, (1994). |
[19] | N. Kenmochi, M. Kubo, Weak solutions of nonlinear systems for non-isothermal phase transitions. Adv. Math. Sci. Appl., 9 (1999), no. 1, 499-521. |
[20] | N. Kenmochi, N. Yamazaki, Large-time behavior of solutions to a phase-field model of grain boundary motion with constraint. In: Current advances in nonlinear analysis and related topics, pp. 389-403, GAKUTO Internat. Ser. Math. Sci. Appl., 32, Gakkōtosho, Tokyo, (2010). |
[21] | R. Kobayashi, Y. Giga, Equations with singular diffusivity. J. Statist. Phys., 95 (1999), 1187-1220. |
[22] | R. Kobayashi, J. A. Warren, W. C. Carter, A continuum model of grain boundary. Phys. D, 140 (2000), no. 1-2, 141-150. |
[23] | R. Kobayashi, J. A.Warren, W. C. Carter, Grain boundary model and singular diffusivity. In: Free Boundary Problems: Theory and Applications, pp. 283-294, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakkōtosho, Tokyo, (2000). |
[24] | J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol I. Springer-Verlag, New York-Heidelberg, (1972). |
[25] |
S. Moll, K. Shirakawa, Existence of solutions to the Kobayashi-Warren-Carter system. Calc. Var. Partial Differential Equations, 51 (2014), 621-656. DOI:10.1007/s00526-013-0689-2 doi: 10.1007/s00526-013-0689-2
![]() |
[26] | S. Moll, K. Shirakawa, H.Watanabe, Energy dissipative solutions to the Kobayashi-Warren-Carter system. submitted. |
[27] | U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Advances in Math., 3 (1969), 510-585. |
[28] |
K. Shirakawa, H. Watanabe, Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), no. 1, 139-159. DOI:10.3934/dcdss.2014.7.139 doi: 10.3934/dcdss.2014.7.139
![]() |
[29] | K. Shirakawa, H. Watanabe, Large-time behavior of a PDE model of isothermal grain boundary motion with a constraint. Discrete Contin. Dyn. Syst. 2015, Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 1009-1018. |
[30] |
K. Shirakawa, H. Watanabe, N. Yamazaki, Solvability of one-dimensional phase field systems associated with grain boundary motion. Math. Ann., 356 (2013), 301-330. DOI:10.1007/s00208-012-0849-2 doi: 10.1007/s00208-012-0849-2
![]() |
[31] | K. Shirakawa, H. Watanabe, N. Yamazaki, Phase-field systems for grain boundary motions under isothermal solidifications. Adv. Math. Sci. Appl., 24 (2014), 353-400. |
[32] | K. Shirakawa, H. Watanabe, N. Yamazaki, Mathematical analysis for a Warren-Kobayashi-Lobkovsky-Carter type system. RIMS Kôkyûroku, 1997 (2016), 64-85. |
[33] | J. Simon, Compact sets in the space Lp(0; T; B). Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. |
[34] | J. Sprekels, S. Zheng, Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions. J. Math. Anal. Appl., 279 (2003), 97-110. |
[35] | A. Visintin, Models of phase transitions. Progress in Nonlinear Differential Equations and their Applications, 28, Birkhäuser, Boston, (1996). |
[36] | J. A. Warren, R. Kobayashi, A. E. Lobkovsky, W. C. Carter, Extending phase field models of solidification to polycrystalline materials. Acta Materialia, 51 (2003), 6035-6058. |
[37] | H.Watanabe, K. Shirakawa, Qualitative properties of a one-dimensional phase-field system associated with grain boundary. In: Current Advances in Applied Nonlinear Analysis and Mathematical Modelling Issues, pp. 301-328, GAKUTO Internat. Ser. Math. Sci. Appl., 36, Gakkōtosho, Tokyo, (2013). |
[38] | James A.Warren, Ryo Kobayashi, Alexander E. Lobkovsky, W. Craig Carter, Extending phase field models of solidification to polycrystalline materials. Acta Materialia, 51 (2003), 60356058. |
[39] | H. Watanabe, K. Shirakawa, Stability for approximation methods of the one-dimensional Kobayashi-Warren-Carter system. Mathematica Bohemica, 139 (2014), special issue dedicated to Equadiff 13, no. 2, 381-389. |
[40] | N. Yamazaki, Global attractors for non-autonomous phase-field systems of grain boundary motion with constraint. Adv. Math. Sci. Appl. 23 (2013), no. 1, 267-296. |
1. | Hiroshi Watanabe, Ken Shirakawa, Energy‐dissipation in a coupled system of Allen–Cahn‐type equation and Kobayashi–Warren–Carter‐type model of grain boundary motion, 2020, 43, 0170-4214, 10138, 10.1002/mma.6684 |