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Abstract: In this article, a physics-informed neural network based on the time difference method
is developed to solve one-dimensional (1D) and two-dimensional (2D) nonlinear time distributed-
order models. The FBN-θ, which is constructed by combining the fractional second order backward
difference formula (BDF2) with the fractional Newton-Gregory formula, where a second-order
composite numerical integral formula is used to approximate the distributed-order derivative, and
the time direction at time tn+ 1

2
is approximated by making use of the Crank-Nicolson scheme.

Selecting the hyperbolic tangent function as the activation function, we construct a multi-output
neural network to obtain the numerical solution, which is constrained by the time discrete formula
and boundary conditions. Automatic differentiation technology is developed to calculate the spatial
partial derivatives. Numerical results are provided to confirm the effectiveness and feasibility of the
proposed method and illustrate that compared with the single output neural network, using the multi-
output neural network can effectively improve the accuracy of the predicted solution and save a lot of
computing time.

Keywords: multi-output neural network; FBN-θ method; Crank-Nicolson scheme; nonlinear time
distributed-order models

1. Introduction

With the continuous development and progress of computing technology over the past decade,
deep learning has taken a big step on the road of evolution. Deep learning can be found in many
fields, such as imaging and natural language. Scholars have begun to apply deep learning to solve
some complex partial differential equations (PDEs), which include PDEs with high order
derivatives [1], high-dimensional PDEs [2, 3], subdiffusion problems with noisy data [4] and so on.
Based on the deep learning method, Raissi et al. [5] proposed a novel algorithm called the physics
informed neural network (PINN), which has made excellent achievements for solving forward and
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inverse PDEs. It integrates physical information described by PDEs into a neural network. In recent
years, the PINNs algorithm has attracted extensive attention. To solve forward and inverse problems
of integro-differential equations (IDEs), Yuan et al. [6] proposed auxiliary physics informed neural
network (A-PINN). Lin and Chen [7] designed a two-stage physics informed neural network for
approximating localized wave solutions, which introduces the measurement of conserved quantities in
stage two. Yang et al. [8] developed Bayesian physics informed neural networks (B-PINNs) that takes
Bayesian neural network and Hamiltonian Monte Carlo or the variational inference as a priori and
posteriori estimators, respectively. Scholars have also presented other variant algorithms of PINN,
such as RPINNs [9] and hp-VPINNs [10]. PINN has also achieved good performance for solving
physical problems, including high-speed flows [11] and heat transfer problems [12]. In addition to
integer-order differential equations, authors have studied the application of PINN in solving fractional
differential equations such as fractional advection-diffusion equations (see Pang et al. [13] for
fractional physics informed neural network (fPINNs)), high dimensional fractional PDEs (see Guo et
al. [14] for Monte Carlo physics-informed neural networks (MC-PINNs)) and fractional water wave
models (see Liu et al. [15] for time difference PINN).

In recent decades, fractional differential equations (FDEs) have been concerned and studied in
many fields, such as image denoising [16] and physics [17–19]. The reason why fractional differential
equations have attracted wide attention is that they can more clearly describe complex physical
phenomena. As an indispensable part of fractional problems, distributed-order differential equations
are difficult to solve due to the complexity of distributed-order operators. To solve the time multi-term
and distributed-order fractional sub-diffusion equations, Gao et al. [20] proposed a second order
numerical difference formula. Jian et al. [21] derived a fast second-order implicit difference scheme
of time distributed-order and Riesz space fractional diffusion-wave equations and analyzed the
unconditional stability and second-order convergence. Li et al. [22] applied the mid-point quadrature
rule with finite volume method to approximate the distributed-order equation. For the nonlinear
distributed-order sub-diffusion model [23], the distributed-order derivative and the spatial direction
were approximated by the FBN-θ formula with a second-order composite numerical integral formula
and the H1-Galerkin mixed finite element method, respectively. In [24], Guo et al. adopted the
Legendre-Galerkin spectral method for solving 2D distributed-order space-time reaction-diffusion
equations. For the two-dimensional Riesz space distributed-order equation, Zhang et al. [25] used
Gauss quadrature to calculate the distributed-order derivative and applied an alternating direction
implicit (ADI) Galerkin-Legendre spectral scheme to approximate the spatial direction. For the
distributed-order fourth-order sub-diffusion equation, Ran and Zhang [26] developed new compact
difference schemes and proved their stability and convergence. In [27, 28], authors developed spectral
methods for the distributed-order time fractional fourth-order PDEs.

As we know, distributed-order fractional PDEs can be regarded as the limiting case of multi-term
fractional PDEs [29]. Moreover, Diethelm and Ford [30] have observed that small changes in the order
of a fractional PDE lead to only slight changes in the final solution, which gives initial support to
the employed numerical integration method. In view of this, we develop the FBN-θ [31, 32] with a
second-order composite numerical integral formula combined with a multi-output neural network for
solving 1D and 2D nonlinear time distributed-order models. Based on the idea of using a single output
neural network combined with the discrete scheme of fractional models [13], we also use a single
output neural network combined with a time discrete scheme to solve the nonlinear time distributed-
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order models. However, the accuracy of the prediction solution calculated by the single output neural
network scheme is low and the training progress takes a lot of time. Therefore, we introduce a multi-
output neural network to obtain the numerical solution of the time discrete scheme. Compared with the
single output neural network scheme, the proposed multi-output neural network scheme has two main
advantages as follows:
• Saving more computing time. The multi-output neural network scheme makes the sampling domain
of the collocation points from the spatiotemporal domain to the spatial domain, which decreases the
number of the training dataset and thus reduces the training time.
• Improving the accuracy of predicted solution. Due to the discrete scheme of the distributed-order
derivative, the n-th output item of the multi-output neural network will be constrained by the previous
n − 1 output items.

The remainder of this article is as follows: In Section 2, we show what the components of neural
network are and how to construct a neural network. In Section 3, we give the lemmas used to
approximate the distributed-order derivative and the process of building the loss function. In Section
4, we provide some numerical results to confirm the capability of our proposed method. Finally, we
make some conclusions in Section 5.

2. Neural network

In face of different objectives in various fields, scholars have developed many different types of
neural networks, such as feed-forward neural network (FNN) [6], recurrent neural network (RNN) [33]
and convolutional neural network (CNN) [34]. The FNN considered in this article can effectively solve
most PDEs. Input layer, hidden layer and output layer are three indispensable components of FNN,
which can be given, respectively, by

input layer: Φ0(x) = x ∈ Rdin ,

hidden layers: Φk(x) = σ(WkΦk−1(x) + bk) ∈ Rλk , 1 ≤ k ≤ K − 1,
output layer: ΦK(x) =WKΦK−1(x) + bK ∈ R

dout .

Wk ∈ R
λk×λk−1 and bk ∈ R

λk represent the weight matrix and the bias vector in the kth layer, respectively.
We define δ = {Wk, bk}1≤k≤K , which is the trainable parameters of FNN. λk represents the number of
neurons included in the kth layer. σ is a nonlinear activation function. In this article, the hyperbolic
tangent function [3, 6] is selected as the activation function. There are many other functions that can
be considered as activation functions, such as the rectified linear unit (ReLU) σ(x) = max{x, 0} [4] and
the logistic sigmoid σ(x) = 1

1+e−x [35].

3. Methodology

3.1. Problem setup

In this article, we consider a nonlinear distributed-order model with the following general form:Dw
t u +N(u) = f (x, t), (x, t) ∈ Ω × J,

u(x, 0) = u0(x), x ∈ Ω̄,
(3.1)
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where Ω ⊂ Rd(d ≤ 2) and J = (0,T ]. N[·] is a nonlinear differential operator. Dw
t u represents the

distributed-order derivative and has the following definition:

Dw
t u(x, t) =

∫ 1

0
ω(α)C

0 Dα
t u(x, t)dα, (3.2)

where ω(α) ≥ 0,
∫ 1

0
ω(α)dα = c0 > 0 and C

0 Dα
t u(x, t) is the Caputo fractional derivative expressed by

C
0 Dα

t u(x, t) =


1

Γ(1 − α)

∫ t

0

uη(x, η)
(t − η)−α

dη, 0 < α < 1,

ut(x, t), α = 1.
(3.3)

The specific boundary condition is determined by the practical problem.

3.2. Some lemmas

For simplicity, choosing a mesh size ∆α = 1
2I , we denote the nodes on the interval [0, 1] with

coordinates αi = i∆α for i = 0, 1, 2, · · · , 2I. The time interval [0,T ] is divided as the uniform mesh
with the grid points tn = n∆t(n = 0, 1, 2, · · · ,N) and ∆t = T/N is the time step size. We denote
vn ≈ un = u(x, tn), un+ 1

2
t = un+1−un

∆t + O(∆t2) and un+ 1
2 := un+1+un

2 . vn is defined as the approximation
solution of the time discrete scheme. The following lemmas are introduced to construct the numerical
discrete formula of (3.1):

Lemma 3.1. (See [23]) Supposing ω(α) ∈ C2[0, 1], we can get

∫ 1

0
ω(α)dα = ∆α

2I∑
k=0

ciω(αi) −
∆α2

12
ω(2)(γ), γ ∈ (0, 1), (3.4)

where

ci =


1
2
, i = 0, 2I,

1, otherwise.
(3.5)

Lemma 3.2. From [23, 31, 32], the discrete formula of the Caputo fractional derivative (3.3) can be
obtained by

C
0 Dα

t u(x, tn+ 1
2
) =

C
0 Dα

t un+1 + C
0 Dα

t un

2
+ O(∆t2) = ∆t−α

n+1∑
s=0

κ̃(α)
n+1−su

s + O(∆t2), (3.6)

where

κ̃(α)
n+1−s =


κ(α)

0

2
, s = n + 1,

κ(α)
n−s + κ

(α)
n+1−s

2
, otherwise.

(3.7)
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The parameters κ(α)
i (i = 0, 1, · · · , n+ 1) that are the coefficients of FBN-θ (θ ∈ [−1

2 , 1]) can be given by

κ(α)
i =



2−α(1 + αθ)(3 − 2θ)α, i = 0,

ϕ0κ
(α)
0

ψ0
, i = 1,

1
2ψ0

[(ϕ0 − ψ1)κ(α)
1 + ϕ1κ

(α)
0 ], i = 2,

1
iψ0

3∑
j=1

[ϕ j−1 − (i − j)ψ j]κ
(α)
i− j, i ≥ 3,

(3.8)

where

ϕi =


2α(θ − 1)(αθ + 1) + αθ(θ −

3
2

), i = 0,

− α(2θ2 − 3αθ + 4αθ2 − 1), i = 1,

− αθ(
1
2
− θ + α − 2αθ), i = 2,

(3.9)

and

ψi =



1
2

(3 − 2θ)(1 + αθ), i = 0,

−
αθ

2
(3 − 2θ) − 2(1 − θ)(αθ + 1), i = 1,

−
1
2

(2θ − 1)(αθ + 1) − 2αθ(θ − 1), i = 2,

−
1
2
αθ(1 − 2θ).

(3.10)

Lemma 3.3. (See [23]) The distributed-order term Dω
t u at t = tn+ 1

2
can be calculated by the following

formula:

Dω
t u(x, tn+ 1

2
) =

Dω
t un+1 + Dω

t un

2
+ O(∆t2) =

1
2

n+1∑
s=0

βn+1
s us + O(∆t2 + ∆α2), (3.11)

where

βn+1
s =

̂κn−s + κ̂n+1−s, 0 ≤ s < n + 1,
κ̂0, s = n + 1,

(3.12)

and

κ̂n−s =

2I∑
i=0

φi

∆tαi
κ(αi)

n−s, φi = ∆αω(αi)ci. (3.13)

3.3. The loss function

Based on the above lemmas, the discrete scheme of the distributed-order model (3.1) at t = tn+ 1
2
(n =

0, 1, 2, · · · ,N − 1) can be expressed by the following equality:

1
2

n+1∑
s=0

βn+1
s vs +N(vn+ 1

2 ) = f n+ 1
2 . (3.14)
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Then we can obtain the system of equations as follows:

1
2

1∑
s=0

β1
sv

s +N(v
1
2 ) = f

1
2 ,

1
2

2∑
s=0

β2
sv

s +N(v1+ 1
2 ) = f 1+ 1

2 ,

...

1
2

N∑
s=0

βN
s vs +N(vN− 1

2 ) = f N− 1
2 .

(3.15)

The system of Eq (3.15) can be rewritten as the following matrix form:

v(x)M +N(v(x)) + v0(x)ρ0 = f (x), (3.16)

where the symbols ρ0, v(x), f (x) andN(v(x)) are vectors, which are given, respectively, by

ρ0 = [
1
2
β1

0,
1
2
β2

0,
1
2
β3

0, · · · ,
1
2
βN

0 ],

v(x) = [v1(x), v2(x), · · · , vN(x)],

f (x) = [ f
1
2 (x), f 1+ 1

2 (x), · · · , f N− 1
2 (x)],

N(v(x)) = [N(v
1
2 (x)),N(v1+ 1

2 (x)), · · · ,N(vN− 1
2 (x))].

The symbol M is an N × N matrix that has the following definition:

M =


1
2β

1
1

1
2β

2
1 · · ·

1
2β

N
1

0 1
2β

2
2 · · ·

1
2β

N
2

...
...

...

0 0 · · · 1
2β

N
N

 .
Now, we introduce a multi-output neural network v(x; δ) = [v1(x; δ), v2(x; δ), · · · , vN(x; δ)] into

Eq (3.16), which takes x as an input and is used to approximate time discrete solutions
v(x) = [v1(x), v2(x), · · · , vN(x)]. This will result in a multi-output PINN
ℓ(x) = [ℓ1(x), ℓ2(x), · · · , ℓN(x)]:

ℓ(x) = v(x; δ)M +N(v(x; δ)) + v0(x)ρ0 − f (x), (3.17)

where ℓn+1(x) is denoted as residual error of the discrete scheme (3.14), which is given by

ℓn+1(x) =
1
2

n+1∑
s=1

βn+1
s vs(x; δ) +N(vn+ 1

2 (x; δ)) +
1
2
βn+1

0 v0(x) − f n+ 1
2 (x), n = 0, 1, 2, · · · ,N − 1. (3.18)
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The loss function is constructed in the form of mean square error. Combined with the boundary
condition loss, the total loss function can be expressed by the following formula:

MS Etotal = MS Eℓ + MS Eb, (3.19)

where

MS Eℓ =
1

N × Nx

N∑
j=1

Nx∑
i=1

|ℓ j(xi
ℓ)|

2, (3.20)

and boundary condition loss

MS Eb =
1

N × Nb

N∑
j=1

Nb∑
i=1

|v j(xi
b; δ) − u j(xi

b)|2. (3.21)

Here, {xi
ℓ}

Nx
i=1 corresponds to the collocation points on the space domain Ω and {xi

b}
Nb
i=1 denotes the

boundary training data. The schematic diagram of using the multi-output neural network scheme to
solve nonlinear time distributed-order models is shown in Figure 1.

Figure 1. A multi-output neural network framework to solve nonlinear time distributed-order
models, where MS E∗ represents the loss function.

4. Algorithm implementation

In this section, we consider two nonlinear time distributed-order equations to verify the feasibility
and effectiveness of our proposed method. The performance is evaluated by calculating the relative L2

error between the predicted and exact solutions. The definition of relative L2 error is given by

||u − v||L2 =

√∑N
j=1
∑Nx

i=1 |u
j(xi) − v j(xi)|2√∑N

j=1
∑Nx

i=1 |u
j(xi)|2

. (4.1)
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Table 1 indicates which optimizer is selected for each example to minimize the loss function.

Table 1. The hyperparameters configured in numerical examples .

Example Optimizer Learning rate Iterations

1 Adam + L-BFGS 0.001 20000
2 Adam + L-BFGS 0.001 20000
3 Adam + L-BFGS 0.001 20000
4 L-BFGS - -

We use Python to code our algorithms and all codes run on a Lenovo laptop with AMD R7-6800H
CPU @ 3.20 GHz and 16.0GB RAM.

4.1. The distributed-order sub-diffusion model

Here, we solve the following distributed-order sub-diffusion model:

ut + Dω
t u − ∆u − ∆ut +G(u) = f (x, t), (x, t) ∈ Ω × J, (4.2)

with boundary condition
u(x, t) = 0, x ∈ ∂Ω, t ∈ J̄, (4.3)

and initial condition
u(x, 0) = u0(x), x ∈ Ω̄, (4.4)

where the nonlinear term G(u) = u2. The symbol ∆ is the Laplace operator. Based on Eqs (3.14)–
(3.21), the loss function MS Etotal can be obtained by

MS Etotal = MS Eℓ + MS Eb,

where

MS Eℓ =
1

N × Nx

N∑
j=1

Nx∑
i=1

|ℓ j(xi
ℓ)|

2,

MS Eb =
1

N × Nb

N∑
j=1

Nb∑
i=1

|v j(xi
b; δ) − 0|2.

Example 1.
For this example, we set space domain Ω = (0, 1) and time interval J = (0, 1

2 ]. The training
set consists of the boundary points and Nx = 200 collocation points randomly selected in the space
domain Ω. Choosing ω(α) = Γ(3 − α) and the source term

f (x, t) = 2t sin(2πx) +
Γ(3)t(t − 1)

ln t
sin(2πx) + 4t2π2 sin(2πx) + 8tπ2 sin(2πx) + (t2 sin(2πx))2,

then we can obtain the exact solution u(x, t) = t2 sin(2πx).
To evaluate the performance of our proposed method, the exact solution and the predicted solution

solved by a multi-output neural network that consists of 6 hidden layers with 40 neurons in each hidden
layer are showed in Figure 2.
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−0.2
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0.0

0.1

0.2
u(x

,t)
 an

d v
(x,

t)
exact
prediction

Figure 2. Example 1: the exact solution and predicted solution with ∆α = 1
500 , θ = 1 and

N = 20 at t = 0.5.

Table 2. The relative L2 error between the predicted solution with parameters N = 20,
∆α = 1

500 , θ = 1 and exact solution for different numbers of hidden layers and different
numbers of neurons per layer.

Layers
Neurons

20 30 40 50 60

2 3.583482e-02 7.850782e-02 5.238403e-02 1.143600e-01 3.761048e-02
4 3.815002e-02 5.144618e-02 3.622479e-02 2.317038e-02 3.721057e-02
6 2.433509e-02 1.216386e-01 2.638224e-02 2.837553e-02 2.682958e-02

The influence of different network structures on our proposed method to solve Example 1 is
presented in Table 2. The accuracy of the predicted solution fluctuates with different network
architectures, and shows a fluctuating growth with the increase of the number of hidden layers. Based
on the three network architectures, Figure 3 shows the behavior performance of the proposed method
with gradual decrease of the time step size. With the increase of the number of grid points in the time
interval, we observe that the behavior of relative L2 error generally presents an upward trend for fixed
network architecture and expanding the depth of the hidden layer can effectively improve the accuracy
of the predicted solution.

Numerical results calculated by the single output neural network and multi-output neural network
schemes are presented in Table 3, where we select 200 collocation points in the given spatial domain by
random sampling method and set N = 10, θ = 1 and ∆α = 1

500 . It is easy to find that the accuracy of the
predicted solution calculated by the multi-output neural network scheme is higher than that solved by
the single output neural network scheme and replacing single output neural network with multi-output
neural network can save a lot of computing time.

Networks and Heterogeneous Media Volume 18, Issue 4, 1899–1918.



1908

10 20 30 40 50 60 70 80
N

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
rel

ati
ve

 L2
 er

ror
2-layer with 40 neurons per layer
4-layer with 40 neurons per layer
6-layer with 40 neurons per layer

Figure 3. Example 1: the variation trend of relative L2 error between the predicted solution
with θ = 1, ∆α = 1

500 and the exact solution.

Table 3. The relative L2 error and computing time given by the single output and multi-
output neural network schemes.

Neural network Layers Neurons Relative L2 error CPU time (s)

multi-output
4

20 1.948281e-02 32.80
40 1.858120e-02 44.45

6
20 9.724722e-03 51.40
40 1.024869e-02 65.88

single output
4

20 8.741336e-02 661.99
40 2.702814e-02 742.17

6
20 2.937448e-02 748.31
40 2.278774e-02 840.09

Example 2.
In this numerical example, considering the space domain Ω = (0, 1) × (0, 1), the time interval

J = (0, 1
2 ], ω(α) = Γ(3 − α) and the exact solution u(x, y, t) = t2 sin(2πx) sin(2πy), the source term can

be given by

f (x, y, t) =2t sin(2πx) sin(2πy) +
Γ(3)t(t − 1)

ln t
sin(2πx) sin(2πy)

+ 8t2π2 sin(2πx) sin(2πy) + 16tπ2 sin(2πx) sin(2πy) + (t2 sin(2πx) sin(2πy))2.

The training dataset is shown in Figure 5 and the collocation and boundary points are selected by
random sampling method.
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Figure 4. Example 2: the contour plot of the exact (a) and predicted (b) solutions with
N = 10, θ = 1 and ∆α = 1

500 at t = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6
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1.0
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(a) 900 collocation points

0.0 0.2 0.4 0.6 0.8 1.0
x
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0.2

0.4

0.6

0.8

1.0

y

(b) 120 boundary points

Figure 5. Example 2: distribution of the collocation points (a) sampled in the domain Ω and
the boundary training dataset (b).

Table 4. The relative L2 error between the predicted solution with parameters N = 20, θ = 1,
∆α = 1

500 and the exact solution for different number of hidden layers and neurons per layer.

Layers
Neurons

20 30 40 50 60

4 1.155984e-01 1.101123e-01 7.228454e-02 7.787707e-02 4.492646e-02
6 6.273340e-02 6.088659e-02 9.802474e-02 6.536637e-02 6.245142e-02
8 6.163051e-02 7.424834e-02 6.844676e-02 5.500003e-02 5.169303e-02

To better illustrate the behavior of the predicted solution, Figure 4 portrays the contour plot of
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the exact and predicted solutions, where the training set consists of 961 collocation points and 124
boundary points selected by the equidistant uniform sampling method and the network architecture
consists of 12 hidden layers with 60 neurons per layer.

Table 4 shows the impact of depth and width of the network on the accuracy of the predicted
solution. In Figure 6, we present the behavior of how relative L2 error changes with respect to different
grid points N. Combined with Table 4 and Figure 6, we observe that increasing the number of hidden
layers or neurons has a positive effect on reducing relative L2 error in general.

10 20 30 40 50 60 70 80
N

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

rel
ati

ve
 L2

 er
ror

4-layer with 50 neurons per layer
6-layer with 50 neurons per layer
8-layer with 50 neurons per layer

Figure 6. Example 2: the variation trend of relative L2 error between the predicted solution
with θ = 1, ∆α = 1

500 and the exact solution.

The results shown in Table 5 reveal the performance of the single output neural network and multi-
output neural network schemes, where we select 40 boundary points and 200 collocation points in the
given spatial domain by random sampling method and set N = 10, θ = 1 and ∆α = 1

500 . One can see
that using multi-output neural network effectively improves the precision and reduces the computing
time.

Table 5. The relative L2 error and computing time given by the single output and multi-
output neural network schemes.

Neural network Layers Neurons Relative L2 error CPU time (s)

multi-output
4

20 1.080369e-01 52.84
40 7.472573e-02 66.05

6
20 6.654115e-02 72.71
40 7.937601e-02 93.77

single output
4

20 3.443264e-01 731.22
40 7.054495e-01 728.11

6
20 2.636401e-01 772.08
40 1.410780e-01 892.94
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4.2. The distributed-order fourth-order sub-diffusion model

Further, we consider the following distributed-order fourth-order sub-diffusion model:

ut + Dω
t u − ∆u + ∆2u +G(u) = f (x, t), (x, t) ∈ Ω × J, (4.5)

with boundary condition
u(x, t) = ∆u(x, t) = 0, x ∈ ∂Ω, t ∈ J̄,

and initial condition
u(x, 0) = u0(x), x ∈ Ω̄,

where the nonlinear term G(x) = u2.
Similarly, the corresponding loss function MS Etotal can be calculated by

MS Etotal = MS Eℓ + MS Eb,

where

MS Eℓ =
1

N × Nx

N∑
j=1

Nx∑
i=1

|ℓ j(xi
ℓ)|

2,

MS Eb =
1

N × Nb

N∑
j=1

Nb∑
i=1

|v j(xi
b; δ) − 0|2

+
1

N × Nb

N∑
j=1

Nb∑
i=1

|∆v j(xi
b; δ) − 0|2.

Example 3.
Here, we define the space-time domain Ω × J = (0, 1) × (0, 1

2 ]. Considering ω(α) = Γ(3 − α) and
the source term

f (x, t) = 2t sin(πx) +
Γ(3)t(t − 1)

ln t
sin(πx) + t2π2 sin(πx) + t2π4 sin(πx) + (t2 sin(πx))2, (4.6)

the exact solution can be given by u(x, t) = t2 sin(πx). Similar to Example 1, we also randomly sample
200 collocation points in the space domain Ω.

In order to conveniently observe the capability of our proposed method, Figure 7 shows the change
in the trajectory of the predicted and exact solutions with respect to the space point x, where the
parameters are set as N = 20, ∆α = 1

500 , θ = 1 and the network consists of 6 hidden layers with 50
neurons per layer. Figure 8 portrays the trajectory of relative L2 error with three different network
architectures. Table 6 shows the impact of expanding depth or width of the network on the accuracy of
the predicted solutions. Based on Figure 8 and Table 6, it is easy to observe that increasing the number
of hidden layer plays a positive role in improving the accuracy of the predicted solutions.

The relative L2 error and CPU time obtained by the multi-output neural network and single output
neural network schemes are presented in Table 7, where we select 200 collocation points in the given
spatial domain by random sampling method and set N = 10, θ = 1 and ∆α = 1

500 . The error of the
proposed multi-output neural network scheme is smaller than that of the single output neural network
scheme. For this 1D system, the multi-output neural network scheme is more efficient than the single
output neural network scheme.
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Figure 7. Example 3: the predicted and exact solutions at t = 0.5.
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Figure 8. Example 3: the relative L2 error between the predicted solution with θ = 1,
∆α = 1

500 and exact solution for different number of grid points.

Table 6. The relative L2 error between the predicted solution with parameters N = 20, θ = 1,
∆α = 1

500 and the exact solution for different number of hidden layers and neurons per layer.

Layers
Neurons

20 30 40 50 60

2 8.994465e-03 8.835675e-03 7.976196e-03 1.121301e-02 1.284193e-02
4 6.698531e-03 6.623791e-03 1.012124e-02 7.129064e-03 6.760145e-03
6 5.238653e-03 3.178300e-03 4.705057e-03 7.221552e-03 5.002096e-03
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Table 7. The relative L2 error and computing time given by the single output and multi-
output neural network schemes.

Neural network Layers Neurons Relative L2 error CPU time (s)

multi-output
4

20 8.027377e-03 334.07
40 8.656712e-03 366.52

6
20 8.315435e-03 557.78
40 6.788274e-03 601.19

single output
4

20 2.412753e-02 994.62
40 2.365781e-02 1317.16

6
20 2.428662e-02 1344.76
40 2.139562e-02 1795.75

Example 4.
Now we take space domain Ω = (0, 1)× (0, 1) and time interval J = (0, 1

2 ]. Let ω(α) = Γ(3−α) and
the exact solution u(x, y, t) = t2 sin(πx) sin(πy). Then we arrive at the source term

f (x, y, t) =2t sin(πx) sin(πy) +
Γ(3)t(t − 1)

ln t
sin(πx) sin(πy) + 2t2π2 sin(πx) sin(πy)

+ 4t2π4 sin(πx) sin(πy) + (t2 sin(πx) sin(πy))2.
(4.7)

Here, we apply the training data set shown in Figure 5.
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Figure 9. Example 4: the contour plot of u and |u − v| with θ = 1, ∆α = 1
500 and N = 40 at

t = 0.5.

In order to more intuitively demonstrate the feasibility of our proposed method for solving this
2D system, Figure 9 shows the contour plot of u and |u − v|, where the training set consists of 900
collocation points and 120 boundary points selected by the equidistant uniform sampling method and
the network is composed of 6 hidden layers with 20 neurons per layer.
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Figure 10. Example 4: the relative L2 error between the predicted solution with θ = 1,
∆α = 1

500 and the exact solution for different number of grid points.

Table 8. The relative L2 error between the predicted solution with parameters N = 40, θ = 1,
∆α = 1

500 and the exact solution for different number of hidden layers and neurons per layer.

Layers
Neurons

20 30 40 50 60

2 7.593424e-02 4.556132e-02 2.926755e-02 5.850593e-02 4.956921e-02
4 3.716823e-02 2.498269e-02 3.388639e-02 4.073820e-02 5.282780e-02
6 2.690082e-02 3.039336e-02 2.769315e-02 4.331023e-02 6.456580e-02

Table 9. The relative L2 error and computing time given by the single output and multi-
output neural network schemes.

Neural network Layers Neurons Relative L2 error CPU time (s)

multi-output
4

20 4.549939e-02 345.03
40 5.847813e-02 339.46

6
20 5.680785e-02 466.02
40 6.110534e-02 528.10

single output
4

20 1.455785e-01 902.99
40 1.330922e-01 1309.05

6
20 1.496581e-01 1469.85
40 1.322566e-01 1990.96

From the behavior of relative L2 error in Figure 10, one can see that the accuracy of the predicted
solutions with the fixed network first presents a increasing trend and then gradually presents a
downward trend. This is because the approximation ability of neural network reaches saturation with
the increase of grid points N. Table 8 shows the relative L2 error calculated by different network
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architectures. On the whole, the relative L2 error slightly decreases with expanding depth of the
network, while it first slightly decreases and then increases with expanding width of the network. To
show the precision and efficiency of the multi-output neural network scheme for this 2D system, the
relative L2 error and CPU time obtained by the multi-output neural network and single output neural
network schemes are shown in Table 9, where we select 40 boundary points and 200 collocation
points in the given spatial domain by random sampling method and set N = 10, θ = 1 and ∆α = 1

500 . It
illustrates that the multi-output neural network scheme is more accurate and efficient than the single
output neural network scheme.

5. Conclusions

In this article, a multi-output physics informed neural network combined with the Crank-Nicolson
scheme including the FBN-θ method and the composite numerical integral formula was constructed
to solve 1D and 2D nonlinear time distributed-order models. The calculation process is described in
detail. Numerical experiments are provided to prove the effectiveness and feasibility of our algorithm.
Compared with the results calculated by a single output neural network combined with the FBN-θ
method and the Crank-Nicolson scheme, one can clearly see that the proposed multi-output neural
network scheme is more efficient and accurate. Moreover, some numerical methods, such as finite
difference or finite element method, need to linearize the nonlinear term, which will give rise to extra
costs. The process of linearization can be directly omitted by PINN. Further work will investigate
the application of the proposed methodology in high-dimensional problems and practical problems
[36–40].
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