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Abstract: This paper considers the fractional coupled nonlinear Schrödinger equation with high
degree polynomials in the energy functional that cannot be handled by using the quadratic auxiliary
variable method. To this end, we develop the multiple quadratic auxiliary variable approach and then
construct a family of structure-preserving schemes with the help of the symplectic Runge-Kutta method
for solving the equation. The given schemes have high accuracy in time and can both inherit the mass
and Hamiltonian energy of the system. Ample numerical results are given to confirm the accuracy and
conservation of the developed schemes at last.
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1. Introduction

In 2000, Laskin established the nonlinear Schrödinger (NLS) model [18] with fractional Laplacian
operator by extending the Feynmann path integral to the Lévy path [17]. The derived equation is more
accurate than the traditional NLS equation in describing the variation law of quantum states of nonlocal
physical systems with time [16]. In recent, scholars have done a lot of research on the fractional NLS
equation in theoretical analysis and numerical algorithms, and achieved fruitful results [11, 13, 34].

In this paper, we aim to present and analyze high-order schemes with conservation properties for
the fractional CNLS equation with periodic boundary conditions that can be written in the form [28]

iφt − ϑL
s
2φ + ζ

(
|φ|2 + ε|ϕ|2

)
φ = 0, x ∈ Ω, 0 ≤ t ≤ T, (1.1)

iϕt − ϑL
s
2ϕ + ζ

(
|ϕ|2 + ε|φ|2

)
ϕ = 0, x ∈ Ω, 0 ≤ t ≤ T, (1.2)
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where i is the imaginary unit root, Ω ⊂ Rd(d = 1, 2), ϑ, ζ and ε are real constants, φ(x, t) and ϕ(x, t)
are complex valued functions, 1 < s ≤ 2, and L

s
2 denotes the fractional Laplacian operator and can be

expressed by the Fourier transform, namely

L̂
s
2φ(ξ) = |ξ|sφ̂(ξ), (1.3)

where φ̂(ξ) =
∫
Ω
φ(x)e−iξxdx represents the Fourier transform for φ(x). The fractional CNLS equation

will reduce to the classical CNLS equation when s = 2. Therefore, similar to the classical system, the
fractional CNLS equation with periodic boundary conditions possesses the following physical
invariants that do not change with time [30]

M(t) :=
∫
Ω

(
|φ|2 + |ϕ|2

)
dx ≡ M(0), (1.4)

H(t) :=
ϑ

2

∫
Ω

[
(L

s
4φ)2 + (L

s
4ϕ)2

]
dx −

ζ

4

∫
Ω

(
|φ|4 + |ϕ|4 + 2ε|φ|2|ϕ|2

)
dx ≡ H(0), (1.5)

whereM is the fractional mass, and we refer toH as the fractional Hamiltonian energy.
By setting φ = p̃ + ĩq, ϕ = p̂ + îq, the original system (1.1), (1.2) can be rewritten as the following

real system

p̃t − ϑL
s
2 q̃ + ζ

[
p̃2 + q̃2 + ε( p̂2 + q̂2)

]̃
q = 0, (1.6)

q̃t + ϑL
s
2 p̃ + ζ

[
p̃2 + q̃2 + ε( p̂2 + q̂2)

]
p̃ = 0, (1.7)

p̂t − ϑL
s
2 q̂ + ζ

[
p̂2 + q̂2 + ε( p̃2 + q̃2)

]̂
q = 0, (1.8)

q̂t + ϑL
s
2 p̂ + ζ

[
p̂2 + q̂2 + ε( p̃2 + q̃2)

]
p̂ = 0. (1.9)

According to the variational derivative formula [33], the original fractional CNLS system (1.6)–(1.9)
can be expressed by an infinite-dimensional Hamiltonian system

dy
dt
= S
δH(y)
δy
, S =

(
O I2

−I2 0

)
, (1.10)

where δH(y)
δy is the vector of variational derivatives for y, y =

(̃
q, q̂, p̃, p̂

)T , I2 is the second order unit
matrix, and

H(y) =
ϑ

2

∫
Ω

[
(L

s
4 p̃)2 + (L

s
4 q̃)2 + (L

s
4 p̂)2 + (L

s
4 q̂)2

]
dx

−
ζ

4

∫
Ω

[
( p̂2 + q̂2)2 + ( p̃2 + q̃2)2 + 2ε(p̂2 + q̂2)(p̃2 + q̃2)

]
dx.

(1.11)

In recent years, some numerical algorithms [15,23,24,37] have been given for solving the fractional
NLS equation as explicit analytical solutions of fractional differential equations can not be obtained

Networks and Heterogeneous Media Volume 18, Issue 4, 1434–1453.



1436

[10]. However, these traditional algorithms can not inherit the conservative laws of the equation and
can not be implemented in long-time numerical calculations. Inspired by the idea of the structure-
preserving algorithm of the classical Hamiltonian system, scholars have developed many conservative
schemes for the fractional CNLS system. For example, Wang and Xiao [29–31] first derived invariants
of system (1.1) and (1.2) and constructed finite difference schemes to conserve these invariants; the
existence and uniqueness of solutions and convergence of schemes are discussed in these works. In [22,
26], Li et al. developed an efficient conservative difference and finite element scheme for solving the
strongly fractional CNLS equation. There are many corresponding structure algorithms for fractional
NLS-type equations, and the readers can refer to the literature [6, 32, 35].

Unfortunately, these numerical schemes mentioned above only have second-order accuracy
temporally or require small time step sizes to obtain satisfactory numerical solutions for NLS-type
equations. Therefore, it is necessary to construct and analyze high-accuracy conservative numerical
schemes for the equation. Over the past decade, some numerical methods have been proposed to
construct high-accuracy conservative methods for Hamiltonian systems [1, 21]. These methods can
also be applied to develop high order conservative schemes for fractional NLS-type equations. But,
these schemes can both preserve not the mass and energy. Fortunately, some energy quadratic
methods exist, including the invariant energy quadratization (IEQ) [9, 36] and the scalar auxiliary
variable (SAV) approaches [3, 25, 27], originally developed for gradient flow models. These methods
have been applied to construct high-accuracy modified energy-preserving schemes for conservative
equations [4, 7, 8, 14, 19, 20] by combining with the symplectic Runge-Kutta method [12]. The
quadratic auxiliary variable (QAV) approach is newly proposed to construct high-accuracy schemes
for the KdV equation [2], the derived schemes can conserve the original energy of the system. This
method provides us with a way to construct some numerical schemes that can preserve the original
energy of conservative systems. But, the QAV method is not applicable for some equations with
complex energy functionals.

As is shown in Eq (1.5), the Hamiltonian energy functional is very complicated and has high degree
polynomials, and cannot be handled by introducing a single auxiliary variable. Therefore, the original
QAV approach can not be used to construct numerical schemes to inherit the Hamiltonian energy for
the equation. Influenced by the idea of the QAV method, we developed a new method which we called
the multiple quadratic auxiliary variables (MQAV) approach by introducing more quadratic auxiliary
variables and construct conservative schemes for system (1.1), (1.2) based on the symplectic Runge-
Kutta method. The constructed schemes can preserve the mass and Hamiltonian energy of the system
and have high-accuracy in the temporal direction. In addition, the MQAV approach also can be applied
to other conservative systems with complex energy functionals and high degree polynomials.

The following is the outline of this paper. Section 2 gives an equivalent system for the fractional
CNLS equation by introducing two quadratic auxiliary variables. Section 3 applies the symplectic
Runge-Kutta method to the equivalent system in the time direction can derive a conservative
semi-discrete scheme, and discusses the scheme’s conservation properties. Section 4 uses the Fourier
pseudo-spectral method to approximate the semi-discrete system to obtain a fully-discrete
conservative scheme and gives the proposed schemes’ stability. In Section 5, numerical results are
displayed to illustrate the theoretical results. The final section contains some conclusions.
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2. Multiple quadratic auxiliary variable system

We first derive an equivalent system for the fractional CNLS system based on the idea of the MQAV
method.

By setting u = |φ|2, v = |ϕ|2, the original Hamiltonian energy can be rewritten as

E(t) =
ϑ

2

∫
Ω

[
(L

s
4φ)2 + (L

s
4ϕ)2

]
dx −

ζ

4

∫
Ω

(
u2 + v2 + 2εuv

)
dx. (2.1)

Considering the following initial conditions

φ0 = φ(x, 0), ϕ = ϕ(x, 0), u0 = |φ0|
2, v0 = |ϕ0|

2,

and taking the variational derivative for the new energy Eq (2.1), the original fractional CNLS system
(1.1), (1.2) can be rewritten as the following equivalent MQAV system

iφt − ϑL
s
2φ + ζ

(
u + εv

)
φ = 0, (2.2)

iϕt − ϑL
s
2ϕ + ζ

(
v + εu

)
ϕ = 0, (2.3)

ut = 2Re(φt, φ), (2.4)

vt = 2Re(ϕt, ϕ), (2.5)

here (∗, •) :=
∫
Ω
∗•̄dx, •̄ is the conjugate of •, Re(∗) represents taking the real part of ∗.

Theorem 2.1. The newly proposed MQAV system can inherit some invariants, namely

(i). I(t) ≡ I(0); (ii).M(t) ≡ M(0); (iii). E(t) ≡ E(0),

where

I(t) := u − |φ|2 + v − |ϕ|2,

andM(t), E(t) are given in Eqs (1.4) and (2.1), respectively.

Proof. First, system (2.4), (2.5) can be rewritten as

∂t(u − |φ|2) = 0,

∂t(v − |ϕ|2) = 0,

and adding the above two formulas we can derive

d
dt
I(t) = 0.
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Then, we compute the inner products of equation (2.2), (2.3) with φ and ϕ, and take the imaginary part
of the derivation, leading to

d
dt
M(t) = 0.

Further, by computing the inner products of system (2.2)–(2.5) with φt, ϕt, u, v, respectively, we derive

d
dt
E(t) = 0.

Remark 2.1. It is worth noting that the equivalent MQAV system not only preserves the modified
energy and mass but also conserves a new invariant I(t), which implies the modified energy E(t) is
equivalent to the original Hamiltonian energy H(t) in the continuous case. For the constructed new
system, the auxiliary variables relation can be regarded as weak properties, while the original energy
reduces to a weak invariant [12].

3. Conservative semi-discrete MQAV-RK scheme

We all know that the construction of the high-accuracy conservative schemes for the fractional
CNLS equation is challenging. Fortunately, the MQAV system (2.2)–(2.5) can preserve the quadratic
conserved quantities. This allows us to use the symplectic RK method that can conserve the system’s
quadratic invariants to construct a high-order accuracy conservative scheme for the fractional CNLS
equation. First, we outline some notations of the symplectic RK method.

3.1. Symplectic RK methods

We consider the following ordinary differential equation

dw(t)
dt
= f (t), w(t0) = w0. (3.1)

We define τ = T
N as the time step, and set tn = nτ, n = 0, 1, · · · ,N. An s-stage RK method for system

(3.1) in [tn, tn+1] is given by

win = wn + τ

s∑
j=1

ai jk j, ki = f (tn + ciτ), i = 1, 2, · · · , s, (3.2)

wn+1 = wn + τ

s∑
i=1

biki, (3.3)

where ai j, bi, ci =
s∑

i=1
ai j (i, j = 1, 2, · · · , s) are real coefficients. If these coefficients have the following

relationship

ai jbi + a jib j − bib j = 0, (3.4)

the proposed RK method is called as the symplectic RK method [12].
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3.2. Semi-discrete high-order conservative scheme

To develop a high-order conservative scheme for the MQAV system that preserves some quadratic
invariants in the time direction, a natural idea is to use the symplectic RK method to approximate
system (2.2)–(2.5). The resulting semi-discrete RK scheme is given as follows

φin = φ
n + τ

s∑
j=1

ai jk
j
φ, ki

φ = −i
(
ϑL

s
2φin − ζ

(
uin + εvin

)
φin

)
,

ϕin = ϕ
n + τ

s∑
j=1

ai jk
j
ϕ, ki

ϕ = −i
(
ϑL

s
2ϕin − ζ

(
vin + εuin

)
ϕin

)
,

uin = un + τ
s∑

j=1
ai jk

j
u, ki

u = 2Re(φ̄inki
φ),

vin = vn + τ
s∑

j=1
ai jk

j
v, ki

v = 2Re(ϕ̄inki
ϕ),

(3.5)

Then (φn+1, ϕn+1, un+1, vn+1)T can be updated by

φn+1 = φn + τ
s∑

i=1
biki
φ,

ϕn+1 = ϕn + τ
s∑

i=1
biki
ϕ,

un+1 = un + τ
s∑

i=1
biki

u,

vn+1 = vn + τ
s∑

i=1
biki

v,

(3.6)

where zn represents the numerical approximation to z(·, t) and tn for any function z. For the semi-
discrete scheme, we can derive the following theorem for the structure-preserving properties.

Theorem 3.1. The system (3.5), (3.6) can inherit the following invariants, i.e.,

Mn =M0, In = I0, En = E0,

whereMn is the mass function and is defined by

Mn = (φn, φn) + (ϕn, ϕn), (3.7)

and

In = (un, 1) + (vn, 1) − (φn, φn) − (ϕn, ϕn), (3.8)

En is the energy function, which has the form

En =
ϑ

2

[(
L

s
2φn, φn) + (

L
s
2ϕn, ϕn)] − ζ

4

[(
un, un) + (

vn, vn) + 2ε
(
un, vn)]. (3.9)
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Proof. According to system (3.6) and the definition ofMn, we have

Mn+1−Mn =
(
φn+1, φn+1) − (

φn, φn) + (
ϕn+1, ϕn+1) − (

ϕn, ϕn)
=τ

s∑
i=1

bi
(
φin, ki

φ

)
+ τ

s∑
i=1

bi
(
ki
φ, φin

)
+ τ

s∑
i=1

bi
(
ϕin, ki

ϕ

)
+ τ

s∑
i=1

bi
(
ki
ϕ, ϕin

)
=2τ

s∑
i=1

biRe
(
ki
φ, φin

)
+ 2τ

s∑
i=1

biRe
(
ki
ϕ, ϕin

)
, (3.10)

Plugging ki
φ = −i

(
ϑL

s
2φin − ζ

(
uin + εvin

)
φin

)
, ki
ϕ = −i

(
ϑL

s
2ϕin − ζ

(
vin + εuin

)
ϕin

)
into above system, we

derive

Mn+1 −Mn =2τ
s∑

i=1

biRe
(
− i

(
ϑL

s
2φin − ζ

(
uin + εvin

)
φin

)
, φin

)
+ 2τ

s∑
i=1

biRe
(
− i

(
ϑL

s
2ϕin − ζ

(
vin + εuin

)
ϕin

)
, ϕin

)
=2τ

s∑
i=1

biRe
(
− i

(
ϑ|L

s
4φin|

2 − ζ
(
uin + εvin

)
|φin|

2))
+ 2τ

s∑
i=1

biRe
(
− i

(
ϑ|L

s
4ϕin|

2 − ζ
(
vin + εuin

)
|ϕin|

2))
=0, (3.11)

where symplectic condition (3.4) and
s∑

i, j=1
ai jbikik j=

s∑
i, j=1

a jib jkik j were used. Noticing that

(
un+1, 1

)
−
(
un, 1

)
+

(
vn+1, 1

)
−

(
vn, 1

)
=τ

s∑
i=1

biki
u + τ

s∑
i=1

biki
v

=2τ
s∑

i=1

biRe(φ̄inki
φ) + 2τ

s∑
i=1

biRe(ϕ̄inki
ϕ)

=2τ
s∑

i=1

biRe(φ̄inki
φ) + 2τ

s∑
i=1

biRe(ϕ̄inki
ϕ)

=2τ
s∑

i=1

biRe
(
ki
φ, φin

)
+ 2τ

s∑
i=1

biRe
(
ki
ϕ, ϕin

)
=τ

s∑
i=1

bi
(
φin, ki

φ

)
+ τ

s∑
i=1

bi
(
ki
φ, φin

)
+ τ

s∑
i=1

bi
(
ϕin, ki

ϕ

)
+ τ

s∑
i=1

bi
(
ki
ϕ, ϕin

)
,

(3.12)

and (
φn+1,φn+1) − (

φn, φn) + (
ϕn+1, ϕn+1) − (

ϕn, ϕn)
Networks and Heterogeneous Media Volume 18, Issue 4, 1434–1453.
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= τ

s∑
i=1

bi
(
φin, ki

φ

)
+ τ

s∑
i=1

bi
(
ki
φ, φin

)
+ τ

s∑
i=1

bi
(
ϕin, ki

ϕ

)
+ τ

s∑
i=1

bi
(
ki
ϕ, ϕin

)
= 2τ

s∑
i=1

biRe
(
ki
φ, φin

)
+ 2τ

s∑
i=1

biRe
(
ki
ϕ, ϕin

)
. (3.13)

This together with Eq (3.12) can derive

In+1 − In = 0.

Then, we further obtain

(
L

s
2φn+1, φn+1) − (

L
s
2φn, φn) = (

L
s
2φn +L

s
2τ

s∑
i=1

biki
φ, φ

n + τ

s∑
i=1

biki
φ

)
−

(
L

s
2φn, φn)

=
(
L

s
2φn, τ

s∑
i=1

biki
φ

)
+

(
L

s
2τ

s∑
i=1

biki
φ, φ

n
)
+

(
L

s
2τ

s∑
i=1

biki
φ, τ

s∑
i=1

biki
φ

)
= 2τ

s∑
i=1

Re
(
L

s
2φn, biki

φ

)
+ τ2

s∑
i, j=1

(
L

s
2 biki

φ, b jk j
φ

)
= 2τ

s∑
i=1

Re
(
L

s
2φin − τ

s∑
j=1

ai jk j
φ, biki

φ

)
+ τ2

s∑
i, j=1

(
L

s
2 biki

φ, b jk j
φ

)
= 2τ

s∑
i=1

Re
(
L

s
2φin, biki

φ

)
− 2τ2

s∑
i, j=1

(
L

s
2 ai jk j

p, biki
φ

)
+ τ2

s∑
i, j=1

(
L

s
2 biki

φ, b jk j
φ

)
= 2τ

s∑
i=1

Re
(
L

s
2φin, biki

φ

)
,

(3.14)

where the symplectic condition (3.4) and
s∑

i, j=1
ai jbikik j=

s∑
i, j=1

a jib jkik j were used. Furthermore, similar

discussions, we obtain

(
L

s
2ϕn+1, ϕn+1

)
−

(
L

s
2ϕn, ϕn) = 2τ

s∑
i=1

Re
(
L

s
2ϕin, biki

ϕ

)
, (3.15)

(
un+1, un+1

)
−

(
un, un

)
= 2τ

s∑
i=1

(
uin, biki

u

)
, (3.16)

(
vn+1, vn+1

)
−

(
vn, vn

)
= 2τ

s∑
i=1

(
vin, biki

v

)
. (3.17)

Therefore, we derive (
L

s
2φn+1, φn+1) − (

L
s
2φn, φn) + (

L
s
2ϕn+1, ϕn+1) − (

L
s
2ϕn, ϕn)

= 2τ
s∑

i=1

Re
(
L

s
2φin, biki

φ

)
+ 2τ

s∑
i=1

Re
(
L

s
2ϕin, biki

ϕ

)
,

(3.18)
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(un+1, un+1) − (un, un) + (vn+1, vn+1) − (vn, vn)

= 2τ
s∑

i=1

(
uin, biki

u

)
+ 2τ

s∑
i=1

(
vin, biki

v

)
,

(3.19)

(un+1, vn+1) − (un, vn) = τ
s∑

i=1

(
uin, biki

v

)
+ τ

s∑
i=1

(
vin, biki

u

)
, (3.20)

Based on the definition of En, we can deduce

En+1−En

=
ϑ

2

[(
L

s
2φn+1, φn+1) − (

L
s
2φn, φn) + (

L
s
2ϕn+1, ϕn+1) − (

L
s
2ϕn, ϕn)]

−
ζ

4

[(
un+1, un+1) − (

un, un) + (
vn+1, vn+1) − (

vn, vn) + ε(un+1, vn+1) − ε(un, vn)]
=τ

s∑
i=1

biRe
[(
ϑL

s
2φin − ζφinuin − ζεφinvin, ki

φ

)
+

(
ϑL

s
2ϕin − ζϕinvin − ζεϕinuin, ki

ϕ

)]
=τ

s∑
i=1

biRe
[(
− iki

φ, k
i
φ

)
+

(
− iki

ϕ, k
i
ϕ

)]
=0.

(3.21)

The proof is completed. □

Then, under the consistent initial condition u0 = |φ0|, v0 = |ϕ0|, we have the following original
energy conservation theorem for the semi-discrete MQAV-RK system.

Theorem 3.2. The MQAV-RK system (3.5), (3.6) can also inherit the original semi-discrete
Hamiltonian energy of the fractional CNLS system, namely

Hn = H0,

whereHn is the original semi-discrete energy function and given by

Hn =
ϑ

2

[(
L

s
2φn, φn) + (

L
s
2ϕn, ϕn)] − ζ

4

[(
(φn)2, (φn)2) + (

(ϕn)2, (ϕn)2) + 2ε
(
(φn)2, (ϕn)2)]. (3.22)

Proof. Based on Theorem 3.1 and the two introduced quadratic auxiliary variable u = |φ|2, v = |ϕ|2,
one can obtain un = |φn|2, vn = |ϕn|2 for 0 ≤ n ≤ N, which leads to

En =
ϑ

2

[(
L

s
2φn, φn) + (

L
s
2ϕn, ϕn)] − ζ

4

[(
(φn)2, (φn)2) + (

(ϕn)2, (ϕn)2) + 2ε
(
(φn)2, (ϕn)2)] = Hn, (3.23)

and we can immediately obtainHn = H0. □

4. Fully-discrete conservative scheme

4.1. Fourier pseudo-spectral method

The proposed conservative scheme has fourth-order accuracy in time, and the Fourier
pseudo-spectral method is chosen to approximate the semi-discrete system in space so that the
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accuracy of time direction is not affected. We consider system (1.1), (1.2) in a periodic region
Ω = [−L,L], and define x j = −L + jh = −L + j2L

N , 0 ≤ j ≤ N − 1, N is a positive even integer, and
h := 2L

N . Furthermore, we denote

Vh = {v|v = (v0, v1, · · · , vN−1)},

be a vector space of grid functions with v j = v(x j). Then defining the interpolation space S p
N :=

span{g j(x)} with

g j(x) =
1
N

N/2∑
l=−N/2

1
al

eilµ(x−x j),

where µ = πL , al =

1, |l| < N/2,
2, |l| = N/2,

. Then, we set IN : L2(Ω)→ S p
N as the interpolation operator

INv(x) =
N−1∑
j=0

v jg j(x) =
N/2∑

l=−N/2

v̂leilµ(x+L),

with

v̂l =
1

Nal

N−1∑
j=0

v(x j)e−ilµ(x j+L), (4.1)

where v̂−N/2 = v̂N/2. Applying the Laplacian operator L
s
2 to INv(x) leads to

L
s
2 INv(x j) = D

s
2 v :=

N/2∑
l=−N/2

|µl|sv̂leilµ(x j+L)

=
(
F −1

N ΛFN
)
v,

(4.2)

where v ∈ Vh, and

Λ = diag
[
0s, |µ|s, · · · , |µ

N
2
|s, |µ(−

N
2
+ 1)|s, · · · , | − 2µ|s, | − µ|s

]
.

and the discrete Fourier transform and its inverse are given by

(FNv)k =
1
N

N−1∑
j=0

v je−
2πi jk

N , (F −1
N v̂)k =

N/2−1∑
k=−N/2

v̂ke
2πi jk

N . (4.3)

It is can be computed by using the FFT technique in long time simulations.
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4.2. Conservative Fourier pseudo-spectral scheme

This subsection aims to give a high-order fully-discrete scheme for the Eqs (1.1), (1.2), and the
scheme is derived by using the Fourier pseudo-spectral method to approximate equation (3.5), (3.6) in
space, namely 

φin = φ
n + τ

s∑
j=1

ai jk
j
φ, ki

φ = −i
(
ϑD

s
2φin − ζ

(
uin + εvin

)
φin

)
,

ϕin = ϕ
n + τ

s∑
j=1

ai jk
j
ϕ, ki

ϕ = −i
(
ϑD

s
2ϕin − ζ

(
vin + εuin

)
ϕin

)
,

uin = un + τ
s∑

j=1
ai jk

j
u, ki

u = 2Re(φ̄inki
φ),

vin = vn + τ
s∑

j=1
ai jk

j
v, ki

v = 2Re(ϕ̄inki
ϕ).

(4.4)

Then (φn+1,ϕn+1,un+1, vn+1)T can be updated by

φn+1 = φn + τ
s∑

i=1
biki
φ,

ϕn+1 = ϕn + τ
s∑

i=1
biki
ϕ,

un+1 = un + τ
s∑

i=1
biki

u,

vn+1 = vn + τ
s∑

i=1
biki

v.

(4.5)

For a fully-discrete scheme, we can derive the following theorem for the structure-preserving
properties.

Theorem 4.1. System (4.4), (4.5) can conserve some conservation laws, i.e.,

Mn = M0, In = I0, En = E0,

where Mn is the mass function and defined by

Mn = ⟨φn,φn⟩ + ⟨ϕn,ϕn⟩, (4.6)

and

In = ⟨un, 1⟩ + ⟨vn, 1⟩ − ⟨φn,φn⟩ − ⟨ϕn,ϕn⟩, (4.7)

and En is the energy function, which has the form

En =
ϑ

2

[〈
D

s
2φn,φn〉 + 〈

D
s
2ϕn,ϕn〉] − ζ

4

[〈
un,un〉 + 〈

vn, vn〉 + 2ε
〈
un, vn〉], (4.8)

where ⟨⋆, •⟩ = h
N−1∑
j=0
⋆ j•̄ j.
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Proof. The proof process is the same as the Theorem 3.1.

In addition, we can also prove the developed schemes can inherit the original Hamiltonian energy.

Theorem 4.2. System (4.4), (4.5) can conserve the original Hamiltonian energy of the fractional CNLS
system, namely

Hn = H0,

where

Hn =
ϑ

2

[〈
D

s
2φn,φn〉 + 〈

D
s
2ϕn,ϕn〉] − ζ

4

[〈
|φn|2, |φn|2

〉
+

〈
|ϕn|2, |ϕn|2

〉
+ 2ε

〈
|φn|2, |ϕn|2

〉]
. (4.9)

Remark 4.1. Actually, the QAV method is similar to the IEQ and SAV methods, both of which are
energy quadratic methods. Therefore, they can also be used to develop high-order conservative
schemes for conservative equations. However, the derived schemes based on the IEQ and SAV
methods can only inherit the modified energy [5, 8]. Theorem 4.1 and Theorem 4.2 indicate that the
constructed high-order MQAV-RK scheme can inherit both the modified energy and the Hamiltonian
energy.

According to the mass conservation law of Theorem 4.1, we can conclude that the proposed schemes
are stable.

5. Numerical experiments

We give some examples to confirm the conservation properties and the high-accuracy of the
developed schemes. The exact solution of the system is not given, and thus we compute the numerical
errors by using the formula

error = ∥ϕN(h, τ) − ϕ2N(h, τ/2)∥∞. (5.1)

The accuracy of the constructed schemes can be computed by

Rate = ln (error1/error2)/ln (τ1/τ2), (5.2)

where τ j, error j, ( j = 1, 2) are the time step and the maximum-norm errors with τ j, respectively.
Furthermore, to test the conservation properties, we define the relative errors of some invariants as

RMn = |
Mn − M0

M0 |, RHn = |
Hn − H0

H0 |, REn = |
En − E0

E0 |, (5.3)

where Mn, Hn and En denote the invariant at t = nτ. Without losing generality, the paper will consider
the following 2s-4th order symplectic RK method [12]

Table 1. The Butcher tabular of the fourth-order symplectic RK methods.
1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

To compare the advantages of the constructed scheme with some conservative schemes, we define
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• MQAV-RK4: The constructed fourth-order conservative MQAV-RK scheme in this paper;
• SAV-RK4: The proposed fourth-order conservative RK scheme based on the SAV method [8].
• CN2: The proposed second-order Crank-Nicolson conservative scheme for the Eqs (1.1) and

(1.2) [30].

Example 5.1. First, consider a decoupled fractional NLS equation in Ω = (−π, π) with the form

iφt − ϑL
s
2φ + ζ |φ|2φ = 0,

with the exact solution

φ(x, t) = η exp
(
i(γx − δt)

)
, δ = |γ|s − θ|η|2.

In the simulation, we take η = 2, γ = 1, θ = 2 to exhibit the theoretical results.
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Figure 1. The maximal error in solution versus CPU time by different schemes with T =
20, h = 2π/32.

First, we set s = 1.6 and T = 1 to test the convergence of the given three numerical schemes.
The maximum-norm errors and convergence rates are shown in Table 2. The listed data in the table
indicate that the MQAV-RK4 and SAV-RK4 both have fourth-order convergence rates in time, and
the CN2 scheme only gets second-order accuracy. Furthermore, we investigate the maximum-norm
errors of the numerical solution versus the CPU time using the three selected schemes. The results are
summarized in Figure 1. For a given global error, we observe that (i) the cost of the CN2 scheme is the
most expensive because of the low-order accuracy in time; (ii) the cost of SAV-RK4 is much cheaper
than the CN2 scheme; (iii) the cost of our proposed MQAV-RK4 scheme is the cheapest. We test
the conservative properties of four conservative schemes at T = 100 by using the denoted formulas in
(5.3). Figure 2 reveals relative errors of conservation laws. As is shown above, the SAV-RK4 scheme
can only conserve the modified energy and mass of the equation. But, our proposed methods can both
inherit the original energy and mass.
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Table 2. The maximum-norm errors and convergence rates in temporal direction for three
schemes with h = 2π/32.

Scheme τ = 1
50 τ = 1

100 τ = 1
200 τ = 1

400

error 5.78e-05 1.42e-05 3.54e-06 8.82e-07

CN2 [30]

Rate * 2.01 2.01 2.00

error 9.00e-07 7.14e-08 4.98e-09 3.28e-10

SAV-RK4 [8]

Rate * 3.65 3.84 3.92

error 5.31e-07 3.32e-08 2.07e-09 1.29e-10

MQAV-RK4

Rate * 3.99 3.99 4.00
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(b). SAV-RK4 scheme
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Figure 2. The invariants relative errors for three schemes at T = 50 with τ = 0.05, h = π/16.

Example 5.2. This example considers the fractional CNLS equation with initial conditions [30]

u(x, 0) = sech (x + δ0) · exp (iω0x) ,

v(x, 0) = sech (x − δ0) · exp (−iω0x) .

In this example, x ∈ (−20, 20), and we choose δ0 = 5, ω0 = 3, ϑ = 1, ζ = 2, ε = 1.
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Table 3. The maximum-norm errors and convergence rates in temporal direction for the
MOAV-RK4 schemes with h = 40/128.

s τ = 1
20 τ = 1

40 τ = 1
80 τ = 1

160

error 1.19e-04 7.62e-06 4.79e-07 2.99e-08

1.4

Rate * 3.97 3.99 3.99

error 3.38e-04 2.17e-05 1.36e-06 8.56e-08

1.6

Rate * 3.96 3.98 3.99

error 2.90e-03 1.83e-04 1.18e-05 7.46e-07

2

Rate * 3.98 3.95 3.98

First, Eqs (5.1) and (5.2) are used to compute the L∞−normal and corresponding convergence rate
of time for some conservative schemes at T = 1. The obtained numerical results are given in
Table 3. From Table 3, we can find the MQAV-RK4 scheme has fourth-order convergence. By using
the denoted formulas in (5.3), we test the conservative properties of four conservative schemes at
T = 50. Figure 3 reveals relative errors of conservation laws. As is shown above, the proposed
method can both inherit the mass and original energy exactly. Finally, we define Ψ = |φn| + |ϕn| and
study the relationship between the evolution of numerical solution and the fractional s. As is shown in
Figure 4, the s affects the evolution of solitons, and the shape of the solitons change quickly as s
changes.
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Figure 3. The invariants relative errors at T = 50 with τ = 0.01, h = 40/64.
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(a). s = 1.4 (b). s = 1.6 (c). s = 2

Figure 4. The soliton evolution of the numerical solutions for different s at T = 5 with
τ = 0.01, h = 40/128.

Example 5.3. In this example, we choose the initial condition

φ(x, y, 0) = sech (0.5x + y) exp (i (−0.5x − y)) ,

ϕ(x, y, 0) = sech (0.5x + y) exp (i (−0.5x − y)) ,

where (x, y) ∈ [−8, 8]2, and , some parameters are given as follows

ϑ =
1
2
, ζ = 1, ε = 1.

In Table 4, we give the accuracy of the proposed scheme at s = 1.3, 1.7, 2. As is shown in the table,
the scheme has fourth-order accuracy in the time direction for different s. In addition, the numerical
errors also increase with the increase of s. Figure 5 implies that the scheme can inherit the original
energy and mass of the system for different s.
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Figure 5. The relative errors of original energy and mass at T = 10 with τ = 0.01, h = 16/64.
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Table 4. The maximum-norm errors and convergence rates in the temporal direction for
different s with h = 16/64.

s τ = 1
10 τ = 1

20 τ = 1
40 τ = 1

80

error 5.22e-07 3.26e-08 2.04e-09 1.27e-10

s = 1.3

Rate * 3.99 3.99 4.00

error 3.33e-06 2.08e-07 1.30e-08 8.14e-10

s = 1.7

Rate * 3.99 3.99 4.00

error 1.01e-05 6.36e-07 3.97e-08 2.48e-09

s = 2

Rate * 3.99 3.99 3.99

6. Conclusions

In this paper, we first propose the Hamiltonian structure of the fractional CNLS equation, and then
develop the MQAV approach for the fractional CNLS equation with a complex energy function that can
not be handled by using the original QAV approach. Then, a class of MQAV-RK schemes is proposed
by combining with the symplectic Runge-Kutta method. The constructed schemes have high-accuracy
and inherit the mass and Hamiltonian energy. Numerical results also demonstrate that the schemes
have good numerical stability. In addition, the approaches presented in this work can be used to solve
other conservative differential equations.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The research is supported by the Science Foundation of Henan (No. 212300410323).

Conflict of interest

The authors declare there is no conflict of interest.

Networks and Heterogeneous Media Volume 18, Issue 4, 1434–1453.



1451

References

1. L. Brugnano, C. Zhang, D. Li, A class of energy-conserving Hamiltonian boundary value methods
for nonlinear Schrödinger equation with wave operator, Commun. Nonlinear Sci. Numer. Simul.,
60 (2018), 33–49.

2. Y. Chen, Y. Gong, C. Wang, Q. Hong, A new class of high-order energy-preserving schemes
for the Korteweg-de Vries equation based on the quadratic auxiliary variable (QAV) approach,
arXiv: 2108.12097, [Preprint], (2021) [cited 2023 June 15 ].

3. Q. Cheng, The generalized scalar auxiliary variable approach (G-SAV) for gradient
flows, arXiv: 2002.00236, [Preprint], (2020) [cited 2023 June 15 ]. Available from:
https://doi.org/10.48550/arXiv.2002.00236

4. J. Cui, Y. Wang, C. Jiang, Arbitrarily high-order structure-preserving schemes for the Grossc-
Pitaevskii equation with angular momentum rotation, Comput. Phys. Commun., 261 (2021),
107767.

5. J. Cui, Z. Xu, Y. Wang, C. Jiang, Mass-and energy-preserving exponential Runge-Kutta methods
for the nonlinear Schrödinger equation, Appl. Math. Lett., 112 (2020), 106770.

6. S. Duo, Y. Zhang, Mass-conservative Fourier spectral methods for solving the
fractional nonlinear Schrödinger equation, Comput. Math. Appl., 71 (2016), 2257–2271.
https://doi.org/10.1016/j.camwa.2015.12.042

7. Y. Fu, W. Cai, Y. Wang, A linearly implicit structure-preserving scheme for the fractional
sine-Gordon equation based on the IEQ approach, Appl. Numer. Math., 160 (2021), 368–385.
https://doi.org/10.1016/j.apnum.2020.10.009

8. Y. Fu, D. Hu, Y. Wang, High-order structure-preserving algorithms for the multi-dimensional
fractional nonlinear Schrödinger equation based on the SAV approach, Math. Comput. Simul.,
185 (2021), 238–255.

9. Y. Gong, J. Zhao, X. Yang, Q. Wang, Fully discrete second-order linear schemes for hydrodynamic
phase field models of binary viscous fluid flows with variable densities, SIAM J. Sci. Comput., 40
(2018), B138–B167.

10. X. Gu, Y. Zhao, X. Zhao, B. Carpentieri, Y. Huang, A note on parallel preconditioning for the
all-at-once solution of riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14
(2021), 893–919.

11. B. Guo, Z. Huo, Global well-posedness for the fractional nonlinear
Schrödinger equation, Commun. Partial Differ. Equ., 36 (2010), 247–255.
https://doi.org/10.1080/03605302.2010.503769

12. E. Hairer, C. Lubich, G. Wanner, Solving Geometric Numerical Integration: Structure-Preserving
Algorithms, Berlin: Springer, 2006.

13. J. Hu, J. Xin, H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger
equations with periodic boundary condition, Comput. Math. Appl., 62 (2011), 1510–1521.
https://doi.org/10.1016/j.camwa.2011.05.039

Networks and Heterogeneous Media Volume 18, Issue 4, 1434–1453.

http://dx.doi.org/https://doi.org/10.48550/arXiv.2002.00236
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2015.12.042
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2020.10.009
http://dx.doi.org/https://doi.org/10.1080/03605302.2010.503769
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2011.05.039


1452

14. C. Jiang, Y. Wang, Y. Gong, Explicit high-order energy-preserving methods for general
Hamiltonian partial differential equations, J. Comput. Appl. Math., 388 (2020),113298.
https://doi.org/10.1016/j.cam.2020.113298

15. A. Khaliq, X. Liang, K. M. Furati, A fourth-order implicit-explicit scheme for the
space fractional nonlinear Schrödinger equations, Numer. Algorithms., 75 (2017), 147–172.
https://doi.org/10.1007/s11075-016-0200-1

16. N. Laskin, Fractional quantum mechanics, Phys. Rev. E., 62 (2000), 3135–3145.
https://doi.org/10.1103/PhysRevE.62.3135

17. N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 268 (2000),
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