AIMS Mathematics, 2016, 1(3): 282-287. doi: 10.3934/Math.2016.3.282

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system

Department of Mathematics, University of Mostaganem, Box 227, Mostaganem 27000, Algeria

The main result of this work is to study the Liouville type theorem for the stationary Hall-MHD system on $\mathbb{R}^{3}$. Specificaly, we show that if $(u,B)$ is a smooth solutions to Hall-MHD equations satisfying $(u,B) \in L^\frac{9}{2} \mathbb{R}^{3}$, then we have $u=B=0$. This improves a recent result of Chae et al. [2] and Zujin et al. [14].
  Figure/Table
  Supplementary
  Article Metrics

References

1. M. Acheritogaray, P. Degond, A. Frouvelle and J.G. Liu, Kinetic fomulation and global existence for the Hall-magnetohydrodynamics system, Kinet. Relat. Models, 4 (2011), 901-918.

2. D. Chae, P. Degond and J.G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 31 (2014), 555-565

3. D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics, J. Di er. Equ., 256 (2014), 3835-3858.

4. J. Fan, A. Alsaedi, T. Hayat, G. Nakamura and Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system, Nonlinear Anal. Real World Appl., 22 (2015), 423-434.

5. J. Fan, X. Jia, G. Nakamura and Y. Zhou, On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects, Z. Angew. Math. Phys., 66 (2015), no. 4, 1695-1706.

6. J. Fan, B. Ahmad, T. Hayat and Y. Zhou, On blow-up criteria for a new Hall-MHD system, Appl. Math. Comput., 274 (2016), 20-24.

7. J. Fan, B. Ahmad, T. Hayat and Y. Zhou, On well-posedness and blow-up for the full compressible Hall-MHD system, Nonlinear Anal. Real World Appl., 31 (2016), 569-579.

8. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady State Problems. 2nd Edition, Springer Monographs in Mathematics, Springer, NewYork, 2011.

9. F. He, B. Ahmad, T. Hayat and Y. Zhou, On regularity criteria for the 3D Hall-MHD equations in terms of the velocity, Nonlinear Anal. Real World Appl., 32 (2016), 35-51.

10. Y. Zhuan, Regulatity criterion for the 3D Hall-magnetohydrodynamic equations involing the vorticity, Nonlinear Anal. 144 (2016), 182-193.

11. Y. Zhuan, Regulatity criteria and small data global existence to the generalized viscous Hallmagnetohydrodynamics, Comput. Math. Appl., 70 (2015), 2137-2154.

12. R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Di erential Equations, 259 (2015), no. 11, 5982-6008.

13. R. Wan and Y. Zhou, Yong Low regularity well-posedness for the 3D generalized Hall-MHD system, To appear in Acta Appl. Math., DOI: 10.1007/s10440-016-0070-5.

14. Z. Zujin, X. Xian and Q. Shulin, Remarks on Liouville Type Result for the 3D Hall-MHD System, J. Part. Di . Eq., 28 (2015), 286-290.

Copyright Info: © 2016, Sadek Gala, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved