Review Special Issues

A systematic review of the current state of collaborative mixed reality technologies: 2013–2018

  • Received: 27 November 2018 Accepted: 20 March 2019 Published: 17 May 2019
  • Over the last few decades, Mixed Reality (MR) interfaces have received great attention from academia and industry. Although a considerable amount of research has already been done to support collaboration between users in MR, there is still no systematic review to determine the current state of collaborative MR applications. In this paper, collaborative MR studies published from 2013 to 2018 were reviewed. A total of 259 papers have been categorised based on their application areas, types of display devices used, collaboration setups, and user interaction and experience aspects. The primary contribution of this paper is to present a high-level overview of collaborative MR influence across several research disciplines. The achievements from each application area are summarised. In addition, remarkable papers in their respective areas are highlighted. Among other things, our study finds that there are three complementary factors to support and enhance collaboration in MR environments: (i) annotation techniques, which provide non-verbal communication cues to users, (ii) cooperative object manipulation techniques, which divide complex 3D object manipulation process into simpler tasks between different users, and (iii) user perception and cognition studies, which aim to lessen cognitive workload for task understanding and completion, and to increase users’ perceptual awareness and presence. Finally, this paper identifies research gaps and future directions that can be useful for researchers who want to explore ways on how to foster collaboration between users and to develop collaborative applications in MR.

    Citation: Ryan Anthony J. de Belen, Huyen Nguyen, Daniel Filonik, Dennis Del Favero, Tomasz Bednarz. A systematic review of the current state of collaborative mixed reality technologies: 2013–2018[J]. AIMS Electronics and Electrical Engineering, 2019, 3(2): 181-223. doi: 10.3934/ElectrEng.2019.2.181

    Related Papers:

  • Over the last few decades, Mixed Reality (MR) interfaces have received great attention from academia and industry. Although a considerable amount of research has already been done to support collaboration between users in MR, there is still no systematic review to determine the current state of collaborative MR applications. In this paper, collaborative MR studies published from 2013 to 2018 were reviewed. A total of 259 papers have been categorised based on their application areas, types of display devices used, collaboration setups, and user interaction and experience aspects. The primary contribution of this paper is to present a high-level overview of collaborative MR influence across several research disciplines. The achievements from each application area are summarised. In addition, remarkable papers in their respective areas are highlighted. Among other things, our study finds that there are three complementary factors to support and enhance collaboration in MR environments: (i) annotation techniques, which provide non-verbal communication cues to users, (ii) cooperative object manipulation techniques, which divide complex 3D object manipulation process into simpler tasks between different users, and (iii) user perception and cognition studies, which aim to lessen cognitive workload for task understanding and completion, and to increase users’ perceptual awareness and presence. Finally, this paper identifies research gaps and future directions that can be useful for researchers who want to explore ways on how to foster collaboration between users and to develop collaborative applications in MR.


    加载中


    [1] Dey A, Billinghurst M, Lindeman RW, et al. (2018) A Systematic Review of 10 Years of Augmented Reality Usability Studies: 2005 to 2014. Frontiers in Robotics and AI 5.
    [2] Bai Z, Blackwell AF (2012) Analytic review of usability evaluation in ISMAR. Interact Comput 24: 450–460. doi: 10.1016/j.intcom.2012.07.004
    [3] Dünser A, Grasset R, Billinghurst M (2008) A survey of evaluation techniques used in augmented reality studies. Human Interface Technology Laboratory New Zealand.
    [4] Swan JE, Gabbard JL (2005) Survey of user-based experimentation in augmented reality. In: Proceedings of 1st International Conference on Virtual Reality 22: 1–9.
    [5] Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems 77: 1321–1329.
    [6] Azuma RT (1997) A survey of augmented reality. Presence: Teleoperators & Virtual Environments 6: 355–385.
    [7] Milgram P, Takemura H, Utsumi A, et al. (1995) Augmented reality: A class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies 2351: 282–293. International Society for Optics and Photonics. doi: 10.1117/12.197321
    [8] Irizarry J, Gheisari M, Williams G, et al. (2013) InfoSPOT: A mobile Augmented Reality method for accessing building information through a situation awareness approach. Automat Constr 33: 11–23.
    [9] Ibáñez MB, Di Serio Á, Villarán D, et al. (2014) Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Comput Educ 71: 1–13. doi: 10.1016/j.compedu.2013.09.004
    [10] Henderson S, Feiner S (2011) Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE transactions on visualization and computer graphics 17: 1355–1368. doi: 10.1109/TVCG.2010.245
    [11] Dow S, Mehta M, Harmon E, et al. (2007) Presence and engagement in an interactive drama. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1475–1484, ACM.
    [12] Billinghurst M, Kato H (1999) Collaborative mixed reality. In: Proceedings of the First International Symposium on Mixed Reality, pp. 261–284, Berlin: Springer Verlag.
    [13] Wang X, Dunston PS (2006) Groupware concepts for augmented reality mediated human-to-human collaboration. In: Proceedings of the 23rd Joint International Conference on Computing and Decision Making in Civil and Building Engineering, pp. 1836–1842.
    [14] Brockmann T, Krüger N, Stieglitz S, et al. (2013) A Framework for Collaborative Augmented Reality Applications. In 19th Americas Conference on Information Systems (AMCIS).
    [15] Renevier P, Nigay L (2001) Mobile collaborative augmented reality: the augmented stroll. In: IFIP International Conference on Engineering for Human-Computer Interaction, pp. 299–316, Springer, Berlin, Heidelberg.
    [16] Arias E, Eden H, Fischer G, et al. (2000) Transcending the individual human mind-creating shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction 7: 84–113. doi: 10.1145/344949.345015
    [17] Kim S, Billinghurst M, Lee GA (2018) The Effect of Collaboration Styles and View Independence on Video-Mediated Remote Collaboration. Computer Supported Cooperative Work (CSCW) 27: 569–607.
    [18] Cabral M, Roque G, Nagamura M, et al. (2016) Batmen-Hybrid collaborative object manipulation using mobile devices. In: 2016 IEEE Symposium on3D User Interfaces (3DUI), pp. 275–276.
    [19] Reilly D, Salimian M, MacKay B, et al. (2014) SecSpace: prototyping usable privacy and security for mixed reality collaborative environments. In: Proceedings of the 2014 ACM SIGCHI symposium on Engineering interactive computing systems, pp. 273–282.
    [20] Lin T-H, Liu C-H, Tsai M-H, et al. (2014) Using augmented reality in a multiscreen environment for construction discussion. J Comput Civil Eng 29: 04014088.
    [21] Hollenbeck JR, Ilgen DR, Sego DJ, et al. (1995) Multilevel theory of team decision making: Decision performance in teams incorporating distributed expertise. Journal of Applied Psychology 80: 292–316. doi: 10.1037/0021-9010.80.2.292
    [22] Lightle JP, Kagel JH, Arkes HR (2009) Information exchange in group decision making: The hidden profile problem reconsidered. Manage Sci 55: 568–581. doi: 10.1287/mnsc.1080.0975
    [23] Gül LF, Uzun C, Halıcı SM (2017) Studying Co-design. In: International Conference on Computer-Aided Architectural Design Futures, pp. 212–230.
    [24] Al-Hammad A, Assaf S, Al-Shihah M (1997) The effect of faulty design on building maintenance. Journal of Quality in Maintenance Engineering 3: 29–39. doi: 10.1108/13552519710161526
    [25] Casarin J, Pacqueriaud N, Bechmann D (2018) UMI3D: A Unity3D Toolbox to Support CSCW Systems Properties in Generic 3D User Interfaces. Proceedings of the ACM on Human-Computer Interaction 2: 29.
    [26] Coppens A, Mens T (2018) Towards Collaborative Immersive Environments for Parametric Modelling. In: International Conference on Cooperative Design, Visualization and Engineering, pp. 304–307, Springer.
    [27] Cortés-Dávalos A, Mendoza S (2016) Layout planning for academic exhibits using Augmented Reality. In: 2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6, IEEE.
    [28] Croft BL, Lucero C, Neurnberger D, et al. (2018) Command and Control Collaboration Sand Table (C2-CST). In: International Conference on Virtual, Augmented and Mixed Reality, pp. 249–259, Springer.
    [29] Dong S, Behzadan AH, Chen F, et al. (2013) Collaborative visualization of engineering processes using tabletop augmented reality. Adv Eng Softw 55: 45–55. doi: 10.1016/j.advengsoft.2012.09.001
    [30] Elvezio C, Ling F, Liu J-S, et al. (2018) Collaborative exploration of urban data in virtual and augmented reality. In: ACM SIGGRAPH 2018 Virtual, Augmented, and Mixed Reality, p. 10, ACM.
    [31] Etzold J, Grimm P, Schweitzer J, et al. (2014) kARbon: a collaborative MR web application for communicationsupport in construction scenarios. In: Proceedings of the companion publication of the 17th ACM conference on Computer supported cooperative work & social computing, pp. 9–12, ACM.
    [32] Flotyński J, Sobociński P (2018) Semantic 4-dimensionai modeling of VR content in a heterogeneous collaborative environment. In: Proceedings of the 23rd International ACM Conference on 3D Web Technology, p. 11, ACM.
    [33] Ibayashi H, Sugiura Y, Sakamoto D, et al. (2015) Dollhouse vr: a multi-view, multi-user collaborative design workspace with vr technology. SIGGRAPH Asia 2015 Emerging Technologies, p. 8, ACM.
    [34] Leon M, Doolan DC, Laing R, et al. (2015) Development of a Computational Design Application for Interactive Surfaces. In: 2015 19th International Conference on Information Visualisation, pp. 506–511, IEEE.
    [35] Li WK, Nee AYC, Ong SK (2018) Mobile augmented reality visualization and collaboration techniques for on-site finite element structural analysis. International Journal of Modeling, Simulation, and Scientific Computing 9: 1840001. doi: 10.1142/S1793962318400019
    [36] Nittala AS, Li N, Cartwright S, et al. (2015) PLANWELL: spatial user interface for collaborative petroleum well-planning. In: SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications, p. 19, ACM.
    [37] Phan T, Hönig W, Ayanian N (2018) Mixed Reality Collaboration Between Human-Agent Teams. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 659–660.
    [38] Rajeb SB, Leclercq P (2013) Using spatial augmented reality in synchronous collaborative design. In: International Conference on Cooperative Design, Visualization and Engineering, pp. 1–10, Springer.
    [39] Ro H, Kim I, Byun J, et al. (2018) PAMI: Projection Augmented Meeting Interface for Video Conferencing. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 1274–1277, ACM.
    [40] Schattel D, Tönnis M, Klinker G, et al. (2014) On-site augmented collaborative architecture visualization. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 369–370.
    [41] Shin JG, Ng G, Saakes D (2018) Couples Designing their Living Room Together: a Study with Collaborative Handheld Augmented Reality. In: Proceedings of the 9th Augmented Human International Conference, p. 3, acm.
    [42] Singh AR, Delhi VSK (2018) User behaviour in AR-BIM-based site layout planning. International Journal of Product Lifecycle Management 11: 221–244. doi: 10.1504/IJPLM.2018.094715
    [43] Trout TT, Russell S, Harrison A, et al. (2018) Collaborative mixed reality (MxR) and networked decision making. In: Next-Generation Analyst VI 10653: 106530N. International Society for Optics and Photonics.
    [44] Alhumaidan H, Lo KPY, Selby A (2017) Co-designing with children a collaborative augmented reality book based on a primary school textbook. International Journal of Child-Computer Interaction 15: 24–36.
    [45] Alhumaidan H, Lo KPY, Selby A (2015) Co-design of augmented reality book for collaborative learning experience in primary education. In: 2015 SAI Intelligent Systems Conference (IntelliSys), pp. 427–430, IEEE.
    [46] Benavides X, Amores J, Maes P (2015) Invisibilia: revealing invisible data using augmented reality and internet connected devices. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 341–344, ACM.
    [47] Blanco-Fernández Y, López-Nores M, Pazos-Arias JJ, et al. (2014) REENACT: A step forward in immersive learning about Human History by augmented reality, role playing and social networking. Expert Syst Appl 41: 4811–4828. doi: 10.1016/j.eswa.2014.02.018
    [48] Boyce MW, Rowan CP, Baity DL, et al. (2017) Using Assessment to Provide Application in Human Factors Engineering to USMA Cadets. In: International Conference on Augmented Cognition, pp. 411–422, Springer.
    [49] Bressler DM, Bodzin AM (2013) A mixed methods assessment of students' flow experiences during a mobile augmented reality science game. Journal of Computer Assisted Learning 29: 505–517. doi: 10.1111/jcal.12008
    [50] Chen M, Fan C, Wu D (2016) Designing Effective Materials and Activities for Mobile Augmented Learning. In: International Conference on Blended Learning, pp. 85–93, Springer.
    [51] Daiber F, Kosmalla F, Krüger A (2013) BouldAR: using augmented reality to support collaborative boulder training. In: CHI' 13 Extended Abstracts on Human Factors in Computing Systems, pp. 949–954, ACM.
    [52] Desai K, Belmonte UHH, Jin R, et al. (2017) Experiences with Multi-Modal Collaborative Virtual Laboratory (MMCVL). In: 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), pp. 376–383, IEEE.
    [53] Fleck S, Simon G (2013) An augmented reality environment for astronomy learning in elementary grades: An exploratory study. In: Proceedings of the 25th Conference on I'Interaction Homme-Machine, p. 14, ACM.
    [54] Gazcón N, Castro S (2015) ARBS: An Interactive and Collaborative System for Augmented Reality Books. In: International Conference on Augmented and Virtual Reality, pp. 89–108, Springer.
    [55] Gelsomini F, Kanev K, Hung P, et al. (2017) BYOD Collaborative Kanji Learning in Tangible Augmented Reality Settings. In: International Conference on Global Research and Education, pp. 315–325, Springer.
    [56] Gironacci IM, Mc-Call R, Tamisier T (2017) Collaborative Storytelling Using Gamification and Augmented Reality. In: International Conference on Cooperative Design, Visualization and Engineering, pp. 90–93, Springer.
    [57] Goyal S, Vijay RS, Monga C, et al. (2016) Code Bits: An Inexpensive Tangible Computational Thinking Toolkit For K-12 Curriculum. In: Proceedings of the TEI'16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 441–447, ACM.
    [58] Greenwald SW (2015) Responsive Facilitation of Experiential Learning Through Access to Attentional State. In: Adjunct Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, pp. 1–4, ACM.
    [59] Han J, Jo M, Hyun E, et al. (2015) Examining young children's perception toward augmented reality-infused dramatic play. Educational Technology Research and Development 63: 455–474. doi: 10.1007/s11423-015-9374-9
    [60] Iftene A, Trandabăț D (2018) Enhancing the Attractiveness of Learning through Augmented Reality. Procedia Computer Science 126: 166–175. doi: 10.1016/j.procs.2018.07.220
    [61] Jyun-Fong G, Ju-Ling S (2013) The Instructional Application of Augmented Reality in Local History Pervasive Game. pp. 387.
    [62] Kang S, Norooz L, Oguamanam V, et al. (2016) SharedPhys: Live Physiological Sensing, Whole-Body Interaction, and Large-Screen Visualizations to Support Shared Inquiry Experiences. In: Proceedings of the The 15th International Conference on Interaction Design and Children, pp. 275–287, ACM.
    [63] Kazanidis I, Palaigeorgiou G, Papadopoulou Α, et al. (2018) Augmented Interactive Video: Enhancing Video Interactivity for the School Classroom. Journal of Engineering Science and Technology Review 11.
    [64] Keifert D, Lee C, Dahn M, et al. (2017) Agency, Embodiment, & Affect During Play in a Mixed-Reality Learning Environment. In: Proceedings of the 2017 Conference on Interaction Design and Children, pp. 268–277, ACM.
    [65] Kim H-J, Kim B-H (2018) Implementation of young children English education system by AR type based on P2P network service model. Peer-to-Peer Networking and Applications 11: 1252–1264. doi: 10.1007/s12083-017-0612-2
    [66] Krstulovic R, Boticki I, Ogata H (2017) Analyzing heterogeneous learning logs using the iterative convergence method. In: 2017 IEEE 6th International Conference on Teaching, Assessment, and Learning for Engineering, pp. 482–485.
    [67] Le TN, Le YT, Tran MT (2014) Applying Saliency-Based Region of Interest Detection in Developing a Collaborative Active Learning System with Augmented Reality. In: International Conference on Virtual, Augmented and Mixed Reality, pp. 51–62, Springer.
    [68] MacIntyre B, Zhang D, Jones R, et al. (2016) Using projection ar to add design studio pedagogy to a cs classroom. In: 2016 IEEE Virtual Reality (VR), pp. 227–228.
    [69] Malinverni L, Valero C, Schaper MM, et al. (2018) A conceptual framework to compare two paradigms of augmented and mixed reality experiences. In: Proceedings of the 17th ACM Conference on Interaction Design and Children, pp. 7–18, ACM.
    [70] Maskott GK, Maskott MB, Vrysis L (2015) Serious+: A technology assisted learning space based on gaming. In: 2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL), pp. 430–432, IEEE.
    [71] Pareto L (2012) Mathematical literacy for everyone using arithmetic games. In: Proceedings of the 9th International Conference on Disability, Virtual Reality and Associated Technologies 9: 87–96. Reading, UK: University of Readings.
    [72] Peters E, Heijligers B, de Kievith J, et al. (2016) Design for collaboration in mixed reality: Technical challenges and solutions. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), pp. 1–7, IEEE.
    [73] Punjabi DM, Tung LP, Lin BSP (2013) CrowdSMILE: a crowdsourcing-based social and mobile integrated system for learning by exploration. In: 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing, pp. 521–526.
    [74] Rodríguez-Vizzuett L, Pérez-Medina JL, Muñoz-Arteaga J, et al. (2015) Towards the Definition of a Framework for the Management of Interactive Collaborative Learning Applications for Preschoolers. In: Proceedings of the XVI International Conference on Human Computer Interaction, p. 11, ACM.
    [75] Sanabria JC, Arámburo-Lizárraga J (2017) Enhancing 21st Century Skills with AR: Using the Gradual Immersion Method to develop Collaborative Creativity. Eurasia Journal of Mathematics, Science and Technology Education 13: 487–501.
    [76] Shaer O, Valdes C, Liu S, et al. (2014) Designing reality-based interfaces for experiential bio-design. Pers Ubiquit Comput 18: 1515–1532. doi: 10.1007/s00779-013-0752-1
    [77] Shirazi A, Behzadan AH (2015) Content Delivery Using Augmented Reality to Enhance Students' Performance in a Building Design and Assembly Project. Advances in Engineering Education 4.
    [78] Shirazi A, Behzadan AH (2013) Technology-enhanced learning in construction education using mobile context-aware augmented reality visual simulation. In: 2013 Winter Simulations Conference (WSC), pp. 3074–3085, IEEE.
    [79] Sun H, Liu Y, Zhang Z, et al. (2018) Employing Different Viewpoints for Remote Guidance in a Collaborative Augmented Environment. In: Proceedings of the Sixth International Symposium of Chinese CHI, pp. 64–70, ACM.
    [80] Sun H, Zhang Z, Liu Y, et al. (2016) OptoBridge: assisting skill acquisition in the remote experimental collaboration. In: Proceedings of the 28th Australian Conference on Computer-Human Interaction, pp. 195–199, ACM.
    [81] Thompson B, Leavy L, Lambeth A, et al. (2016) Participatory Design of STEM Education AR Experiences for Heterogeneous Student Groups: Exploring Dimensions of Tangibility, Simulation, and Interaction. In: 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 53–58.
    [82] Wiehr F, Kosmalla F, Daiber F, et al. (2016) betaCube: Enhancing Training for Climbing by a Self-Calibrating Camera-Projection Unit. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1998–2004, ACM.
    [83] Yangguang L, Yue L, Xiaodong W (2014) Multiplayer collaborative training system based on Mobile AR innovative interaction technology. In: 2014 International Conference on Virtual Reality and Visualization, pp. 81–85, IEEE.
    [84] Yoon SA, Wang J, Elinich K (2014) Augmented reality and learning in science museums. Digital Systems for Open Access to Formal and Informal Learning, pp. 293–305, Springer.
    [85] Zubir F, Suryani I, Ghazali N (2018) Integration of Augmented Reality into College Yearbook. In: MATEC Web of Conferences 150: 05031. EDP Sciences. doi: 10.1051/matecconf/201815005031
    [86] Dascalu MI, Moldoveanu A, Shudayfat EA (2014) Mixed reality to support new learning paradigms. In: 2014 8th International Conference on System Theory, Control and Computing (ICSTCC), pp. 692–697, IEEE.
    [87] Boonbrahm P, Kaewrat C, Boonbrahm S (2016) Interactive Augmented Reality: A New Approach for Collaborative Learning. In: International Conference on Learning and Collaboration Technologies, pp. 115–124, Springer.
    [88] LaViola Jr JJ, Kruijff E, McMahan RP, et al. (2017) 3D user interfaces: theory and practice. Addison-Wesley Professional.
    [89] Kim S, Lee GA, Sakata N (2013) Comparing pointing and drawing for remote collaboration. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 1–6, IEEE.
    [90] Akahoshi S, Matsushita M (2018) Magical Projector: Virtual Object Sharing Method among Multiple Users in a Mixed Reality Space. In: 2018 Nicograph International (NicoInt), pp. 70–73, IEEE.
    [91] Baillard C, Fradet M, Alleaume V, et al. (2017) Multi-device mixed reality TV: a collaborative experience with joint use of a tablet and a headset. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, p. 67, ACM.
    [92] Baldauf M, Fröhlich P (2013) The augmented video wall: multi-user AR interaction with public displays. In: CHI'13 Extended Abstracts on Human Factors in Computing Systems, pp. 3015–3018, ACM.
    [93] Ballagas R, Dugan TE, Revelle G, et al. (2013) Electric agents: fostering sibling joint media engagement through interactive television and augmented reality. In: Proceedings of the 2013 conference on Computer supported cooperative work, pp. 225–236, ACM.
    [94] Beimler R, Bruder G, Steinicke F (2013) Smurvebox: A smart multi-user real-time virtual environment for generating character animations. In: Proceedings of the Virtual Reality International Conference: Laval Virtual, p. 1, ACM.
    [95] Bollam P, Gothwal E, Tejaswi V G, et al. (2015) Mobile collaborative augmented reality with real-time AR/VR switching. In: ACM SIGGRAPH 2015 Posters, p. 25, ACM.
    [96] Bourdin P, Sanahuja JMT, Moya CC, et al. (2013) Persuading people in a remote destination to sing by beaming there. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, pp. 123–132, ACM.
    [97] Brondi R, Avveduto G, Alem L, et al. (2015) Evaluating the effects of competition vs collaboration on user engagement in an immersive game using natural interaction. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, p. 191, ACM.
    [98] Ch'ng E, Harrison D, Moore S (2017) Shift-life interactive art: Mixed-reality artificial ecosystem simulation. Presence: Teleoperators & Virtual Environments 26: 157–181.
    [99] Courchesne L, Durand E, Roy B (2014) Posture platform and the drawing room: virtual teleportation in cyberspace. Leonardo 47: 367–374. doi: 10.1162/LEON_a_00842
    [100] Dal Corso A, Olsen M, Steenstrup KH, et al. (2015) VirtualTable: a projection augmented reality game. In: SIGGRAPH Asia 2015 Posters, p. 40, ACM.
    [101] Datcu D, Lukosch S, Lukosch H (2016) A Collaborative Game to Study Presence and Situational Awareness in a Physical and an Augmented Reality Environment. J Univers Comput Sci 22: 247–270.
    [102] Datcu D, Lukosch SG, Lukosch HK (2014) A collaborative game to study the perception of presence during virtual co-location. In: Proceedings of the companion publication of the 17th ACM conference on Computer supported cooperative work & social computing, pp. 5–8, ACM.
    [103] Figueroa P, Hernández JT, Merienne F, et al. (2018) Heterogeneous, distributed mixed reality Applications. A concept. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 549–550.
    [104] Fischbach M, Lugrin J-L, Brandt M, et al. (2018) Follow the White Robot-A Role-Playing Game with a Robot Game Master. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1812–1814.
    [105] Fischbach M, Striepe H, Latoschik ME, et al. (2016) A low-cost, variable, interactive surface for mixed-reality tabletop games. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pp. 297–298, ACM.
    [106] Günther S, Müller F, Schmitz M, et al. (2018) CheckMate: Exploring a Tangible Augmented Reality Interface for Remote Interaction. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, p. LBW570, ACM.
    [107] Huo K, Wang T, Paredes L, et al. (2018) SynchronizAR: Instant Synchronization for Spontaneous and Spatial Collaborations in Augmented Reality. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, pp. 19–30, ACM.
    [108] Karakottas A, Papachristou A, Doumanoqlou A, et al. (2018) Augmented VR. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 18–22, IEEE.
    [109] Lantin M, Overstall SL, Zhao H (2018) I am afraid: voice as sonic sculpture. In: ACM SIGGRAPH 2018 Posters, pp. 1–2, ACM.
    [110] Loviska M, Krause O, Engelbrecht HA, et al. (2016) Immersed gaming in Minecraft. In: Proceedings of the 7th International Conference on Multimedia Systems, p. 32, ACM.
    [111] Mackamul EB, Esteves A (2018) A Look at the Effects of Handheld and Projected Augmented-reality on a Collaborative Task. In: Proceedings of the Symposium on Spatial User Interaction, pp. 74–78, ACM.
    [112] Margolis T, Cornish T (2013) Vroom: designing an augmented environment for remote collaboration in digital cinema production. In: The Engineering Reality of Virtual Reality 2013 8649: 86490F. International Society for Optics and Photonics. doi: 10.1117/12.2008587
    [113] McGill M, Williamson JH, Brewster SA (2016) Examining the role of smart TVs and VR HMDs in synchronous at-a-distance media consumption. ACM T Comput-Hum Int 23: 33.
    [114] Mechtley B, Stein J, Roberts C, et al. (2017) Rich State Transitions in a Media Choreography Framework Using an Idealized Model of Cloud Dynamics. In: Proceedings of the onThematic Workshops of ACM Multimedia 2017, pp. 477–484, ACM.
    [115] Pillias C, Robert-Bouchard R, Levieux G (2014) Designing tangible video games: lessons learned from the sifteo cubes. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3163–3166, ACM.
    [116] Podkosova I, Kaufmann H (2018) Co-presence and proxemics in shared walkable virtual environments with mixed collocation. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, pp. 21, ACM.
    [117] Prins MJ, Gunkel SN, Stokking HM, et al. (2018) TogetherVR: A framework for photorealistic shared media experiences in 360-degree VR. SMPTE Motion Imag J 127: 39–44.
    [118] Rostami A, Bexell E, Stanisic S (2018) The Shared Individual. In: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 511–516, ACM.
    [119] Sato T, Hwang DH, Koike H (2018) MlioLight: Projector-camera Based Multi-layered Image Overlay System for Multiple Flashlights Interaction. In: Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces, pp. 263–271, ACM.
    [120] Spielmann S, Schuster A, Götz K, et al. (2016) VPET: a toolset for collaborative virtual filmmaking. In: SIGGRAPH ASIA 2016 Technical Briefs, p. 29, ACM.
    [121] Trottnow J, Götz K, Seibert S, et al. (2015) Intuitive virtual production tools for set and light editing. In: Proceedings of the 12th European Conference on Visual Media Production, p. 6, ACM.
    [122] Valverde I, Cochrane T (2017) Senses Places: soma-tech mixed-reality participatory performance installation/environment. In: Proceedings of the 8th International Conference on Digital Arts, pp. 195–197, ACM.
    [123] Van Troyer A (2013) Enhancing site-specific theatre experience with remote partners in sleep no more. In: Proceedings of the 2013 ACM International workshop on Immersive media experiences, pp. 17–20, ACM.
    [124] Vermeer J, Alaka S, de Bruin N, et al. (2018) League of lasers: a superhuman sport using motion tracking. In: Proceedings of the First Superhuman Sports Design Challenge on First International Symposium on Amplifying Capabilities and Competing in Mixed Realities, p. 8, ACM.
    [125] Wegner K, Seele S, Buhler H, et al. (2017) Comparison of Two Inventory Design Concepts in a Collaborative Virtual Reality Serious Game. In: Extended Abstracts Publication of the Annual Symposium on Computer-Human Interaction in Play, pp. 323–329, ACM.
    [126] Zhou Q, Hagemann G, Fels S, et al. (2018) Coglobe: a co-located multi-person FTVR experience. In: ACM SIGGRAPH 2018 Emerging Technologies, p. 5, ACM.
    [127] Zimmerer C, Fischbach M, Latoschik ME (2014) Fusion of Mixed-Reality Tabletop and Location-Based Applications for Pervasive Games. In: Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces, pp. 427–430, ACM.
    [128] Speicher M, Hall BD, Yu A, et al. (2018) XD-AR: Challenges and Opportunities in Cross-Device Augmented Reality Application Development. Proceedings of the ACM on Human-Computer Interaction 2: 7.
    [129] Gauglitz S, Nuernberger B, Turk M, et al. (2014) World-stabilized annotations and virtual scene navigation for remote collaboration. In: Proceedings of the 27th Annual ACM symposium on User interface software and technology, pp. 449–459, ACM.
    [130] Abramovici M, Wolf M, Adwernat S, et al. (2017) Context-aware Maintenance Support for Augmented Reality Assistance and Synchronous Multi-user Collaboration. Procedia CIRP 59: 18–22. doi: 10.1016/j.procir.2016.09.042
    [131] Aschenbrenner D, Li M, Dukalski R, et al. (2018) Collaborative Production Line Planning with Augmented Fabrication. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 509–510, IEEE.
    [132] Bednarz T, James C, Widzyk-Capehart E, et al. (2015) Distributed collaborative immersive virtual reality framework for the mining industry. Machine Vision and Mechatronics in Practice, pp. 39–48, Springer.
    [133] Capodieci A, Mainetti L, Alem L (2015) An innovative approach to digital engineering services delivery: An application in maintenance. In: 2015 11th International Conference on Innovations in Information Technology (IIT), pp. 342–349, IEEE.
    [134] Choi SH, Kim M, Lee JY (2018) Situation-dependent remote AR collaborations: Image-based collaboration using a 3D perspective map and live video-based collaboration with a synchronized VR mode. Comput Ind 101: 51–66. doi: 10.1016/j.compind.2018.06.006
    [135] Clergeaud D, Roo JS, Hachet M, et al. (2017) Towards seamless interaction between physical and virtual locations for asymmetric collaboration. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, pp. 1–4, ACM.
    [136] Datcu D, Cidota M, Lukosch SG, et al. (2014) Virtual co-location to support remote assistance for inflight maintenance in ground training for space missions. In: Proceedings of the 15th International Conference on Computer Systems and Technologies, pp. 134–141, ACM.
    [137] Domova V, Vartiainen E, Englund M (2014) Designing a remote video collaboration system for industrial settings. In: Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces, pp. 229–238, ACM.
    [138] Elvezio C, Sukan M, Oda O, et al. (2017) Remote collaboration in AR and VR using virtual replicas. In: ACM SIGGRAPH 2017 VR Village, p. 13, ACM.
    [139] Funk M, Kritzler M, Michahelles F (2017) HoloCollab: A Shared Virtual Platform for Physical Assembly Training using Spatially-Aware Head-Mounted Displays. In: Proceedings of the Seventh International Conference on the Internet of Things, p. 19, ACM.
    [140] Galambos P, Csapó ÁB, Zentay PZ, et al. (2015) Design, programming and orchestration of heterogeneous manufacturing systems through VR-powered remote collaboration. Robotics and Computer-Integrated Manufacturing 33: 68–77. doi: 10.1016/j.rcim.2014.08.012
    [141] Galambos P, Baranyi PZ, Rudas IJ (2014) Merged physical and virtual reality in collaborative virtual workspaces: The VirCA approach. In: IECON 2014 – 40th Annual Conference of the IEEE Industrial Electronics Society, pp. 2585–2590, IEEE.
    [142] Gupta RK, Ucler C, Bernard A (2018) Extension of the Virtual Customer Inspection for Distant Collaboration in NPD. In: 2018 IEEE International Conference on Engineering, Technology and Innovation, pp. 1–7.
    [143] Gurevich P, Lanir J, Cohen B (2015) Design and implementation of teleadvisor: a projection-based augmented reality system for remote collaboration. Computer Supported Cooperative Work (CSCW) 24: 527–562. doi: 10.1007/s10606-015-9232-7
    [144] Günther S, Kratz SG, Avrahami D, et al. (2018) Exploring Audio, Visual, and Tactile Cues for Synchronous Remote Assistance. In: Proceedings of the 11th Pervasive Technologies Related to Assistive Environments Conference, pp. 339–344, ACM.
    [145] Morosi F, Carli I, Caruso G, et al. (2018) Analysis of Co-Design Scenarios and Activities for the Development of A Spatial-Augmented Reality Design Platform. In: DS 92: Proceedings of the DESIGN 2018 15th International Design Conference, pp. 381–392.
    [146] Plopski A, Fuvattanasilp V, Poldi J, et al. (2018) Efficient In-Situ Creation of Augmented Reality Tutorials. In: 2018 Workshop on Metrology for Industry 4.0 and IoT, pp. 7–11, IEEE.
    [147] Seo D-W, Lee S-M, Park K-S, et al. (2015) INTEGRATED ENGINEERING PRODUCT DESIGN SIMULATION PLATFORM FOR COLLABORATIVE SIMULATION UNDER THE USER EXPERIENCE OF SME USERS. simulation 1: 2.
    [148] Zenati N, Hamidia M, Bellarbi A, et al. (2015) E-maintenance for photovoltaic power system in Algeria. In: 2015 IEEE International Conference on Industrial Technology, pp. 2594–2599.
    [149] Zenati N, Benbelkacem S, Belhocine M, et al. (2013) A new AR interaction for collaborative E-maintenance system. IFAC Proceedings Volumes 46: 619–624.
    [150] Zenati-Henda N, Bellarbi A, Benbelkacem S, et al. (2014) Augmented reality system based on hand gestures for remote maintenance. In: 2014 International Conference on Multimedia Computing and Systems (ICMCS), pp. 5–8, IEEE.
    [151] Huang W, Billinghurst M, Alem L, et al. (2018) HandsInTouch: sharing gestures in remote collaboration. In: Proceedings of the 30th Australian Conference on Computer-Human Interaction, pp. 396–400, ACM.
    [152] Davis MC, Can DD, Pindrik J, et al. (2016) Virtual interactive presence in global surgical education: international collaboration through augmented reality. World neurosurgery 86: 103–111. doi: 10.1016/j.wneu.2015.08.053
    [153] Alharthi SA, Sharma HN, Sunka S, et al. (2018) Designing Future Disaster Response Team Wearables from a Grounding in Practice. In: Proceedings of the Technology, Mind, and Society, p. 1, ACM.
    [154] Carbone M, Freschi C, Mascioli S, et al. (2016) A wearable augmented reality platform for telemedicine. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, pp. 92–100, Springer.
    [155] Elvezio C, Ling F, Liu J-S, et al. (2018) Collaborative Virtual Reality for Low-Latency Interaction. In: The 31st Annual ACM Symposium on User Interface Software and Technology Adjunct Proceedings, pp. 179–181, ACM.
    [156] Gillis J, Calyam P, Apperson O, et al. (2016) Panacea's Cloud: Augmented reality for mass casualty disaster incident triage and co-ordination. In: 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 264–265, IEEE.
    [157] Kurillo G, Yang AY, Shia V, et al. (2016) New emergency medicine paradigm via augmented telemedicine. In: 8th International Conference on Virtual, Augmented and Mixed Reality, VAMR 2016 and Held as Part of 18th International Conference on Human-Computer Interaction, HCI International 2016, pp. 502–511, Springer.
    [158] Nunes M, Nedel LP, Roesler V (2013) Motivating people to perform better in exergames: Collaboration vs. competition in virtual environments. In: 2013 IEEE Virtual Reality (VR), pp. 115–116, IEEE.
    [159] Nunes IL, Lucas R, Simões-Marques M, et al. (2017) Augmented Reality in Support of Disaster Response. In: International Conference on Applied Human Factors and Ergonomics, pp. 155–167, Springer.
    [160] Popescu D, Lăptoiu D, Marinescu R, et al. (2017) Advanced Engineering in Orthopedic Surgery Applications. Key Engineering Materials 752: 99–104. doi: 10.4028/www.scientific.net/KEM.752.99
    [161] Shluzas LA, Aldaz G, Leifer L (2016) Design Thinking Health: Telepresence for Remote Teams with Mobile Augmented Reality. In: Design Thinking Research, pp. 53–66, Springer.
    [162] Sirilak S, Muneesawang P (2018) A New Procedure for Advancing Telemedicine Using the HoloLens. IEEE Access 6: 60224–60233. doi: 10.1109/ACCESS.2018.2875558
    [163] Vassell M, Apperson O, Calyam P, et al. (2016) Intelligent Dashboard for augmented reality based incident command response co-ordination. In: 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 976–979, IEEE.
    [164] Bach B, Sicat R, Beyer J, et al. (2018) The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality? IEEE Transactions on Visualization & Computer Graphics 24: 457–467.
    [165] Daher S (2017) Optical see-through vs. spatial augmented reality simulators for medical applications. In: 2017 IEEE Virtual Reality (VR), pp. 417–418.
    [166] Camps-Ortueta I, Rodríguez-Muñoz JM, Gómez-Martín PP, et al. (2017) Combining augmented reality with real maps to promote social interaction in treasure hunts. CoSECivi, pp. 131–143.
    [167] Chen H, Lee AS, Swift M, et al. (2015) 3D collaboration method over HoloLens™ and Skype™ end points. In: Proceedings of the 3rd International Workshop on Immersive Media Experiences, pp. 27–30, ACM.
    [168] Gleason C, Fiannaca AJ, Kneisel M, et al. (2018) FootNotes: Geo-referenced Audio Annotations for Nonvisual Exploration. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2: 109.
    [169] Huang W, Kaminski B, Luo J, et al. (2015) SMART: design and evaluation of a collaborative museum visiting application. In: 12th International Conference, CDVE 2015 – Cooperative Design, Visualization, and Engineering 12th International Conference 9320: 57–64.
    [170] Kallioniemi P, Heimonen T, Turunen M, et al. (2015) Collaborative navigation in virtual worlds: how gender and game experience influence user behavior. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, pp. 173–182, ACM.
    [171] Li N, Nittala AS, Sharlin E, et al. (2014) Shvil: collaborative augmented reality land navigation. In: CHI'14 Extended Abstracts on Human Factors in Computing Systems, pp. 1291–1296, ACM.
    [172] Nuernberger B, Lien K-C, Grinta L, et al. (2016) Multi-view gesture annotations in image-based 3D reconstructed scenes. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pp. 129–138, ACM.
    [173] Kallioniemi P, Hakulinen J, Keskinen T, et al. (2013) Evaluating landmark attraction model in collaborative wayfinding in virtual learning environments. In: Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia, pp. 1–10, ACM.
    [174] Bork F, Schnelzer C, Eck U, et al. (2018) Towards Efficient Visual Guidance in Limited Field-of-View Head-Mounted Displays. IEEE transactions on visualization and computer graphics 24: 2983–2992. doi: 10.1109/TVCG.2018.2868584
    [175] Sodhi RS, Jones BR, Forsyth D, et al. (2013) BeThere: 3D mobile collaboration with spatial input. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 179–188, ACM.
    [176] Lien K-C, Nuernberger B, Turk M, et al. (2015) [POSTER] 2D-3D Co-segmentation for AR-based Remote Collaboration. In: 2015 IEEE International Symposium on Mixed and Augmented Reality, pp. 184–185, IEEE.
    [177] Nuernberger B, Lien K-C, Höllerer T, et al. (2016) Anchoring 2D gesture annotations in augmented reality. In: 2016 IEEE Virtual Reality (VR), pp. 247–248, IEEE.
    [178] Nuernberger B, Lien K-C, Höllerer T, et al. (2016) Interpreting 2d gesture annotations in 3d augmented reality. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 149–158.
    [179] Kovachev D, Nicolaescu P, Klamma R (2014) Mobile real-time collaboration for semantic multimedia. Mobile Networks and Applications 19: 635–648. doi: 10.1007/s11036-013-0453-z
    [180] You S, Thompson CK (2017) Mobile collaborative mixed reality for supporting scientific inquiry and visualization of earth science data. In: 2017 IEEE Virtual Reality (VR), pp. 241–242.
    [181] Wiehr F, Daiber F, Kosmalla F, et al. (2017) ARTopos: augmented reality terrain map visualization for collaborative route planning. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers, pp. 1047–1050, ACM.
    [182] Müller J, Rädle R, Reiterer H (2017) Remote Collaboration With Mixed Reality Displays: How Shared Virtual Landmarks Facilitate Spatial Referencing. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 6481–6486, ACM.
    [183] Park S, Kim J (2018) Augmented Memory: Site-Specific Social Media with AR. In: Proceedings of the 9th Augmented Human International Conference, p. 41, ACM.
    [184] Ryskeldiev B, Igarashi T, Zhang J, et al. (2018) Spotility: Crowdsourced Telepresence for Social and Collaborative Experiences in Mobile Mixed Reality. In: Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing, pp. 373–376, ACM.
    [185] Grandi JG, Berndt I, Debarba HG, et al. (2017) Collaborative manipulation of 3D virtual objects in augmented reality scenarios using mobile devices. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 264–265, IEEE.
    [186] Cortés-Dávalos A, Mendoza S (2016) AR-based Modeling of 3D Objects in Multi-user Mobile Environments. In: CYTED-RITOS International Workshop on Groupware, pp. 21–36, Springer.
    [187] Cortés-Dávalos A, Mendoza S (2016) Augmented Reality-Based Groupware for Editing 3D Surfaces on Mobile Devices. In: 2016 International Conference on Collaboration Technologies and Systems (CTS), pp. 319–326, IEEE.
    [188] Zhang W, Han B, Hui P, et al. (2018) CARS: Collaborative Augmented Reality for Socialization. In: Proceedings of the 19th International Workshop on Mobile computing Systems & Applications, pp. 25–30, ACM.
    [189] Cortés-Dávalos A, Mendoza S (2016) Collaborative Web Authoring of 3D Surfaces Using Augmented Reality on Mobile Devices. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 640–643, IEEE.
    [190] Pani M, Poiesi F (2018) Distributed Data Exchange with Leap Motion. International Conference on Augmented Reality, Virtual Reality, and Computer Graphics, pp. 655–667, Springer.
    [191] Grandi JG, Debarba HG, Bemdt I, et al. (2018) Design and Assessment of a Collaborative 3D Interaction Technique for Handheld Augmented Reality. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 49–56.
    [192] Müller J, Rädle R, Reiterer H (2016) Virtual Objects as Spatial Cues in Collaborative Mixed Reality Environments: How They Shape Communication Behavior and User Task Load. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1245–1249, ACM.
    [193] Müller J, Butscher S, Feyer SP, et al. (2017) Studying collaborative object positioning in distributed augmented realities. In: Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia, pp. 123–132, ACM.
    [194] Francese R, Passero I, Zarraonandia T (2012) An augmented reality application to gather participant feedback during a meeting. In: Information systems: crossroads for organization, management, accounting and engineering, pp. 173–180.
    [195] Datcu D, Lukosch SG, Lukosch HK (2016) Handheld Augmented Reality for Distributed Collaborative Crime Scene Investigation. In: Proceedings of the 19th International Conference on Supporting Group Work, pp. 267–276, ACM.
    [196] Pece F, Steptoe W, Wanner F, et al. (2013) Panoinserts: mobile spatial teleconferencing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1319–1328, ACM.
    [197] Cai M, Masuko S, Tanaka J (2018) Gesture-based Mobile Communication System Providing Side-by-side Shopping Feeling. In: Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion, p. 2, ACM.
    [198] Chang YS, Nuernberger B, Luan B, et al. (2017) Gesture-based augmented reality annotation. In: 2017 IEEE Virtual Reality (VR), pp. 469–470, IEEE.
    [199] Le Chénéchal M, Duval T, Gouranton V, et al. (2016) Vishnu: virtual immersive support for helping users an interaction paradigm for collaborative remote guiding in mixed reality. In: 2016 IEEE Third VR International Workshop on Collaborative virtual Environments (3DCVE), pp. 9–12.
    [200] Piumsomboon T, Lee Y, Lee GA, et al. (2017) Empathic Mixed Reality: Sharing What You Feel and Interacting with What You See. In: 2017 International Symposium on Ubiquitous Virtual Reality (ISUVR), pp. 38–41, IEEE.
    [201] Piumsomboon T, Lee Y, Lee G, et al. (2017) CoVAR: a collaborative virtual and augmented reality system for remote collaboration. In: SIGGRAPH Asia 2017 Emerging Technologies, p. 3, ACM.
    [202] Lee Y, Masai K, Kunze KS, et al. (2016) A Remote Collaboration System with Empathy Glasses. In: 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 342–343, IEEE.
    [203] Piumsomboon T, Dey A, Ens B, et al. (2017) [POSTER] CoVAR: Mixed-Platform Remote Collaborative Augmented and Virtual Realities System with Shared Collaboration Cues. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 218–219, IEEE.
    [204] Piumsomboon T, Day A, Ens B, et al. (2017) Exploring enhancements for remote mixed reality collaboration. In: SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, p. 16, ACM.
    [205] Amores J, Benavides X, Maes P (2015) Showme: A remote collaboration system that supports immersive gestural communication. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1343–1348, ACM.
    [206] Yu J, Noh S, Jang Y, et al. (2015) A hand-based collaboration framework in egocentric coexistence reality. In: 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 545–548, IEEE.
    [207] Piumsomboon T, Lee GA, Hart JD, et al. (2018) Mini-Me: An Adaptive Avatar for Mixed Reality Remote Collaboration. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 46, ACM.
    [208] Piumsomboon T, Lee GA, Billinghurst M (2018) Snow Dome: A Multi-Scale Interaction in Mixed Reality Remote Collaboration. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, p. D115, ACM.
    [209] Cidota M, Lukosch S, Datcu D, et al. (2016) Workspace awareness in collaborative AR using HMDS: a user study comparing audio and visual notifications. In: Proceedings of the 7th Augmented Human International Conference 2016, p. 3, ACM.
    [210] Jo D, Kim K-H, Kim GJ (2016) Effects of avatar and background representation forms to co-presence in mixed reality (MR) tele-conference systems. In: SIGGRAPH Asia 2016 Virtual Reality meets Physical Reality: Modelling and Simulating Virtual Humans and Environments, p. 12, ACM.
    [211] Yu J, Jeon J-u, Park G, et al. (2016) A Unified Framework for Remote Collaboration Using Interactive AR Authoring and Hands Tracking. In: International Conference on Distributed, Ambient, and Pervasive Interactions, pp. 132–141, Springer.
    [212] Nassani A, Lee G, Billinghurst M, et al. (2017) [POSTER] The Social AR Continuum: Concept and User Study. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 7–8.
    [213] Gao L, Bai H, Lee G, et al. (2016) An oriented point-cloud view for MR remote collaboration. SIGGRAPH ASIA 2016 Mobile Graphics and Interactive Applications, p. 8, ACM.
    [214] Lee GA, Teo T, Kim S, et al. (2017) Mixed reality collaboration through sharing a live panorama. SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, p. 14, ACM.
    [215] Gao L, Bai H, Lindeman R, et al. (2017) Static local environment capturing and sharing for MR remote collaboration. SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, p. 17, ACM.
    [216] Lee GA, Teo T, Kim S, et al. (2017) Sharedsphere: MR collaboration through shared live panorama. SIGGRAPH Asia 2017 Emerging Technologies, pp. 1–2, ACM.
    [217] Rühmann LM, Prilla M, Brown G (2018) Cooperative Mixed Reality: An Analysis Tool. In: Proceedings of the 2018 ACM Conference on Supporting Groupwork, pp. 107–111, ACM.
    [218] Lee H, Ha T, Noh S, et al. (2013) Context-of-Interest Driven Trans-Space Convergence for Spatial Co-presence. In: Proceedings of the First International Conference on Distributed, Ambient, and Pervasive Interactions 8028: 388–395. doi: 10.1007/978-3-642-39351-8_42
    [219] Yang P, Kitahara I, Ohta Y. (2015) [POSTER] Remote Mixed Reality System Supporting Interactions with Virtualized Objects. In: 2015 IEEE International Symposium on Mixed and Augmented Reality, pp. 64–67, IEEE.
    [220] Benbelkacem S, Zenati-Henda N, Belghit H, et al. (2015) Extended web services for remote collaborative manipulation in distributed augmented reality. In: 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT), pp. 1–5, IEEE.
    [221] Pan Y, Sinclair D, Mitchell K (2018) Empowerment and embodiment for collaborative mixed reality systems. Comput Animat Virt W 29: e1838. doi: 10.1002/cav.1838
    [222] Drochtert D, Geiger C (2015) Collaborative magic lens graph exploration. In: SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications, p. 25, ACM.
    [223] Lee J-Y, Kwon J-H, Nam S-H, et al. (2016) Coexistent Space: Collaborative Interaction in Shared 3D Space. In: Proceedings of the 2016 Symposium on Spatial User Interaction, pp. 175–175, ACM.
    [224] Müller F, Günther S, Nejad AH, et al. (2017) Cloudbits: supporting conversations through augmented zero-query search visualization. In: Proceedings of the 5th Symposium on Spatial User Interaction, pp. 30–38, ACM.
    [225] Lehment NH, Tiefenbacher P, Rigoll G (2014) Don't Walk into Walls: Creating and Visualizing Consensus Realities for Next Generation Videoconferencing. In: Proceedings, Part I, of the 6th International Conference on Virtual, Augmented and Mixed Reality. Designing and Developing Virtual and Augmented Environments 8525: 170–180.
    [226] Roth D, Lugrin J-L, Galakhov D, et al. (2016) Avatar realism and social interaction quality in virtual reality. In: 2016 IEEE Virtual Reality (VR), pp. 277–278, IEEE.
    [227] Kasahara S, Nagai S, Rekimoto J (2017) JackIn Head: Immersive visual telepresence system with omnidirectional wearable camera. IEEE transactions on visualization and computer graphics 23: 1222–1234. doi: 10.1109/TVCG.2016.2642947
    [228] Luongo C, Leoncini P (2018) An UE4 Plugin to Develop CVE Applications Leveraging Participant's Full Body Tracking Data. International Conference on Augmented Reality, Virtual Reality, and Computer Graphics, pp. 610–622.
    [229] Piumsomboon T, Lee GA, Ens B, et al. (2018) Superman vs Giant: A Study on Spatial Perception for a Multi-Scale Mixed Reality Flying Telepresence Interface. IEEE Transactions on Visualization and Computer Graphics 24: 2974–2982. doi: 10.1109/TVCG.2018.2868594
    [230] Kasahara S, Rekimoto J (2015) JackIn head: immersive visual telepresence system with omnidirectional wearable camera for remote collaboration. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, pp. 217–225, ACM.
    [231] Adams H, Thompson C, Thomas D, et al. (2015) The effect of interpersonal familiarity on cooperation in a virtual environment. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, pp. 138–138, ACM.
    [232] Ryskeldiev B, Cohen M, Herder J (2017) Applying rotational tracking and photospherical imagery to immersive mobile telepresence and live video streaming groupware. In: SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, p. 5.
    [233] Mai C, Bartsch SA, Rieger L (2018) Evaluating Shared Surfaces for Co-Located Mixed-Presence Collaboration. In: Proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia, pp. 1–5, ACM.
    [234] Congdon BJ, Wang T, Steed A (2018) Merging environments for shared spaces in mixed reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, p. 11.
    [235] Gao L, Bai H, He W, et al. (2018) Real-time visual representations for mobile mixed reality remote collaboration. SIGGRAPH Asia 2018 Virtual & Augmented Reality, p. 15.
    [236] Lee G, Kim S, Lee Y, et al. (2017) [POSTER] Mutually Shared Gaze in Augmented Video Conference. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 79–80, IEEE.
    [237] Tiefenbacher P, Gehrlich T, Rigoll G (2015) Impact of annotation dimensionality under variable task complexity in remote guidance. In: 2015 IEEE Symposium on 3D User Interfaces (3DUI), pp. 189–190, IEEE.
    [238] Adcock M, Gunn C (2015) Using Projected Light for Mobile Remote Guidance. Computer Supported Cooperative Work (CSCW) 24: 591–611. doi: 10.1007/s10606-015-9237-2
    [239] Kim S, Lee GA, Ha S, et al. (2015) Automatically freezing live video for annotation during remote collaboration. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1669–1674, ACM.
    [240] Tait M, Billinghurst M (2015) The effect of view independence in a collaborative AR system. Computer Supported Cooperative Work (CSCW) 24: 563–589. doi: 10.1007/s10606-015-9231-8
    [241] Adcock M, Anderson S, Thomas B (2013) RemoteFusion: real time depth camera fusion for remote collaboration on physical tasks. In: Proceedings of the 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, pp. 235–242, ACM.
    [242] Kim S, Lee GA, Sakata N, et al. (2013) Study of augmented gesture communication cues and view sharing in remote collaboration. In: 2013 IEEE International Symposium on Mixed and Augmented Reality, pp. 261–262, IEEE.
    [243] Sakata N, Takano Y, Nishida S (2014) Remote Collaboration with Spatial AR Support. In: International Conference on Human-Computer Interaction, pp. 148–157, Springer.
    [244] Tiefenbacher P, Gehrlich T, Rigoll G, et al. (2014) Supporting remote guidance through 3D annotations. In: Proceedings of the 2nd ACM Symposium on Spatial User Interaction, pp. 141–141, ACM.
    [245] Tait M, Billinghurst M (2014) View independence in remote collaboration using AR. ISMAR, pp. 309–310.
    [246] Gauglitz S, Nuernberger B, Turk M, et al. (2014) In touch with the remote world: Remote collaboration with augmented reality drawings and virtual navigation. In: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, pp. 197–205, ACM.
    [247] Lukosch S, Lukosch H, Datcu D, et al. (2015) Providing information on the spot: Using augmented reality for situational awareness in the security domain. Computer Supported Cooperative Work (CSCW) 24: 613–664. doi: 10.1007/s10606-015-9235-4
    [248] Lukosch SG, Lukosch HK, Datcu D, et al. (2015) On the spot information in augmented reality for teams in the security domain. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 983–988, ACM.
    [249] Yamada S, Chandrasiri NP (2018) Evaluation of Hand Gesture Annotation in Remote Collaboration Using Augmented Reality. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 727–728.
    [250] Anton D, Kurillo G, Bajcsy R (2018) User experience and interaction performance in 2D/3D telecollaboration. Future Gener Comp Sy 82: 77–88. doi: 10.1016/j.future.2017.12.055
    [251] Tait M, Tsai T, Sakata N, et al. (2013) A projected augmented reality system for remote collaboration. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 1–6, IEEE.
    [252] Irlitti A, Itzstein GSV, Smith RT, et al. (2014) Performance improvement using data tags for handheld spatial augmented reality. In: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, pp. 161–165, ACM.
    [253] Iwai D, Matsukage R, Aoyama S, et al. (2018) Geometrically Consistent Projection-Based Tabletop Sharing for Remote Collaboration. IEEE Access 6: 6293–6302. doi: 10.1109/ACCESS.2017.2781699
    [254] Pejsa T, Kantor J, Benko H, et al. (2016) Room2room: Enabling life-size telepresence in a projected augmented reality environment. In: Proceedings of the 19th ACM Conference on Conference on Computer-Supported Cooperative Work & Social Computing, pp. 1716–1725, ACM.
    [255] Schwede C, Hermann T (2015) HoloR: Interactive mixed-reality rooms. In: 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 517–522, IEEE.
    [256] Salimian MH, Reilly DF, Brooks S, et al. (2016) Physical-Digital Privacy Interfaces for Mixed Reality Collaboration: An Exploratory Study. In: Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces, pp. 261–270, ACM.
    [257] Weiley V, Adcock M (2013) Drawing in the lamposcope. In: Proceedings of the 9th ACM Conference on Creativity & Cognition, pp. 382–383, ACM.
    [258] Irlitti A, Itzstein GSV, Alem L, et al. (2013) Tangible interaction techniques to support asynchronous collaboration. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 1–6, IEEE.
    [259] Kratky A (2015) Transparent touch–interacting with a multi-layered touch-sensitive display system. In: International Conference on Universal Access in Human-Computer Interaction, pp. 114–126, Springer.
    [260] Moniri MM, Valcarcel FAE, Merkel D, et al. (2016) Hybrid team interaction in the mixed reality continuum. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pp. 335–336, ACM.
    [261] Seo D, Yoo B, Ko H (2018) Webizing collaborative interaction space for cross reality with various human interface devices. In: Proceedings of the 23rd International ACM Conference on 3D Web Technology, pp. 1–8, ACM.
    [262] Randhawa JS (2016) Stickie: Mobile Device Supported Spatial Collaborations. In: Proceedings of the 2016 Symposium on Spatial User Interaction, pp. 163–163, ACM.
    [263] Tabrizian P, Petrasova A, Harmon B, et al. (2016) Immersive tangible geospatial modeling. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 88, ACM.
    [264] Ren D, Lee B, Höllerer T (2018) XRCreator: interactive construction of immersive data-driven stories. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, p. 136, ACM.
    [265] Minagawa J, Choi W, Li L, et al. (2016) Development of collaborative workspace system using hand gesture. In: 2016 IEEE 5th Global Conference on Consumer Electronics, pp. 1–2, IEEE.
    [266] Tanaya M, Yang K, Christensen T, et al. (2017) A Framework for analyzing AR/VR Collaborations: An initial result. In: 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 111–116, IEEE.
    [267] Butscher S, Hubenschmid S, Müller J, et al. (2018) Clusters, Trends, and Outliers: How Immersive Technologies Can Facilitate the Collaborative Analysis of Multidimensional Data. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 90, ACM.
    [268] Machuca MDB, Chinthammit W, Yang Y, et al. (2014) 3D mobile interactions for public displays. In: SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications, p. 17, ACM.
    [269] Ríos AP, Callaghan V, Gardner M, et al. (2014) Interactions within Distributed Mixed Reality Collaborative Environments. In: IE'14 Proceedings of the 2014 International Conference on Intelligent Environments, pp. 382–383.
    [270] Ueda Y, Iwazaki K, Shibasaki M, et al. (2014) HaptoMIRAGE: mid-air autostereoscopic display for seamless interaction with mixed reality environments. In: ACM SIGGRAPH 2014 Emerging Technologies, p. 10, ACM.
    [271] Wang X, Love PED, Kim MJ, et al. (2014) Mutual awareness in collaborative design: An Augmented Reality integrated telepresence system. Computers in Industry 65: 314–324. doi: 10.1016/j.compind.2013.11.012
    [272] Komiyama R, Miyaki T, Rekimoto J (2017) JackIn space: designing a seamless transition between first and third person view for effective telepresence collaborations. In: Proceedings of the 8th Augmented Human International Conference, p. 14, ACM.
    [273] Oyekoya O, Stone R, Steptoe W, et al. (2013) Supporting interoperability and presence awareness in collaborative mixed reality environments. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, pp. 165–174, ACM.
    [274] Reilly DF, Echenique A, Wu A, et al. (2015) Mapping out Work in a Mixed Reality Project Room. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 887–896, ACM.
    [275] Dean J, Apperley M, Rogers B (2014) Refining personal and social presence in virtual meetings. In: Proceedings of the Fifteenth Australasian User Interface Conference 150: 67–75. Australian Computer Society, Inc.
    [276] Robert K, Zhu D, Huang W, et al. (2013) MobileHelper: remote guiding using smart mobile devices, hand gestures and augmented reality. In: SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Applications, p. 39, ACM.
    [277] Billinghurst M, Nassani A, Reichherzer C (2014) Social panoramas: using wearable computers to share experiences. In: SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications, p. 25, ACM.
    [278] Kim S, Lee G, Sakata N, et al. (2014) Improving co-presence with augmented visual communication cues for sharing experience through video conference. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 83–92, IEEE.
    [279] Cha Y, Nam S, Yi MY, et al. (2018) Augmented Collaboration in Shared Space Design with Shared Attention and Manipulation. In: The 31st Annual ACM Symposium on User Interface Software and Technology Adjunct Proceedings, pp. 13–15, ACM.
    [280] Grandi JG (2017) Design of collaborative 3D user interfaces for virtual and augmented reality. In: 2017 IEEE Virtual Reality (VR), pp. 419–420, IEEE.
    [281] Koskela T, Mazouzi M, Alavesa P, et al. (2018) AVATAREX: Telexistence System based on Virtual Avatars. In: Proceedings of the 9th Augmented Human International Conference, p. 13, ACM.
    [282] Heiser J, Tversky B, Silverman M (2004) Sketches for and from collaboration. Visual and spatial reasoning in design III 3: 69–78.
    [283] Fakourfar O, Ta K, Tang R, et al. (2016) Stabilized annotations for mobile remote assistance. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1548–1560, ACM.
    [284] Schmidt K (2002) The problem with 'awareness': Introductory remarks on 'awareness in CSCW'. Computer Supported Cooperative Work (CSCW) 11: 285–298. doi: 10.1023/A:1021272909573
    [285] Olson GM, Olson JS (2000) Distance matters. Human–computer interaction 15: 139–178. doi: 10.1207/S15327051HCI1523_4
    [286] Ishii H, Kobayashi M, Arita K (1994) Iterative design of seamless collaboration media. Communications of the ACM 37: 83–97.
    [287] Ishii H, Kobayashi M, Grudin J (1993) Integration of interpersonal space and shared workspace: ClearBoard design and experiments. ACM Transactions on Information Systems 11: 349–375. doi: 10.1145/159764.159762
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10397) PDF downloads(2694) Cited by(44)

Article outline

Figures and Tables

Figures(2)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog