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Abstract: In this paper, we extend the Fourier cosine expansion (COS) method to the pricing of
foreign exchange target redemption note (FX-TARN), a popular exotic currency option. We take the FX
spot rate and the cumulated positive cash flow as two state variables and factor the joint distribution
by two marginals that can be approximated by Fourier cosine expansions. To recover the Fourier
coefficients recursively, we approximate the two-dimensional integration by higher-order quadratures
such as Gauss-Legendre or Clenshaw-Curtis quadrature for the integration over the spot rate. We derive
the analytical formulas for the price under different knock-out types. We demonstrate that fast Fourier
transform (FFT) can be employed to obtain the Fourier coefficients efficiently. We also evaluate the
performance and accuracy of the method through a number of numerical experiments.
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1. Introduction

An FX-TARN is an exotic financial product on a currency pair that saw a re-emergence of activity
starting from early 2010s, with increased volumes in Europe, Asian and the Middle East. The TARN
imposes positive and negative cash flows on scheduled dates (fixing dates) and the negative cash flow is
typically leveraged by a gear factor. These cash flows can take the form of call or put option payoffs
and the investor accumulates both positive (in the money) and negative (out of the money) cash flows
until a certain target accrual level (cap) is reached. Once the target has been breached, the product
is terminated (knocked out) and all the future cash flows are canceled but the accumulated ones are
kept. For the last payment on which the target is reached, there are three knock-out types: no gain, part
gain or full gain, which are specified in the contract at the initiation of the trade. The TARN is traded
mostly by corporations and investors and often seen as a low-enhanced hedge for currency exposures.
The TARN transaction allows the customer to exchange one currency for another at a contract rate that
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is more attractive compared to the rate on a traditional forward contract. However, the higher rate is
accompanied with a higher level of downside currency exchange risk if the exchange rate were to move
in the wrong direction from that expected. If spot rate moves in the wrong direction, the holders can be
forced to trade regularly at unfavourable rates for the full life of the product.

The TARN is a path dependent product as the payments on the fixing dates depend on the FX spot
rate as well as the accumulated payment amount up to the knock-out date. The TARN is typically priced
with Monte Carlo (MC) simulations (see e.g. Caspers, 2015) but there are also some developments in
the finite difference methods. Luo and Shevchenko (2015) describe a finite difference scheme for pricing
a TARN under Black-Scholes (BS) model. The key steps involve tracking multiple one dimensional
finite difference solutions, applying jump conditions at each fixing date and a cubic spline interpolation
of results after each jump. Luo and Shevchenko (2015) demonstrate that the finite difference method
can be faster than the MC method by an order of magnitude while achieving the same accuracy in
price. Bandelier (2017) enlarges the finite difference method of Luo and Shevchenko (2015) to the Lévy
processes with jumps. This leads to large complexities in the implementation of the method and the
computational time grows up with the complexity. Bandelier (2017) then combines the method of Luo
and Shevchenko (2015) and the convolution method proposed by Lord et al. (2008) where FFT-based
method is applied to early-exercise options. Arregui and Ráfales (2020) generalize the work of Luo
and Shevchenko (2015) by introducing a stochastic local volatility (SLV) technique and solve a partial
differential equation for TARN by a finite difference alternating directions implicit (ADI) method.

In this paper, we propose a new method to solve the TARN pricing problem under exponential
Lévy processes. Our method is based on a combination of the Fourier cosine expansion and high-order
quadrature and belongs to numerical integration methods (also referred to as transform methods).

The COS method is an alternative to finite difference method and works particulary well for option
pricing problems under Lévy processes. The COS method was initiated by Fang and Oosterlee (2008)
and the key insight is the close relation of the characteristic function with the series coefficients of the
Fourier-cosine expansion of the density function. In most cases, the convergence rate of the COS method is
exponential and the computational complexity is linear for European options. Fang and Oosterlee (2009)
extend the COS method of Fang and Oosterlee (2008) to early-exercise and discretely-monitored barrier
options under exponential Lévy asset price models. They show the error convergence is exponential for
processes characterized by very smooth transitional probability density functions. They also propose the
FFT method for the efficient calculation of the Fourier coefficients. The extension of one-dimensional COS
method to two-dimensional has been investigated by Fang and Oosterlee (2011), Ruijter and Oosterlee
(2012) and Zhang and Oosterlee (2014). In Fang and Oosterlee (2011), the pricing of Bermudan and barrier
options under the Heston model is dealt with by a combination of a Fourier cosine expansion and high-order
quadrature rules. The error analysis and numerical experiments confirm a fast error convergence. Zhang
and Oosterlee (2014) propose a pricing method for early-exercise Asian options by a two-dimensional
integration and a backward recursion of the Fourier coefficients. In Zhang and Oosterlee (2014), numerical
techniques such as Fourier cosine expansion, Clenshaw-Curtis quadrature and the FFT are employed. The
rapid convergence of the pricing is analysed and demonstrated by various numerical examples. Ruijter
and Oosterlee (2012) propose a two-dimensional COS method different from Fang and Oosterlee (2011)
and Zhang and Oosterlee (2014) in that Fourier cosine series expansions are applied in both dimensions,
rather than just one dimension. As a result, the method requires the availability of the bivariate characteristic
function of the two state variables.
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We apply the two-dimensional COS methods of Fang and Oosterlee (2011) and Zhang and Oosterlee
(2014) and extend them to the TARN pricing problem. The two state variables are the spot rate and the
cumulated positive cash flow. To value the path-dependent options such as TARN, we need to know the
joint distribution of two state variables for which an analytical formula does not exist but we can deduce
it from the Fourier domain. We cannot derive the joint characteristic function for the two state variables
and therefore, the two-dimensional COS method of Ruijter and Oosterlee (2012) is non-applicable
here. Fortunately, we can employ the COS methods of Fang and Oosterlee (2011) and Zhang and
Oosterlee (2014) as the joint distribution can be factored into two marginal conditional density functions
that can be approximated by Fourier cosine expansions separately. To recover the Fourier coefficients
recursively, we approximate the two-dimensional integration by higher-order quadratures such as Gauss-
Legendre or Clenshaw-Curtis quadrature for the integration over the spot rate. We also need to extend
the existing COS methods to suit the specific requirements for TARN pricing. For the quadrature to
converge exponentially, we need the integrating function to be smooth. Unlike the situations in Fang and
Oosterlee (2011) and Zhang and Oosterlee (2014), where the integrating function is always smooth, the
integrand in our TARN pricing problem is only piecewise smooth and we solve this issue by splitting the
integral according to the points of discontinuity. For the COS methods, the Fourier coefficients can be
computed from matrix and vectors multiplications. In Fang and Oosterlee (2009), Fang and Oosterlee
(2011), Zhang and Oosterlee (2014) and other COS applications, a key matrix appears repeatedly and it
plays a critical role for the efficiency of the COS method. This matrix can be expressed as a sum of
Hankel and Toeplitz matrices and it is well-known (see e.g. Gohberg and Olshevsky, 1994) that the
matrix-vector multiplication for Hankel and Toeplitz matrices can be carried out efficiently via FFT.
For the TARN pricing,we need to distinguish between the full/no gain case and part gain case. This
distinction is made because the Fourier coefficients involve two different matrices for the two cases.
In the full/no gain case, the same matrix appearing in Fang and Oosterlee (2009), Fang and Oosterlee
(2011), Zhang and Oosterlee (2014) emerges again and we can therefore apply FFT method as before.
In the part gain case, we encounter a new matrix and we are able to prove that it can still be decomposed
into a Hankel matrix and a Toeplitz matrix and therefore, FFT is applicable in this case as well.

We also investigate the performance and accuracy of the two-dimensional COS method through
a couple of numerical experiments. For comparison purpose, we also run some MC simulations. We
focus on three important models based on Lévy processes, namely BS, Merton Jump Diffusion (JD)
and NIG models. The experiments indicate that the COS method converges fast and in order to achieve
the same level of accuracy, MC method will require a significantly large number of simulations. We
also vary some parameters that define the TARN product and demonstrate that the changes in the price
produced using the COS method are consistent with the expectations.

It is well-known that the convergence rate of the COS method depends on the smoothness of the
underlying probability density function and the payoff function; see e.g. Fang and Oosterlee (2008),
Fang et al. (2010), Ruijter et al. (2015) and Arias et al. (2022). A typical example is VG process, which
is a special case of the Lévy process. Fang and Oosterlee (2008) show that for a peaked VG density, the
convergence of the COS method is no longer exponential but geometric. For these cases, Ruijter et al.
(2015) apply spectral filters to achieve faster convergence. In this paper, it is not necessary to apply the
spectral filters of Ruijter et al. (2015) as the density functions of the three specific examples of Lévy
processes in the paper have no discontinuity and after we split the integral according to the points of
discontinuity, the payoff function becomes smooth.

Quantitative Finance and Economics Volume 7, Issue 2, 261–286.



264

The rest of the paper is organized as follows. In section 2, we introduce Lévy process and the
pricing framework. We provide a description of TARN product in section 3. The main part of the
paper is in section 4, where we discuss the COS method for TARN. We distinguish between the cases
of full/no gain and part gain as the pricing formulas differ in these two cases. In section 5, we test
the accuracy and performance of the COS method through various numerical experiments. Section 6
concludes. We also provide a brief introduction to Clenshaw-Curtis quadrature in the appendix.

2. Valuation model

Let (Ω,F ,Q) be a probability space with an information filtration (Ft). We assume both domestic
short rate rd and foreign short rate r f are constants. In addition, under the risk neutral probability
measure Q, we assume the dynamics of FX spot rate S (t) follow an exponential Lévy process:

S (t) = S (0) exp[X(t)] , (1)

where X(t) is defined as:

X(t) = ξ(t) + L(t) , (2)

where L(t) is a Lévy process and the deterministic function ξ(t) is selected so that the following
no-arbitrage condition is satisfied:

E[S (t)] = S (0) exp[(rd − r f )t] . (3)

The Lévy process L(t) is infinitely divisible and its characteristic function can be expressed using
Lévy-Khintchine formula (see e.g. Sato, 1999).

Proposition 1. The characteristic function of the Lévy process L(t) has the form

ΦL(t)(u) = E[exp(iuL(t))] = exp(tψL(u)), (4)

where ψL(u) is the characteristic exponent of the Lévy process and given by

ψL(u) = iuµ −
1
2
σ2u2 +

∫
(−∞,∞)

(
exp(iux) − 1 − iux1|x|<1

)
ν(dx), (5)

where µ ∈ R, σ ∈ R+ and ν is a positive Radon measure on R \ {0} satisfying:∫
(−∞,∞)

(x ∧ 1)ν(dx) < ∞. (6)

Given the characteristic function of L(t), we can determine the function ξ(t) from the following
result:

Lemma 1. The function ξ(t) in (2) is given by

ξ(t) = (rd − r f )t − ψL(−i)t . (7)
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We can also obtain the n-th cumulant κn of the process X(t) from the n-th derivative of the
characteristic function of X(t), that is

κn = i−nΦ
(n)
X(t)(0) . (8)

The class of Lévy processes encompasses Gaussian, jump-diffusion and pure jump processes. In our
numerical studies in section 5, we focus on Gaussian, Merton JD and NIG processes. When the process
L(t) follows a Gaussian process, we obtain the BS model. Under this model, the implied volatility
surface will be flat, which contradicts the observed smile shaped (or skew shaped) volatility surface. On
the other hand, Merton JD process is a jump-diffusion process and NIG process is an infinite activity
pure jump process and both of them can reproduce the observed volatility smile or skew. The NIG
process can be considered as an Inverse Gaussian time-changed Gaussian process. For more information
on Lévy processes, we refer to Schoutens (2003).

In the following examples, we list the characteristic exponent ψL(u), the deterministic function ξ(t)
and the cumulants κ1, κ2 and κ4 for Gaussian, Merton JD and NIG processes.

Example 2. Gaussian Process. This is a pure diffusion process with µ = 0. Furthermore,

ψL(u) = −
1
2
σ2u2, ξ(t) = (rd − r f )t −

1
2
σ2t, (9)

κ1 = ξ(t), κ2 = σ
2t, κ4 = 0 . (10)

Example 3. Merton JD Process. This is a jump-diffusion process with µ = 0. Furthermore,

ψL(u) = −
1
2
σ2u2 + ζ

[
exp

(
iβu −

1
2
δ2u2

)
− 1

]
, (11)

where ζ, β and δ are the parameters governing the Lévy measure ν in (5) and satisfying ζ > 0. In
addition,

ξ(t) = (rd − r f )t −
[
1
2
σ2 + ζ

(
exp

(
β +

1
2
δ2

)
− 1

)]
t, (12)

κ1 = ξ(t) + ζβt, κ2 = (σ2 + ζβ2 + δ2ζ)t, κ4 = ζ(β4 + 6δ2β2 + 3δ4ζ)t . (13)

Example 4. NIG Process. This is an infinite activity pure jump process with µ = 0 and σ = 0.
Furthermore,

ψL(u) = −δ
( √

α2 − (β + iu)2 −
√
α2 − β2

)
, (14)

where α, β and δ are the parameters governing the Lévy measure ν in (5) and satisfying α > 0,
−α < β < α and δ > 0. In addition,

ξ(t) = (rd − r f )t + δ
( √

α2 − (β + 1)2 −
√
α2 − β2

)
t, (15)

κ1 = ξ(t) +
δβ√
α2 − β2

t, κ2 = α
2δ(α2 − β2)−3/2t, κ4 = 3(α4 + 4α2β2)δ(α2 − β2)−7/2t . (16)
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3. Product description

Let t0 be the valuation date and tN the maturity date of a TARN contract. On each fixing date tn,
n = 1, . . . ,N, if the target level U is not breached by the accumulated amount An, the positive payoff per
unit of notional foreign amount is defined by

C+(Xn) = max(γ(S (tn) − E), 0) = max(γ(S 0 exp(Xn) − E), 0) , (17)

and the negative payoff by

C−(Xn) = −g max(γ(E − S (tn)), 0) = −g max(γ(E − S 0 exp(Xn)), 0) , (18)

where Xn := X(tn), E is a strike and γ is a strategy on foreign exchange (γ = 1 for a call option and
γ = −1 for a put option). Furthermore, g is a leverage factor with the typical value of 1 or 2.

The accumulated amount An is determined by the positive payoffs accumulated from t1 to tn, defined
as

An =

n∑
j=1

C+(X j) = An−1 +C+(Xn) , (19)

with A0 = 0.
Now denote Ñ the first fixing date when the target is breached:

Ñ = min{n : An ≥ U for n = 1, . . . ,N} . (20)

If U is not breached, we set Ñ = N + 1.
On each fixing date tn, where n = 1, . . . ,N, if n < Ñ, the total payoff is determined by C+(Xn) +

C−(Xn). However, if tn = Ñ, the product is knocked out and all the future cash flows are canceled but
the last payment W(Xn, An−1) at time tn will be determined by one of three knock-out types: no gain,
part gain or full gain. We can write W(Xn, An−1) as

W(Xn, An−1) =


0, No Gain,
U − An−1, Part Gain,
C+(Xn) +C−(Xn), Full Gain.

(21)

In summary, the total payoff Cn on each fixing date tn, where n = 1, . . . ,N, is determined by the
following:

Cn = 1{n<Ñ}(C
+(Xn) +C−(Xn)) + 1{n=Ñ}W(Xn, An−1) . (22)

The price of the TARN at t0 in domestic currency is then

v0 = N f ×

N∑
n=1

E[Cn]
Bd(t0, tn)

, (23)

where N f is the notional amount per fixing date and Bd(t0, tn)−1 is the domestic discounting factor from
the fixing date tn to t0.
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4. COS method for TARN

From the description of the product payoff function, we can calculate the time tn value of the TARN
in a recursive way:

vn =


I(xn, an, an−1), n = N,

c(tn, xn, an)1{an<U} + I(xn, an, an−1), n = N − 1, . . . , 1,
c(tn, xn, an), n = 0,

(24)

where I is defined as

I(xn, an, an−1) = 1{an<U}(C+(xn) +C−(xn)) + 1{an≥U}W(xn, an−1) , (25)

and

c(tn, xn, an) = exp(−rd(tn+1 − tn))E[vn+1|Fn]

= exp(−rd(tn+1 − tn))
∫ +∞

−∞

∫ U+C+(xn+1)

C+(xn+1)
vn+1 f (xn+1, an+1|xn, an)dan+1dxn+1 , (26)

where f (xn+1, an+1|xn, an) is the joint conditional density of Xn+1 and An+1. The integration limits for
an+1 are derived based on (19), from which we have an+1 = an + C+(xn+1). Conditioning on xn+1 and
employing the fact that an ≥ 0, we have an+1 ≥ C+(xn+1). Furthermore, before the FX-TARN is knocked
out or matures, an < U. Therefore, an+1 < U +C+(xn+1).

The joint conditional density of xn+1 and an+1 can also be written as

f (xn+1, an+1|xn, an) = fX(xn+1|xn) fA(an+1|xn+1, an) , (27)

where fX and fA are the marginal conditional densities of Xn+1 and An+1, respectively. In (27) we have
also used the facts

fX(xn+1|xn, an) = fX(xn+1|xn) and fA(an+1|xn+1, xn, an) = fA(an+1|xn+1, an) . (28)

The key idea of the two-dimensional COS method is to approximate c(tn, xn, an) by following several
steps of approximations:

1. Truncate the integration range from (−∞,+∞) to [a, b] for xn+1;
2. Approximate the conditional density by truncated Fourier cosine expansion, based on characteristic

functions;
3. Approximate the integral with respect to xn+1 by a high-order quadrature.

When restricted to [a, b], fX(xn+1|xn) can be approximated by Fourier cosine expansion as follows:

f̂X(xn+1|xn) =
2

b − a

N1−1∑
m=0

′

Re
(
ΦX(tn+1−tn)

( mπ
b − a

)
exp

(
imπ

xn − a
b − a

))
cos

(
mπ

xn+1 − a
b − a

)
, (29)

where
∑ ′ indicates the first term of the series is divided by 2 and ΦX(tn+1−tn) is the characteristic function

of X(tn+1 − tn), which can be calculated using Lévy-Khintchine formula.

Quantitative Finance and Economics Volume 7, Issue 2, 261–286.



268

We can also approximate fA(an+1|xn+1, an) using the truncated Fourier cosine expansion as

f̂A(an+1|xn+1, an) =
2
U

N2−1∑
j=0

′

Re
(
exp

(
i jπ

an

U

))
cos

(
jπ

an+1 −C+(xn+1)
U

)
. (30)

Plugging (29) and (30) into (26), we obtain the first COS approximation of c(tn, xn, an):

c̄(tn, xn, an)

=
4 exp(−rd(tn+1 − tn))

(b − a)U

N1−1∑
m=0

′
N2−1∑
j=0

′

Re
(
ΦX(tn+1−tn)

( mπ
b − a

)
exp

(
imπ

xn − a
b − a

))
Re

(
exp

(
i jπ

an

U

))
×

∫ b

a

∫ U+C+(xn+1)

C+(xn+1)
vn+1 cos

(
mπ

xn+1 − a
b − a

)
cos

(
jπ

an+1 −C+(xn+1)
U

)
dan+1dxn+1 . (31)

The last part of (31) involves a two-dimensional integration and we will follow Fang and Oosterlee
(2011) and Zhang and Oosterlee (2014) to numerically integrate over xn+1 by some high-order quadrature.
In Fang and Oosterlee (2011), Gauss-Legendre quadrature is proposed and their numerical experiments
demonstrate that the accuracy of the lower-order equidistant rules such as composite trapezoidal rule
were insufficient compared with Gauss quadrature. In Zhang and Oosterlee (2014), Clenshaw-Curtis
quadrature is preferred as it appears to be computationally cheaper than Gauss quadrature. In the
appendix, we provide a summary of Clenshaw-Curtis quadrature that has been implemented in the
numerical experiments in section 5.

For both Gauss and Clenshaw-Curtis quadratures, if the integrand function is smooth, the quadrature
will achieve an exponential convergence. This is indeed the case for the problems studied in Fang
and Oosterlee (2011) and Zhang and Oosterlee (2014). In our case, however, the integrand function is
only piecewise smooth and the discontinuity point can be identified at E∗ = log(E/S (0)) for xn+1 by
inspecting the functions C+(xn+1) and C−(xn+1), defined in (17) and (18), respectively. We then split
the integration range [a, b] into two intervals [a(k), b(k)], for k = 1, 2. We set a(1) = a, b(1) = a(2) = E∗

and b(2) = b. For each double integral, we apply (n(k) + 2)-point quadrature integration rule to the outer
integral. Then the double integral in (31) can be approximated by∫ b

a

∫ U+C+(xn+1)

C+(xn+1)
vn+1 cos

(
mπ

xn+1 − a
b − a

)
cos

(
jπ

an+1 −C+(xn+1)
U

)
dan+1dxn+1

=

2∑
k=1

∫ b(k)

a(k)

∫ U+C+(xn+1)

C+(xn+1)
vn+1 cos

(
mπ

xn+1 − a
b − a

)
cos

(
jπ

an+1 −C+(xn+1)
U

)
dan+1dxn+1

≃

2∑
k=1

b(k) − a(k)

2

n(k)+1∑
n=0

w(k)
n cos

(
mπ

δ(k)
n − a
b − a

)
Vn+1, j(δ(k)

n ) , (32)

where w(k)
n and δ(k)

n are the weights and quadrature nodes corresponding to the k-th integral with respect
to xn+1. In addition, Vn+1, j(δn) is the Fourier coefficient defined by

Vn+1, j(δn) =
∫ U+C+(δn)

C+(δn)
vn+1(δn) cos

(
jπ

an+1 −C+(δn)
U

)
dan+1 , (33)
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where vn+1(δn) denotes the value of vn+1 evaluated at xn+1 = δn.
By combining Fourier cosine expansion and high-order quadrature approximation, we arrive at the

second COS approximation of c(tn, xn, an):

ĉ(tn, xn, an)

=
2 exp(−rd(tn+1 − tn))

(b − a)U

2∑
k=1

N1−1∑
m=0

′
N2−1∑
j=0

′
n(k)+1∑
n=0

w(k)
n (b(k) − a(k))Re

(
ΦX(tn+1−tn)

( mπ
b − a

)
× exp

(
imπ

xn − a
b − a

) )
Re

(
exp

(
i jπ

an

U

))
cos

(
mπ

δ(k)
n − a
b − a

)
Vn+1, j(δ(k)

n ) . (34)

Following Fang and Oosterlee (2009), a suitable integration range for xn+1 can be taken in terms of the
cumulants:

a = κ1 − λ

√
κ2 +

√
κ4 and b = κ1 + λ

√
κ2 +

√
κ4 , (35)

where λ is a constant and κk is the k-th cumulant of X(tN), which can be obtained from (8).
We note that recently, Junike and Pankrashkin (2022) derive a new formula for the truncation range

based on Markov’s inequality and prove that the range is large enough to ensure convergence of the
COS method. Junike and Pankrashkin (2022) also show that the method of Fang and Oosterlee (2009)
may lead to serious mispricing. However, the examples in Junike and Pankrashkin (2022) are based on
simple European options. More tests are need to demonstrate the performance of the method for the
path-dependent options, such as Bermudan and barrier options.

The valuation of TARN based on the COS method then boils down to the determination of the
Fourier coefficients, which need to be solved recursively. We distinguish between the TARN with full/no
gain case and part gain case since for the latter the function W(Xn, An−1) defined in (21) is dependent on
An−1 whereas for the former, it is not. This distinction is made because the Fourier coefficients involve
two different matrices for the two cases.

4.1. TARN with full/no gain

In this case, for simplification purpose, we can write W(Xn, An−1) defined in (21) as W(Xn) as it is
independent of An−1. We can also write the function I(Xn, An, An−1) defined in (25) as I(Xn, An). We first
define the following function

Ψ j(x1, x2, a, b) :=
∫ x2

x1

cos
(

jπ
x − a
b − a

)
dx . (36)

The above integral can be expressed in closed-form from the following lemma.

Lemma 5.

Ψ j(x1, x2, a, b) =


[
sin( jπ x2−a

b−a ) − sin( jπ x1−a
b−a )

]
b−a
jπ , j , 0,

x2 − x1, j = 0.
(37)

Another integral that has appeared in the COS applications repeatedly is

Mk, j(x1, x2, a, b) :=
∫ x2

x1

exp
(
i jπ

x − a
b − a

)
cos

(
kπ

x − a
b − a

)
dx . (38)

Fang and Oosterlee (2009) prove the following result:

Quantitative Finance and Economics Volume 7, Issue 2, 261–286.



270

Lemma 6.

Mk, j(x1, x2, a, b) = MH
k, j(x1, x2, a, b) + MT

k, j(x1, x2, a, b) , (39)

where

MH
k, j(x1, x2, a, b) =

 x2−x1
2 , j = k = 0,
−

(b−a)i
2( j+k)π

[
exp

(
i( j + k)π x2−a

b−a

)
− exp

(
i( j + k)π x1−a

b−a

)]
, Otherwise,

(40)

and

MT
k, j(x1, x2, a, b) =

 x2−x1
2 , j = k,

−
(b−a)i

2( j−k)π

[
exp

(
i( j − k)π x2−a

b−a

)
− exp

(
i( j − k)π x1−a

b−a

)]
, Otherwise.

(41)

To derive the analytical formulas for the Fourier coefficients, we also define the following integral:

H j(δn) :=
∫ U+C+(δn)

C+(δn)
I(δn, ak) cos

(
jπ

ak −C+(δn)
U

)
dak . (42)

We can derive the formula for H j(δn) as follows.

Lemma 7.

H j(δn) =[C+(δn) +C−(δn)]Ψ j(C+(δn),max(C+(δn),U),C+(δn),U +C+(δn))
+W(δn)Ψ j(max(C+(δn),U),U +C+(δn),C+(δn),U +C+(δn)) , (43)

where

W(δn) =

0, No gain,

C+(δn) +C−(δn), Full gain.

Proof. Using the definition of I(xn, an) in (25), we have

H j(δn) = [C+(δn) +C−(δn)]
∫ max(C+(δn),U)

C+(δn)
cos

(
jπ

ak −C+(δn)
U

)
dak (44)

+W(δn)
∫ U+C+(δn)

max(C+(δn),U)
cos

(
jπ

ak −C+(δn)
U

)
dak . (45)

Using the definition of Ψ j in (36), we obtain the result.

The t0 price of TARN computed with COS method can then be obtained from the following result.

Proposition 2. The price of the TARN with full/no gain under the two-dimensional COS method given
X(0) = x0 can be calculated by

v̂0 =
2 exp(−rd(t1 − t0))

(b − a)U

2∑
k=1

N1−1∑
m=0

′
N2−1∑
j=0

′
n(k)+1∑
n=1

w(k)
n (b(k) − a(k))Re

(
ΦX(t1−t0)

( mπ
b − a

)
(46)
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× exp
(
imπ

x0 − a
b − a

) )
cos

(
mπ

δ(k)
n − a
b − a

)
V1, j(δ(k)

n ) , (47)

where the Fourier coefficients Vn, j(δn) can be obtained recursively as follows:

VN, j(δn) = H j(δn) . (48)

For 1 ≤ l ≤ N − 1,

Vl, j(δn) =
2 exp(−rd(tl+1 − tl))

(b − a)U

2∑
k′=1

N1−1∑
m′=0

′
N2−1∑
j′=0

′
n(k′)+1∑
n′=0

w(k′)
n′ (b(k′) − a(k′))Re

(
ΦX(tl+1−tl)

(
m′π

b − a

)
(49)

× exp
(
im′π

δn − a
b − a

) )
cos

m′πδ(k′)
n′ − a
b − a

 Vl+1, j′(δ
(k′)
n′ )Re

(
exp

(
i j′πC+(δn)

U

)
(50)

× M j, j′(C+(δn),max(C+(δn),U),C+(δn),U +C+(δn))
)
+ H j(δn) . (51)

Proof. From (24) and (26), we know

vN−1 = c(tN−1, xN−1, aN−1)1aN−1<U + I(xN−1, aN−1) . (52)

The approximation of vN−1 based on the COS method becomes

v̂N−1 =

[
2 exp(−rd(tN − tN−1))

(b − a)U

2∑
k=1

N1−1∑
m=0

′
N2−1∑
j=0

′
n(k)+1∑
n=0

w(k)
n (b(k) − a(k))Re

(
ΦX(tN−tN−1)

( mπ
b − a

)
(53)

× exp
(
imπ

xN−1 − a
b − a

) )
Re

(
exp

(
i jπ

aN−1

U

))
cos

(
mπ

δ(k)
n − a
b − a

)
VN, j(δ(k)

n )
]
1aN−1<U (54)

+ I(xN−1, aN−1) , (55)

where

VN, j(δn) =
∫ U+C+(δn)

C+(δn)
I(δn, aN) cos

(
jπ

aN −C+(δn)
U

)
daN . (56)

Using (42), we immediately obtain

VN, j(δn) = H j(δn) . (57)

For 0 ≤ l ≤ N − 1, the COS approximation of vl is

v̂l =

[
2 exp(−rd(tl+1 − tl))

(b − a)U

2∑
k=1

N1−1∑
m=0

′
N2−1∑
j=0

′
n(k)+1∑
n=0

w(k)
n (b(k) − a(k))Re

(
ΦX(tl+1−tl)

( mπ
b − a

)
(58)

× exp
(
imπ

xl − a
b − a

) )
Re

(
exp

(
i jπ

al

U

))
cos

(
mπ

δ(k)
n − a
b − a

)
Vl+1, j(δ(k)

n )
]
1al<U + I(xl, al) , (59)
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where for 1 ≤ l ≤ N − 1,

Vl, j(δn) =
∫ U+C+(δn)

C+(δn)
v̂l(δn) cos

(
jπ

al −C+(δn)
U

)
dal (60)

=
2 exp(−rd(tl+1 − tl))

(b − a)U

2∑
k′=1

N1−1∑
m′=0

′
N2−1∑
j′=0

′
n(k′)+1∑
n′=0

w(k′)
n′ (b(k′) − a(k′))Re

(
ΦX(tl+1−tl)

(
m′π

b − a

)
(61)

× exp
(
im′π

δn − a
b − a

) )
cos

m′πδ(k′)
n′ − a
b − a

 Vl+1, j′(δ
(k′)
n′ )Re

( ∫ U+C+(δn)

C+(δn)
exp

(
i j′π

al

U

)
1al<U (62)

× cos
(

jπ
al −C+(δn)

U

)
dal

)
+

∫ U+C+(δn)

C+(δn)
I(δn, al) cos

(
jπ

al −C+(δn)
U

)
dal (63)

=
2 exp(−rd(tl+1 − tl))

(b − a)U

2∑
k′=1

N1−1∑
m′=0

′
N2−1∑
j′=0

′
n(k′)+1∑
n′=0

w(k′)
n′ (b(k′) − a(k′))Re

(
ΦX(tl+1−tl)

(
m′π

b − a

)
(64)

× exp
(
im′π

δn − a
b − a

) )
cos

m′πδ(k′)
n′ − a
b − a

 Vl+1, j′(δ
(k′)
n′ )Re

(
exp

(
i j′πC+(δn)

U

)
(65)

× M j, j′(C+(δn),max(C+(δn),U),C+(δn),U +C+(δn))
)
+ H j(δn) . (66)

Finally, we can obtain the formula for v̂0 by realizing a0 = 0. □

The Fourier coefficients Vl, j(δn) can be computed efficiently. First, we define two N2-dimension
vectors Bk

l,n for k ∈ {1, 2} with elements:

Bk
l,n( j) =

2 exp(−rd(tl+1 − tl))
(b − a)U

N1−1∑
m=0

′
[ n(k)+1∑

n′=0

w(k)
n′ (b(k) − a(k)) cos

mπδ(k)
n′ − a
b − a

 Vl+1, j(δ
(k)
n′ )

]
(67)

× exp
(
i jπC+(δn)

U

)
Re

(
ΦX(tl+1−tl)

( mπ
b − a

)
exp

(
imπ

δn − a
b − a

)) (1
2

1{ j=0} + 1{ j,0}

)
. (68)

Also define two N2 × N2 matrices MH
l,n and MT

l,n with elements:

MH
l,n( j, j′) = MH

j, j′(C
+(δn),max(C+(δn),U),C+(δn),U +C+(δn)) , (69)

and

MT
l,n( j, j′) = MT

j, j′(C
+(δn),max(C+(δn),U),C+(δn),U +C+(δn)) . (70)

It is clear that MH
l,n is a Hankel matrix and MT

l,n is a Toeplitz matrix.
Define the Fourier coefficient matrix Vl with elements Vl( j, n) = Vl, j(δn). We can compute Vl by

Vl = V (1)
l + V (2)

l , (71)

where the n-th column of V (1)
l can be computed by (MH

l,n + MT
l,n)(B1

l,n + B2
l,n) and the matrix V (2)

l has
elements V (2)

l ( j, n) = H j(δn).
It is well known (see e.g. Gohberg and Olshevsky, 1994) that matrix-vector product, with the

special matrices such as Hankel and Toeplitz matrices, can be transformed into circular convolutions.
Therefore, the Fourier coefficients can be computed efficiently using FFT. We refer to Fang and Oosterlee
(2009) for the details about the implementation of FFT algorithm for the matrix-vector product.
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4.2. TARN with part gain

In this case, the function W(Xn, An−1) defined in (21) depends on An−1. For the efficient
implementation of the COS method, we encounter a new integral defined by

Qk, j(x1, x2, a, b) :=
∫ x2

x1

x exp
(
i jπ

x − a
b − a

)
cos

(
kπ

x − a
b − a

)
dx . (72)

We prove the following result:

Lemma 8.

Qk, j(x1, x2, a, b) = QH
k, j(x1, x2, a, b) + QT

k, j(x1, x2, a, b) , (73)

where

QH
k, j(x1, x2, a, b)

=


x2

2−x2
1

4 , j = k = 0,
aMH

k, j(x1, x2, a, b) + (b−a)2

2( j+k)2π2

[
exp

(
i( j + k)π x2−a

b−a

) (
1 − i( j+k)π(x2−a)

b−a

)
− exp

(
i( j + k)π x1−a

b−a

) (
1 − i( j+k)π(x1−a)

b−a

) ]
, Otherwise,

(74)

QT
k, j(x1, x2, a, b)

=


x2

2−x2
1

4 , j = k,

aMT
k, j(x1, x2, a, b) + (b−a)2

2( j−k)2π2

[
exp

(
i( j − k)π x2−a

b−a

) (
1 − i( j−k)π(x2−a)

b−a

)
− exp

(
i( j − k)π x1−a

b−a

) (
1 − i( j−k)π(x1−a)

b−a

) ]
, Otherwise,

(75)

where MH
k, j(x1, x2, a, b) and MT

k, j(x1, x2, a, b) are defined in (40) and (41), respectively.

Proof. We define Q̄H
k, j(x1, x2, a, b, c) and Q̄T

k, j(x1, x2, a, b, x) as two functions of c, where

Q̄H
k, j(x1, x2, a, b, c) =

∫ x2

x1

gH
k, j(x, a, b, c)dx ,

and

Q̄T
k, j(x1, x2, a, b, c) =

∫ x2

x1

gT
k, j(x, a, b, c)dx ,

where

gH
k, j(x, a, b, c) =

 cx
2 , j = k = 0,
−

(b−a)i
2( j+k)π exp

(
i( j + k)π c(x−a)

b−a

)
, Otherwise,

and

gT
k, j(x, a, b, c) =

 cx
2 , j = k,

−
(b−a)i

2( j−k)π exp
(
i( j − k)π c(x−a)

b−a

)
, Otherwise.
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We have

Q̄H
k, j(x1, x2, a, b, c) =


c(x2

2−x2
1)

4 , j = k = 0,
−

(b−a)2

2c( j+k)2π2

[
exp

(
i( j + k)π c(x2−a)

b−a

)
− exp

(
i( j + k)π c(x1−a)

b−a

) ]
, Otherwise,

Q̄T
k, j(x1, x2, a, b, c) =


c(x2

2−x2
1)

4 , j = k,

−
(b−a)2

2c( j−k)2π2

[
exp

(
i( j − k)π c(x2−a)

b−a

)
− exp

(
i( j − k)π c(x1−a)

b−a

) ]
, Otherwise.

It is easy to show that

Qk, j(x1, x2, a, b) =
d
dc

[
Q̃H

k, j(x1, x2, a, b, c) + Q̃T
k, j(x1, x2, a, b, c)

]
|c=1 ,

where

Q̃H
k, j(x1, x2, a, b, c) =

Q̄H
k, j(x1, x2, a, b, c), j = k = 0,

acMH
k, j(x1, x2, a, b) + Q̄H

k, j(x1, x2, a, b, c), Otherwise,

Q̃T
k, j(x1, x2, a, b, c) =

Q̄T
k, j(x1, x2, a, b, c), j = k,

acMT
k, j(x1, x2, a, b) + Q̄T

k, j(x1, x2, a, b, c), Otherwise.

We finish the proof by setting

QH
k, j(x1, x2, a, b) =

d
dc

Q̃H
k, j(x1, x2, a, b, c)|c=1 and QT

k, j(x1, x2, a, b) =
d
dc

Q̃T
k, j(x1, x2, a, b, c)|c=1 .

□

To obtain analytical formulas for the Fourier coefficients, we define the following integral:

H̄ j(δn, ak−1) :=
∫ U+C+(δn)

C+(δn)
I(δn, ak, ak−1) cos

(
jπ

ak −C+(δn)
U

)
dak . (76)

We can derive the formula for H̄ j(δn, ak−1) as follows.

Lemma 9.

H̄ j(δn, ak−1) = H̄(1)
j (δn) − H̄(2)

j (δn)ak−1 , (77)

where

H̄(1)
j (δn) = [C+(δn) +C−(δn)]Ψ j(C+(δn),max(C+(δn),U),C+(δn),U +C+(δn))

+ Ψ j(max(C+(δn),U),U +C+(δn),C+(δn),U +C+(δn))U , (78)

and

H̄(2)
j (δn) = Ψ j(max(C+(δn),U),U +C+(δn),C+(δn),U +C+(δn)) . (79)
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Proof. Using the definition of I(δn, ak, ak−1) in (25) and (21), we have

H̄ j(δn, ak−1) = [C+(δn) +C−(δn)]
∫ max(C+(δn),U)

C+(δn)
cos

(
jπ

ak −C+(δn)
U

)
dak

+ (U − ak−1)
∫ U+C+(δn)

max(C+(δn),U)
cos

(
jπ

ak −C+(δn)
U

)
dak

= H̄(1)
j (δn) − H̄(2)

j (δn)ak−1 .

□

We provide the analytical formula for the t0 price of TARN computed with COS method in the
following proposition.

Proposition 3. The price of the TARN with part gain under the two-dimensional COS method given
X(0) = x0 can be calculated by

v̂0 =
2 exp(−rd(t1 − t0))

(b − a)U

2∑
k=1

N1−1∑
m=0

′
N2−1∑
j=0

′
n(k)+1∑
n=1

w(k)
n (b(k) − a(k))Re

(
ΦX(t1−t0)

( mπ
b − a

)
× exp

(
imπ

x0 − a
b − a

) )
cos

(
mπ

δ(k)
n − a
b − a

)
V (1)

1, j (δ
(k)
n ) ,

where the Fourier coefficients V (1)
1, j (δn) can be obtained recursively from V (1)

l, j (δn) and V (2)
l, j (δn) for 1 ≤ l ≤

N, described as follows.

V (1)
N, j(δn) = H̄(1)

j (δn) ,

and

V (2)
N, j(δn) = H̄(2)

j (δn) .

For 1 ≤ l ≤ N − 1,

V (1)
l, j (δn) =

2 exp(−rd(tl+1 − tl))
(b − a)U

2∑
k′=1

N1−1∑
m′=0

′
N2−1∑
j′=0

′
n(k′)+1∑
n′=0

w(k′)
n′ (b(k′) − a(k′))Re

(
ΦX(tl+1−tl)

(
m′π

b − a

)

× exp
(
im′π

δn − a
b − a

) )
cos

m′πδ(k′)
n′ − a
b − a

 Re
(

exp
(
i j′πC+(δn)

U

)
×

(
V (1)

l+1, j′(δ
(k′)
n′ )M j, j′(C+(δn),max(C+(δn),U),C+(δn),U +C+(δn))

− V (2)
l+1, j′(δ

(k′)
n′ )Q j, j′(C+(δn),max(C+(δn),U),C+(δn),U +C+(δn))

))
+ H̄(1)

j (δn) ,

and

V (2)
l, j (δn) = H̄(2)

j (δn) ,
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Proof. The approximation of vN−1 based on the COS method is

v̂N−1 =

[
2 exp(−rd(tN − tN−1))

(b − a)U

2∑
k=1

N1−1∑
m=0

′
N2−1∑
j=0

′
n(k)+1∑
n=0

w(k)
n (b(k) − a(k))Re

(
ΦX(tN−tN−1)

( mπ
b − a

)
× exp

(
imπ

xN−1 − a
b − a

) )
Re

(
exp

(
i jπ

aN−1

U

))
cos

(
mπ

δ(k)
n − a
b − a

)
VN, j(δ(k)

n )
]
1aN−1<U

+ I(xN−1, aN−1, aN−2) ,

where

VN, j(δn) =
∫ U+C+(δn)

C+(δn)
I(δn, aN , aN−1) cos

(
jπ

aN −C+(δn)
U

)
daN .

Using Lemma 9, we immediately obtain

VN, j(δn) = V (1)
N, j(δn) + V (2)

N, j(δn)aN−1 ,

where

V (1)
N, j(δn) = H̄(1)

j (δn) ,

and

V (2)
N, j(δn) = H̄(2)

j (δn) .

For 0 ≤ l ≤ N − 1, the COS approximation of vl is

v̂l =

[
2 exp(−rd(tl+1 − tl))

(b − a)U

2∑
k=1

N1−1∑
m=0

′
N2−1∑
j=0

′
n(k)+1∑
n=0

w(k)
n (b(k) − a(k))Re

(
ΦX(tl+1−tl)

( mπ
b − a

)
× exp

(
imπ

xl − a
b − a

) )
Re

(
exp

(
i jπ

al

U

))
cos

(
mπ

δ(k)
n − a
b − a

)
Vl+1, j(δ(k)

n )
]
1al<U + I(xl, al, al−1) ,

where for 1 ≤ l ≤ N − 1,

Vl, j(δn) =
∫ U+C+(δn)

C+(δn)
v̂l(δn) cos

(
jπ

al −C+(δn)
U

)
dal

=
2 exp(−rd(tl+1 − tl))

(b − a)U

2∑
k′=1

N1−1∑
m′=0

′
N2−1∑
j′=0

′
n(k′)+1∑
n′=0

w(k′)
n′ (b(k′) − a(k′))Re

(
ΦX(tl+1−tl)

(
m′π

b − a

)

× exp
(
im′π

δn − a
b − a

) )
cos

m′πδ(k′)
n′ − a
b − a

 [V (1)
l+1, j′(δ

(k′)
n′ )Re

( ∫ U+C+(δn)

C+(δn)
exp

(
i j′π

al

U

)
1al<U

× cos
(

jπ
al −C+(δn)

U

)
dal

)
− V (2)

l+1, j′(δ
(k′)
n′ )Re

( ∫ U+C+(δn)

C+(δn)
al exp

(
i j′π

al

U

)
1al<U

× cos
(

jπ
al −C+(δn)

U

)
dal

)]
+

∫ U+C+(δn)

C+(δn)
I(δn, al, al−1) cos

(
jπ

al −C+(δn)
U

)
dal
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= V (1)
l, j (δn) − V (2)

l, j (δn)al−1 ,

where

V (1)
l, j (δn) =

2 exp(−rd(tl+1 − tl))
(b − a)U

2∑
k′=1

N1−1∑
m′=0

′
N2−1∑
j′=0

′
n(k′)+1∑
n′=0

w(k′)
n′ (b(k′) − a(k′))Re

(
ΦX(tl+1−tl)

(
m′π

b − a

)

× exp
(
im′π

δn − a
b − a

) )
cos

m′πδ(k′)
n′ − a
b − a

 Re
(

exp
(
i j′πC+(δn)

U

)
×

(
V (1)

l+1, j′(δ
(k′)
n′ )M j, j′(C+(δn),max(C+(δn),U),C+(δn),U +C+(δn))

− V (2)
l+1, j′(δ

(k′)
n′ )Q j, j′(C+(δn),max(C+(δn),U),C+(δn),U +C+(δn))

))
+ H̄(1)

j (δn) ,

and

V (2)
l, j (δn) = H̄(2)

j (δn) ,

□

As in the case of full/no gain, the Fourier coefficients Vl, j(δn) in the part gain case can be computed
using matrix-vector products. However, in this case, besides Hankel matrix MH

l,n and Toeplitz matrix
MT

l,n defined in (69) and (70), respectively, we require two N2 × N2 matrices QH
l,n and QT

l,n with elements:

QH
l,n( j, j′) = QH

j, j′(C
+(δn),max(C+(δn),U),C+(δn),U +C+(δn)) , (80)

and

QT
l,n( j, j′) = QT

j, j′(C
+(δn),max(C+(δn),U),C+(δn),U +C+(δn)) . (81)

From (74) and (75), it is clear that QH
l,n is a Hankel matrix and QT

l,n is a Toeplitz matrix. Therefore, the
Fourier coefficients can be computed efficiently using FFT for TARN with part gain as well.

5. Numerical results

In this section, a number of numerical experiments are performed to evaluate the accuracy and
efficiency of the two-dimensional COS method for the pricing of TARN under the exponential Lévy
processes. We will consider three different knock-out types: no gain, part gain and full gain. We focus
on three specific models: BS, Merton JD and NIG, with the parameters listed below:

• BS: rd = 0, r f = 0, σ = 0.2.
• Merton JD: rd = 0, r f = 0, σ = 0.2, ζ = 3, β = −0.05, δ = 0.05.
• NIG: rd = 0, r f = 0, δ = 0.2, α = 20, β = −5.

In practice, to obtain the parameters for the Lévy processes, one proceeds to obtain a set of market
prices of put and call options on FX and minimize the mean square error between market prices of the
options and the corresponding prices predicted by the model.
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Table 1. COS vs. MC for TARN price under BS model.

MC COS
Target Average Stderr d = 7 d = 8 d = 9 d = 10 d = 11

No Gain
0.3 −0.5924 0.0017 −0.5919 −0.5919 −0.5919 −0.5919 −0.5919

(0.0005) (0.0000) (0.0000) (0.0000) (0.0000)
0.5 −0.5270 0.0016 −0.5286 −0.5284 −0.5283 −0.5283 −0.5283

(0.0013) (0.0003) (0.0001) (0.0000) (0.0000)
0.7 −0.4472 0.0016 −0.4478 −0.4476 −0.4475 −0.4474 −0.4474

(0.0002) (0.0004) (0.0002) (0.0001) (0.0000)
0.9 −0.3657 0.0016 −0.3673 −0.3670 −0.3668 −0.3668 −0.3668

(0.0011) (0.0005) (0.0002) (0.0000) (0.0000)
Part Gain

0.3 −0.5461 0.0017 −0.5465 −0.5464 −0.5463 −0.5463 −0.5463
(0.0002) (0.0002) (0.0001) (0.0000) (0.0000)

0.5 −0.4779 0.0016 −0.4812 −0.4811 −0.4810 −0.4810 −0.4810
(0.0031) (0.0002) (0.0001) (0.0000) (0.0000)

0.7 −0.4002 0.0016 −0.4004 −0.4000 −0.4001 −0.4000 −0.4000
(0.0002) (0.0004) (0.0000) (0.0001) (0.0000)

0.9 −0.3177 0.0015 −0.3211 −0.3209 −0.3206 −0.3206 −0.3206
(0.0029) (0.0005) (0.0003) (0.0000) (0.0000)

Full Gain
0.3 −0.4949 0.0017 −0.4974 −0.4974 −0.4973 −0.4973 −0.4973

(0.0024) (0.0001) (0.0001) (0.0000) (0.0000)
0.5 −0.4321 0.0016 −0.4312 −0.4310 −0.4309 −0.4309 −0.4309

(0.0012) (0.0003) (0.0001) (0.0000) (0.0000)
0.7 −0.3484 0.0015 −0.3513 −0.3511 −0.3509 −0.3509 −0.3508

(0.0024) (0.0005) (0.0003) (0.0001) (0.0001)
0.9 −0.2737 0.0015 −0.2738 −0.2735 −0.2733 −0.2733 −0.2733

(0.0004) (0.0005) (0.0002) (0.0000) (0.0000)

For the TARN trades, we assume the time interval is a constant, i.e. ti − ti−1 = ∆, for i = 1, . . . ,N.
The baseline parameters for the TARN trades are as follows.

• S (0) = 1.05, E = 1, g = 2, γ = 1, ∆ = 1/12, t0 = 0, tN = 1, N f = 1.

For the COS method, we set λ = 10 throughout all the experiments. We implemented both
Clenshaw-Curtis and Gauss-Legendre quadrature rules and found them to perform equally well. As
a result, we only report the results based on Clenshaw-Curtis quadrature rule. For the quadrature,
we set n(1) = n(2) = 28 and therefore w(1)

n = w(2)
n . Furthermore, in the numerical experiments, we set

N1 = N2 = 2d and evaluate the performance of the COS method by varying d. N1 and N2 represent
the truncation terms for the approximation of the marginal conditional densities of Xn+1 and An+1,
repectively; see (29) and (30). Therefore, by varying d, we are testing the convergence of the COS
method with respect to the truncation terms for marginal conditional densities of Xn+1 and An+1.
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Table 2. COS vs. MC for TARN price under Merton JD model.

MC COS
Target Average Stderr d = 7 d = 8 d = 9 d = 10 d = 11

No Gain
0.3 −0.7695 0.0016 −0.7691 −0.7692 −0.7691 −0.7691 −0.7692

(0.0003) (0.0001) (0.0000) (0.0001) (0.0001)
0.5 −0.7228 0.0017 −0.7246 −0.7243 −0.7243 −0.7243 −0.7243

(0.0015) (0.0003) (0.0000) (0.0000) (0.0000)
0.7 −0.6527 0.0017 −0.6521 −0.6519 −0.6518 −0.6517 −0.6517

(0.0010) (0.0004) (0.0002) (0.0001) (0.0000)
0.9 −0.5741 0.0018 −0.5745 −0.5742 −0.5740 −0.5740 −0.5739

(0.0002) (0.0006) (0.0003) (0.0001) (0.0001)
Part Gain

0.3 −0.7209 0.0016 −0.7195 −0.7197 −0.7197 −0.7197 −0.7197
(0.0012) (0.0002) (0.0000) (0.0000) (0.0000)

0.5 −0.6726 0.0017 −0.6723 −0.6722 −0.6723 −0.6722 −0.6722
(0.0004) (0.0001) (0.0000) (0.0001) (0.0000)

0.7 −0.5992 0.0018 −0.5993 −0.5991 −0.5989 −0.5988 −0.5988
(0.0004) (0.0005) (0.0003) (0.0001) (0.0000)

0.9 −0.5224 0.0018 −0.5223 −0.5219 −0.5218 −0.5218 −0.5217
(0.0007) (0.0006) (0.0002) (0.0001) (0.0001)

Full Gain
0.3 −0.6667 0.0017 −0.6660 −0.6660 −0.6660 −0.6660 −0.6660

(0.0007) (0.0000) (0.0000) (0.0000) (0.0000)
0.5 −0.6176 0.0018 −0.6168 −0.6166 −0.6166 −0.6166 −0.6166

(0.0010) (0.0002) (0.0000) (0.0000) (0.0000)
0.7 −0.5424 0.0018 −0.5440 −0.5438 −0.5437 −0.5436 −0.5436

(0.0012) (0.0004) (0.0002) (0.0001) (0.0000)
0.9 −0.4693 0.0019 −0.4683 −0.4680 −0.4679 −0.4678 −0.4678

(0.0015) (0.0005) (0.0002) (0.0001) (0.0000)

For comparison purpose, we also perform MC simulations for each model. The simulations are
based on 200, 000 paths which are considered as reasonable in practice. We report both average and the
standard error for the simulation results.

In Tables 1–3, we report the prices of TARN based on COS method by varying the target U and the
parameter d. We also report the corresponding results from MC. We set the prices obtained under d = 11
as the reference values and report in parentheses the absolute differences between the reference values
and those from MC and COS under other values of d. For all of three models, it is clear that the price
under the COS method converges fast. The price calculated based on d = 7 is already a good estimate
for the reference value. In fact, the price difference computed from d = 7 and d = 11 is at most 0.0005
for the BS model, 0.0006 for the Merton JD model and 0.0006 for the NIG model. When we raise d to
9, the price difference from the reference value is at most 0.0001 for three models. We also confirm
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Table 3. COS vs. MC for TARN price under NIG model.

MC COS
Target Average Stderr d = 7 d = 8 d = 9 d = 10 d = 11

No Gain
0.3 −0.0395 0.0015 −0.0383 −0.0387 −0.0386 −0.0386 −0.0386

(0.0009) (0.0003) (0.0001) (0.0000) (0.0000)
0.5 0.0662 0.0017 0.0670 0.0669 0.0670 0.0671 0.0671

(0.0009) (0.0001) (0.0001) (0.0001) (0.0000)
0.7 0.1669 0.0018 0.1660 0.1662 0.1663 0.1664 0.1664

(0.0005) (0.0004) (0.0002) (0.0001) (0.0000)
0.9 0.2503 0.0019 0.2477 0.2481 0.2482 0.2483 0.2483

(0.0020) (0.0006) (0.0002) (0.0001) (0.0000)
Part Gain

0.3 −0.0083 0.0016 −0.0070 −0.0068 −0.0067 −0.0067 −0.0067
(0.0016) (0.0003) (0.0001) (0.0000) (0.0000)

0.5 0.1007 0.0017 0.0987 0.0989 0.0991 0.0991 0.0991
(0.0016) (0.0004) (0.0002) (0.0000) (0.0000)

0.7 0.1979 0.0018 0.1958 0.1961 0.1962 0.1962 0.1963
(0.0016) (0.0005) (0.0002) (0.0001) (0.0001)

0.9 0.2734 0.0020 0.2741 0.2743 0.2745 0.2746 0.2746
(0.0013) (0.0005) (0.0003) (0.0001) (0.0000)

Full Gain
0.3 0.0286 0.0016 0.0269 0.0265 0.0266 0.0266 0.0266

(0.0020) (0.0003) (0.0001) (0.0000) (0.0000)
0.5 0.1334 0.0017 0.1317 0.1317 0.1318 0.1318 0.1318

(0.0016) (0.0001) (0.0001) (0.0000) (0.0000)
0.7 0.2281 0.0019 0.2259 0.2261 0.2262 0.2263 0.2263

(0.0018) (0.0004) (0.0002) (0.0001) (0.0000)
0.9 0.3010 0.0020 0.2998 0.3002 0.3003 0.3003 0.3004

(0.0006) (0.0006) (0.0002) (0.0001) (0.0001)

that all the prices computed under COS method with d = 11 lie within the 95% confidence interval
formed based on MC. However, the minimum standard error from MC is 0.0015, which indicates that
MC should increase by a large factor to achieve the same accuracy as the COS method since the MC
standard error is proportional to the inverse square root of number of simulations.

The results in Tables 1–3 confirm that as expected, the TARN price under full gain is always
highest, followed by part gain and then no gain. We need to emphasize that in the paper, we focus on the
derivation of the analytical formula for the FX-TARN price. In order to hedge the risks in the FX-TARN,
it is necessary to calculate the option Greeks, such as delta and gamma. An important advantage of the
COS method over MC is that we can obtain the precise values for the options Greeks easily based on
the analytical formulas instead of numerical approximation.
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Figure 1. The price of TARN with no gain when U is small.
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Figure 2. The price of TARN with part gain when U is small.

To further verify the accuracy of the COS method, we perform some additional tests under the
three specific models. It turns out that the test results under the three models are consistent with each
other and therefore, we only report the results under the selected models in order to save the space.

In the first experiment, we set E = 0.6, ∆ = 1/4 and the remaining parameters are same as the
baseline ones. In this case, S (0) = 1.05, which is reasonably bigger than E, so we expect when the
target U is small enough, the TARN will always get knocked out on the first fixing date t1. As we
incrementally increase U, we expect the following things:
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Figure 3. The price of TARN with full gain when U is small.
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Figure 4. The price of TARN when U is big.

• Initially, the price under no gain will remain zero;
• Initially, the price under partial gain will be a linear function of the incremental increase in U;
• Initially, the price under full gain will stay at the level determined by the discounted value of payoff

at t1;
• When we continue to increase U, the price under the three knock-out types will all increase.

Figures 1–3 produce the results which are as expected. In the second experiment, we take the same
parameters as the first experiment. When the target U is big enough, the TARN will never be knocked
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Figure 5. The price of TARN with different E and ∆.

out and in this case, the price of the TARN will converge to the same value determined by the underlying
calls and puts, irrespective of knock-out types. The results in Figure 4 indicate it is indeed the case.
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Figure 6. The price of TARN with different E and g.
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Figure 7. The price of TARN with g = 1 minus that with g = 2 under different E.

In the third experiment, we consider the TARN with part gain. We set U=0.9 and vary E and ∆,
while fixing other parameters at the baseline ones. When ∆ increases, we have more fixing dates since
the maturity is fixed. In this case, the change in the price will depend on E. When E is small, the payoff
function at each fixing date tends to be positive. However, as E increases, the payoff tends to be negative.
Therefore, when E is smaller and we increase ∆, we expect the price will rise. On the other hand, when
E is bigger and we increase ∆, the price will drop. We confirm these expectations in Figures 5.

In the final experiment, we investigate the impact of the leverage factor g. We consider a part gain
TARN with U = 0.9, ∆ = 1/4 and the rest of parameters are same as the baseline ones. We expect that
when g switches from 1 to 2, the price will drop as the payoff on each fixing date becomes lower. The
result in Fig. 6 is consistent with our expectation. We also observe that when E is small, the prices
under the cases of g = 1 and g = 2 are almost the same. This is because the negative payoff term is
close to 0 when E is small. Before the TARN is knocked out, its payoff at each fixing date with g = 1
minus that with g = 2 is in fact the payoff of a put option. As the diffusion parameter σ takes same
values under both BS and Merton JD models, we expect that the price difference between the cases of
g = 1 and g = 2 in Merton JD model is larger than that in BS model. This is because in the Merton JD
model, the spot rate has a larger volatility due to the existence of the jumps, which in turn leads to a
higher put option value. The result in Figures 7 is consistent with our expectation.

6. Conclusions

In this paper, we develop an efficient pricing method for FX-TARN under Lévy processes, based
on the two-dimensional Fourier cosine expansion combined with higher-order quadrature rules. We
derive the analytical formulas for TARN price under three different knock-out types. Furthermore, we
demonstrate that the Fourier coefficients can be computed fast by using FFT. The performance and
accuracy of the method have been confirmed through various numerical experiments.
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As for future work, it would be interesting to extend the method for the model with both stochastic
volatility and jumps. One such an example is the time changed Lévy model of Carr and Wu (2004). For
this type of models, the characteristic function is still available and therefore, the COS method should
continue to work.

Appendix: Clenshaw-Curtis quadrature

Clenshaw–Curtis quadrature is the method for numerical integration and it is a quadrature based
on an expansion of the integrand in terms of Chebyshev polynomials. Besides having fast-converging
accuracy comparable to Gaussian quadrature rules, Clenshaw–Curtis quadrature naturally leads to
nested quadrature rules (where different accuracy orders share points).

A (N + 2)-th order Clenshaw-Curtis rule takes the following form∫ b

a
f (x)dx ≃

b − a
2

N+1∑
n=0

wn f (δn) ,

where wn and δn, for n = 0, . . . ,N + 1 are the weights and nodal points, which are defined as

δn =


b−a

2 cos( nπ
N ) + a+b

2 , n = 0, . . . ,N/2,
a−b

2 cos
(

(n−( N
2 +1))π
N

)
+ a+b

2 , n = N/2 + 1, . . . ,N + 1,

and wn is n-th element of a (N+2)-dimension vector w = (D′d,D′d)′, where D is a (N/2+1)× (N/2+1)-
matrix, with elements:

D(n1, n2) =
2
N

cos
(
n1n2π

N/2

)
×

1/2, n2 ∈ {0,N/2},
1, Otherwise,

and d is a vector defined by d0 = 1, dN/2 = 1/(1 − N2), dk =
2

1−(2k)2 , for k = 1, . . . ,N/2 − 1 and can be
written as

d =
(
1,

2
1 − 4

,
2

1 − 16
, · · · ,

2
1 − (N − 2)2 ,

1
1 − N2

)′
.
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