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Abstract: This is Part III of a series on the existence of uniformly bounded extension operators
on randomly perforated domains in the context of homogenization theory. Recalling that randomly
perforated domains are typically not John and hence extension is possible only from W1,p to W1,r,
r < p, we will show that the existence of such extension operators can be guaranteed if the weighted
expectations of four geometric characterizing parameters are bounded: The local Lipschitz constant
M, the local inverse Lipschitz radius δ−1 resp. ρ−1, the mesoscopic Voronoi diameter d and the local
connectivity radius R.
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1. Introduction

Let p(ω) ⊂ Rd be a stationary ergodic connected random open set with random variable ω and let
ε > 0 be the smallness parameter. The concept of stationary ergodic random open sets was introduced
in detail in Part I [5], and we will give a simplified version below, which focuses on the properties used
in the present Part III.

For a bounded open domain Q, we then consider pε(ω) = εp(ω), Qεp(ω) := Q∩ pε(ω) and Γε(ω) :=
Q ∩ ∂pε(ω) with outer normal νΓε(ω). In order to simplify notation, we keep in mind that p and Qεp are
random variables and drop the explicit writing of ω.

Denoting W1,p
0,∂Q(Qεp) :=

{
u ∈ W1,p(Qεp) : u|∂Q ≡ 0

}
one would classically be interested in a family of

extension operatorsUε : W1,p
0,∂Q(Qεp)→ W1,p(Q) such that for some C independent from ε it holds

∥∇Uεu∥Lp(Q) ≤ C ∥∇u∥Lp(Qεp) , ∥Uεu∥Lp(Q) ≤ C ∥u∥Lp(Qεp) . (1.1)

However, estimates of the form Eq (1.1) are known to exist only for (global) John domains but from
Part I we know that even random Lipschitz domains are mostly not (globally) John. We recall the
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Figure 1. Left: In a random domain P (also in the stationary case) there may always
be two points arbitrary close to each other in the Euclidiean distance, but the–smallest–
dottet path within P can be arbitrarily long, contradicting (1.2). Even if Eq (1.2) holds, a
system of statistically significant arbitrarily thin pipes (middle: grey area) can contradict Eq
(1.3): When the pipes become thin, infz∈Rd\P |γ(t) − z| can tend to zero but |x − y| as well as
|x − γ(t)| |γ(t) − y| remain bounded.

definition of a John domain and refer to Figure 1 for an illustration of issues arising in the context of
infinite random geometries:

Definition (John domains). A bounded domain P ⊂ Rd is a John domain if there exists ε, δ > 0 s.t. for
every x, y ∈ P with |x − y| < δ there exists a rectifiable path γ : [0, 1]→ P from x to y with

lengthγ ≤
1
ε
|x − y| and (1.2)

∀t ∈ (0, 1) : inf
z∈Rd\P

|γ(t) − z| ≥
ε |x − γ(t)| |γ(t) − y|

|x − y|
. (1.3)

On the other hand Part I [5] gives rise to the hope that we can find 1 ≤ r < p and a family of
extension operators Uε : W1,p

0,∂Q(Qεp) → W1,r(Q) for scalar valued functions resp. Uε : W1,p
0,∂Q(Qεp) →

W1,r(Rd) for vector valued functions such that

1
|Q|

ˆ
Rd
|∇Uεu|r ≤

 C
|Q|

ˆ

Q∩εp

|∇u|p


r
p

,
1
|Q|

ˆ
Rd
|Uεu|r ≤

 C
|Q|

ˆ

Q∩εp

|u|p


r
p

, (1.4)

where the full support ofUεu lies withinBεβ(Q) for ε small enough and some fixed β ∈ (0, 1) depending
on p.

In Part I we have established a general abstract framework for the derivation of uniform bounds on
extension operators and except for two special examples, the results in Part I are rather vague, missing
a general theory to deal with the connectivity of the domain. The connectivity for general geometries
will be the main topic of the present work. We note at this point that connectivity is also the major issue
for other former works to restrict to inclusions of an absolutely bounded diameter [3, 10]. Our method
of proof, based on Part I, is different from other proofs in the literature, particularly the literature
for periodic [7] or John [2, 8] domains, even though some patterns recur such as the construction of
suitable paths along overlapping sets of an open covering. For a further overview over the history and
the literature, the reader is referred to Parts I and II [6].

Let us finally note that replacing Eq (1.1) by Eq (1.4) also affects the analysis in the homogenization
process and we refer to Part II [6] where this has been discussed.
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1.1. The setting

Throughout this work, we use (ei)i=1,...d for the Euclidean basis of Rd. Given a metric space (M, d)
we denote Br(x) the open ball around x ∈ M with radius r > 0. The surface of the unit ball in Rd is
Sd−1. Furthermore, we denote

∀A ⊂ Rd : Br(A) :=
⋃
x∈A

Br(x) .

A sequence of points will be labeled by x := (xi)i∈N.
In what follows, we will assume that p = p(ω) is also a random connected domain, that is Lipschitz

for almost every realization. We formally introduce the concepts of stationarity and ergodicity of
stochastic processes in Section 2.4. If no confusion occurs, we drop (ω) in the notation wherever
possible in order to improve readability.

According to Part I Chapter 3 for every stationary ergodic random open set p the following can be
established.

Lemma 1.1. Let p be a stationary ergodic random open set. Then there exists r > 0 and a positive,
monotonically decreasing functions fP with fP(R) → 0 as R → ∞ and a random point process xr =
(xa)a∈N jointly stationary with p such that

• B r
2
(xr) ⊂ p ,

• for all a, b ∈ N, a , b, it holds |xa − xb| > 2r ,

• P(BR(0) ∩ xr = ∅) ≤ fP(R).

Jointly stationary in the sense of Part I means that both of the joint distributions of xr and p are
invariant over all shifts x ∈ Rd or over all shifts x ∈ 2rZd. Constructing from xr = (xa)a∈N a Voronoi
tessellation of cells (Ga)a∈N of diameter da = d(xa) := supx,y∈Ga

|x − y|, then according to Part I for some
constant C ≥ 1

P(d(xa) > D) < fd(D) := C fP
(
C−1D

)
. (1.5)

Furthermore, for any x ∈ xr and y ∈ p let

Υ(x, y) := {γ : [0, 1]→ p | γ ∈ C([0, 1]; p), γ(0) = x, γ(1) = y}

denote the set of all continuous paths from x to y inside p. Given x ∈ xr we further denote

R(x) := r + inf
{
R > r : ∀y ∈ B5d(x)(x)∃γ ∈ Υ(x, y) : γ([0, 1]) ⊂ BR(x)

}
. (1.6)

Connectedness ensures R(x) < ∞ for every x ∈ xr. Denoting S (x) := R(x)/d(x) we consider
monotonically decreasing functions fS , fR : [0,∞)→ R given through

fR(R) := P(R(xa) > R) , fS (S ) := P(S (xa) > S ) . (1.7)

We call R the connectivity radius and S the stretch factor.

Definition 1.2 (Local (δ,M)-Regularity). The domain p ⊂ Rd is called (δ,M)-regular in p0 ∈ ∂p if
there exists an open set U ⊂ Rd−1 and a Lipschitz continuous function ϕ : U → R with Lipschitz
constant greater or equal to M such that ∂p ∩ Bδ(p0) is subset of the graph of the function φ : U →
Rd , x̃ 7→ (x̃, ϕ(x̃)) in some suitable coordinate system.

Networks and Heterogeneous Media Volume 18, Issue 4, 1410–1433.
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Definition 1.3. For a stationary random Lipschitz domain p ⊂ Rd with r from Lemma 1.1 and for every
p ∈ ∂p and n ∈ N ∪ {0}

δr(p):=
1
2

sup
δ<2r

{
∃M > 0 : p is (δ,M) -regular in p

}
, (1.8)

MR(p) := inf
η>R

inf
{
M : p is (η,M) -regular in p

}
, (1.9)

ρn(p) := sup
R<δ(p)

r
(
4MR(p)2 + 2

)− n
2
, (1.10)

For every p ∈ ∂p it holds that

R2 > R1 implies MR2(p) ≥ MR1(p) .

Since no confusion occurs, we write δ = δr for simplicity.

Definition 1.4 (Extension order). The geometry is of extension order n ∈ N ∪ {0} if there exists C > 0
such that for almost every p ∈ ∂p there exists a local extension operator

Un : W1,p(B 1
8 δ(p)(p) ∩ p)→ W1,p(B 1

8ρn(p)(p)) ,

∥∇Unu∥Lp(B 1
8 ρn(p)

(p)) ≤ C
(
1 + M 1

8 δ(p)(p)
)
∥∇u∥Lp(B 1

8 δ(p)
(p)) . (1.11)

In particular, we assume that n ∈ N and C > 0 in the above definition are deterministic and global.
Part I shows that every locally Lipschitz geometry is of extension order n = 1 and C is independent
from the geometry, though better values (i.e., n=0) for n are possible for some geometries. A random
distribution of n among the values 0 and 1 could be handled within the theory developped in Part I
and in the present paper, but this would lead to additional effort in notation and presentation with no
additional insight.

Definition 1.5 (Inner microscopic regularity, see Figure 2). Given n ∈ N and ρ̃ := 2−5ρn, the inner
microscopic regularity α ∈ [0, 1] is

α := inf
{
α̃ ≥ 0 : ∀p ∈ ∂p∃y ∈ p : Bρ̃(p)/32(1+Mρ̃(p)(p)α̃)(y) ⊂ Bρ̃(p)/8(p)∩p

}
.

As demonstrated in Part I, the values of α and n as well as the distribution of M and ρn are crucial
for the validity of Eq (1.4) for a given pair (r, p).

1.2. Main Result: Uniform extension estimates for stationary ergodic random sets p(ω)

We find the following main result.

Theorem 1.6. Let Q ⊂ Rd be a bounded Lipschitz domain. Let p(ω) be a stationary ergodic random
connected open set in Rd of extension order n and with inner microscopic regularity α. Furthermore
let xr be a jointly stationary point process satisfying Assumption 1.1. Given constants 1 ≤ r < s < p
and q, q̃ ∈ [1,∞) with s

p +
1
q +

s
rq̃ = 1 and writing

Pk,R := P(for x ∈ xr : d(x) ∈ [k, k + 1), R(x) ∈ [R,R + 1))

Networks and Heterogeneous Media Volume 18, Issue 4, 1410–1433.
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Figure 2. A covering of ∂p by balls of radius ρ̃(p). α relates the radius r of the small grey
balls with ρ̃: Its purpose is to have a small region of known radius ρ̃(p)/32(1 + Mρ̃(p)(p)α)
close to the center of the large ball, not intersecting the large neighboring ball (see left) and
still inside “twice the neighboring balls” (right). In case p has “spikes”–like in this figure–
then α is larger than 0. If p is locally almost flat or has only cusps, then α can be chosen to
be 0.

let the following hold for sr := s(r+1)−r
r :

E1 =

∞∑
k,R=1

(k + 1)d(q+1)+3drq+r(q−1) (R + 1)d(q+1)+srq+r(q−1) Pk,R < ∞ , (1.12)

E2 = E
(
δ
(
1 + M 3δ

4

) p
p−r [(n+α)(d−1)+r]+d−2

)
< ∞ , (1.13)

E3 = E
(
ρ̃(1−d)(rq̃−1)+2+d

n M̃αd+d−2
4ρ̃n

)
< ∞ . (1.14)

Alternatively let d and S be independent and writing

Pd,k := P(for x ∈ xr : d(x) ∈ [k, k + 1))

PS ,S := P(for x ∈ xr : S (x) ∈ [S , S + 1))

replace condition Eq (1.12) with

E4 =

∞∑
k,S=1

(k + 1)d(q+1)+d(3r+sr)q+r(q−1) (S + 1)d(q+1)+dsrq+r(q−1) < ∞ . (1.15)

Then there exists β0 ∈ (0, 1) not depending on ω such that for almost every ω there exists an extension
operator Uω : W1,p

loc (p(ω)) → W1,r
loc(Rd) and a constant Cω and N0 ≥ 1 such that for every N > N0 it

holds

1
|NQ|

ˆ
NQ
|∇Uωu|r ≤ Cω

 1
|NQ|

ˆ
p(ω)∩B

Nβ0
(NQ)
|∇u|p


r
p

, (1.16)

1
|NQ|

ˆ
NQ
|Uωu|r ≤ Cω

 1
|NQ|

ˆ
p(ω)∩B

Nβ0
(NQ)
|u|p


r
p

. (1.17)

Remark 1.7. Of course it is desireable to get moment estimates on Cω but there is a problem involved
here: On one hand, Cω is clearly related to E1,... E4. However, for a given fixed N there arises the
following type of inequality in the proofs which is clearly related to E3:

1
|NQ|

ˆ
NQ
|∇Uωu|r ≤

 1
|NQ|

ˆ
p(ω)∩B

Nβ0
(NQ)
ρ̃(1−d)(rq̃−1)+2+d

n M̃αd+d−2
4ρ̃n


p−r

p

· . . .

Networks and Heterogeneous Media Volume 18, Issue 4, 1410–1433.
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· · · ·

 1
|NQ|

ˆ
p(ω)∩B

Nβ0
(NQ)
|∇u|p


r
p

+ . . .

and similar terms appear for E1, E2 and E4. Now the first bracket on the right hand side converges
to a positive number by the ergodic theorem. However, for our given ω it may become very large
with its maximum being not related to E3 or ω in a currently quantifyable way. On the other hand, if
u = u(x, ω) is a random function and we go back to the very begining of Part I, averaging over Ω in all
calculations, we could get the following:

E
1
|NQ|

ˆ
NQ
|∇Uωu|r ≤ C (E1 + E2 + E3)

p−r
p

E 1
|NQ|

ˆ
p(ω)∩B

Nβ0
(NQ)
|∇u|p


r
p

.

with C not depending on ω or N.

Remark 1.8. Observe that we do not impose bounds on δ−1 because the above formula already contains
bounds on ρ−1. Through the formula δ−1 ∝ ρ−1(1+M) we can replace the bounds on ρ−1 by bounds on
δ−1 and vice versa.

Remark 1.9. Theorem 1.6 shows that if the distribution of δ, M, d, S is good enough, we can have
any r < p. Finally, if δ is bounded away from 0 and M, d, S are uniformly bounded from above, we
are back in the minimally smooth setting which allows r = p.

1.3. Discussion

We may apply a rescaling N = ε−1 for some ε > 0. Writing[
Uεωu

]
(x) := [Uωu(ε · )]

( x
ε

)
inequality (1.16) reads

1
|Q|

ˆ
Q

∣∣∣Uεωu
∣∣∣r ≤ Cω

 1
|Q|

ˆ
[εp(ω)]∩Bε1−β0 (Q)

|∇u|p


r
p

.

The important insight is that χB
ε1−β0

(Q) → χQ in Lp(Rd) for any 1 ≤ p < ∞ and hence in the limitUεωu
is determined mostly by the values of u(x) for x ∈ Q. Moreover it was shown in Part I that u|(εp)∩∂Q ≡ 0
implies that the support ofUεωu will ultimately reduce to Q in the limit.

Theorem 1.6 has a rather broad range of geometries it may be applied to. It also gives a hint
how probabilistic construction of random geometries might be modified to ensure the existence of
extension operators. One particular question that the author was asked frequently on seminar talks
and workshops is the applicability of the above result to the boolean model treated in Part I. This is
a geometry constructed by assigning to a family of random points balls with radius 1 around these
points. The above result is then applicable if the probability of “touching”, i.e., the boundaries of
two balls meet in precisely 1 point, has probability zero and the distribution of “small overlap” and
“small distance” of two different balls is sufficiently small. We refer to Section 6 of Part I where such
a calculation is carried out in detail.

Networks and Heterogeneous Media Volume 18, Issue 4, 1410–1433.
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1.4. Structure of the article

In Section 2 we collect some results from Part I and modify the Voronoi integration lemma from
there including a new and shortened proof. In Section 3 we prove Theorem 1.6 based on one of the
main results from Part I. An outline of the proof is provided at the beginning of Section 3.

2. Preliminaries from Part I

The constant C on the right hand side of Eq (1.16) depends on averaged weights of δ, M, da, Sa

and Ra related to Eqs (1.12)–(1.15). In order to judge whether these averages are bounded as n → ∞,
we will rely on the integration theory that is recalled below. In particular, this theory is connected to
the ergodic theorems and the Palm measure. We start by briefly explaining how the following results
will be applied later on.

In Section 2.1 we recall η-regularity introduced in Part I. This concept allows us to cover any closed
sets by a suitable family of open balls such that the covering is locally finite and uniformly bounded by
a constant. While in Part I this was used to cover only the boundary of p in terms of ρn, we will later
in Section 3.3 use this result to extend the covering to the interior full domain.

In Section 2.2 we construct from (δ,M) (notably only defined on ∂p) various integrable functions
on Rd which are denoted e.g., ρ[... ],Rd , δ[... ],Rd , M[... ],Rd . However, we emphasize at this point that the
distribution of ρn(x), δ(x) or M(x) are w.r.t. the condition that x ∈ ∂p(ω). Hence, it is necessary to
control integrals over the functions ρ[... ],Rd , δ[... ],Rd , M[... ],Rd by integrals over the functions ρn(x), δ(x) or
M(x), which leads to Lemma 2.6.

Section 2.3 provides a frequently used Poincaré inequality and in Section 2.4 we introduce the
ergodic theorems on p and ∂p which will ensure that all the above mentioned averaging integrals
converge to their expectation as the support grows infinitely large.

Finally in Section 2.5 we study functions

b(y) :=
∑
x∈Xr

χBR(x)(x)(x)d(x)ηR(x)ξ ,

and provide an estimate on the expectation of bq, q ∈ [1,∞). This will help us to control integrals that
enter the constant C from the mesoscopic geometric properties.

2.1. Local η-Regularity

We summarize the concept of η-regularity and its major consequences from Part I. Note that
Lemma 2.2 was proved in Part I only for Γ = ∂p. However, the only property of ∂p used for the
proof is its closedness.

Definition 2.1 (η- regularity). Let Γ be a closed set. For a function η : Γ→ (0, r] we call Γ η-regular if

∀p ∈ Γ, ε ∈
(
0,

1
2

)
, p̃ ∈ Bεη(p)(p) ∩ Γ : η( p̃) > (1 − ε)η(p) . (2.1)

Lemma 2.2. Let Γ be a locally η-regular set for η : Γ → (0, r). Then η : p → R is locally Lipschitz
continuous with Lipschitz constant 1 and for every ε ∈

(
0, 1

2

)
and p̃ ∈ Bεη(p) ∩ Γ it holds

1 − ε
1 − 2ε

η(p) > η( p̃) > η(p) − |p − p̃| > (1 − ε) η(p) , (2.2)

Networks and Heterogeneous Media Volume 18, Issue 4, 1410–1433.
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|p − p̃| ≤ εmax {η(p), η( p̃)} ⇒ |p − p̃| ≤
ε

1 − ε
min {η(p), η( p̃)} . (2.3)

Theorem 2.3. Let Γ ⊂ Rd be a closed set and let η(·) ∈ C(Γ) be bounded and satisfy for every ε ∈
(
0, 1

2

)
and for |p − p̃| < εη(p)

1 − ε
1 − 2ε

η(p) > η( p̃) > η(p) − |p − p̃| > (1 − ε) η(p) . (2.4)

and define η̃(p) = 2−Kη(p), K ≥ 2. Then for every C ∈ (0, 1) there exists a locally finite covering of
Γ with balls Bη̃(pk)(pk) for a countable number of points (pk)k∈N ⊂ Γ such that for every i , k with
Bη̃(pi)(pi) ∩ Bη̃(pk)(pk) , ∅ it holds

2K−1 − 1
2K−1 η̃(pi) ≤ η̃(pk) ≤

2K−1

2K−1 − 1
η̃(pi)

and
2K − 1

2K−1 − 1
min {η̃(pi), η̃(pk)} ≥ |pi − pk| ≥ C max {η̃(pi), η̃(pk)}

(2.5)

Remark. The fact that Eq (2.5) can be satisfied for any holds for any given C ∈ (0, 1) (even having in
mind that the choice of points depends on C) is surprising. In fact, η(p) − |p − p̃| > (1 − ε) η(p) in Eq
(2.4) seems to contradict Eq (2.5). However, we have to keep in mind that Eq (2.5) holds for η̃ = 2−Kη,
K ≥ 2. Now suppose |p − p̃| = 2−Kη(p) and η(p) > η(p̃). Since Eq (2.4) holds for every ε ∈ (0, 1

2 ) we
find for ε = 2−K that η(p̃) > (1 − 2−K)η(p) and hence

2K − 1
2K−1 − 1

η̃( p̃) ≥ |p − p̃| = η̃(p) .

So the above calculation shows that the lemma to hold for every C < 1 is plausible. The major difficulty
in the original proof is to provide an algorithm which provides the covering as claimed.

In Part I Theorem 2.3 lead immediately to the following corollary.

Corollary 2.4. Let r > 0 and let p ⊂ Rd be a locally (δ,M)-regular open set, where we restrict δ
by δ (·) ≤ r

4 . Given n ∈ N there exists a countable number of points (pk)k∈N ⊂ ∂p such that ∂p is
completely covered by balls Bρ̃(pk)(pk) where ρ̃ (p) := ρ̃n (p) := 2−5ρn (p). Writing

ρ̃k := ρ̃n,k := ρ̃n(pk) , δk := δ(pk) ,

for two such balls with Bρ̃k(pk) ∩ Bρ̃i(pi) , ∅ it holds

15
16
ρ̃i ≤ ρ̃k ≤

16
15
ρ̃i

and
31
15

min {ρ̃i, ρ̃k} ≥ |pi − pk| ≥
1
2

max {ρ̃i, ρ̃k} .

(2.6)

Furthermore, depending on the inner microscopic regularity α ∈ [0, 1] there exists rn,α,k ≥
ρ̃n,k

32(1+Mρ̃n(pk )(pk)α) and yn,α,k such that Brn,α,k
(
yn,α,k

)
⊂ Bρ̃k/8(pk) ∩ p and B2rn,α,k(yk) ∩ B2rn,α, j

(
y j

)
= ∅ for

k , j.

Remark 2.5. Given the covering from Corollary 2.4 Lemma 4.4 and Remark 4.5 from Part I imply

#
{

j : x ∈ Bρ̂n, j

(
p j

)}
< C(1 + M[ 3δ

8 ,
δ
8 ],Rd (x))n(d−1) .

Networks and Heterogeneous Media Volume 18, Issue 4, 1410–1433.
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2.2. Integration of δ and M

Given c ∈ (0, 1] let η(p) = cδ(p) or η(p) = cρn(p), n ∈ N and r ∈ C0,1(∂p) and define the functions

η[r],Rd (x) := inf
{
η(x̃) : x̃ ∈ ∂p s.t. x ∈ Br(x̃)(x̃)

}
, (2.7)

M[r,η],Rd (x) := sup
{
Mr(x̃)(x̃) : x̃ ∈ ∂p s.t. x ∈ Bη(x̃)(x̃)

}
, (2.8)

where inf ∅ = sup ∅ := 0 for notational convenience. We also write M[η],Rd (x) := M[η,η],Rd (x) and
ηRd (x) := η[η],Rd (x). The relations between η,M : ∂p → R and η[r],Rd ,M[r,η],Rd : Rd → R as well as
integrability and measurability are discussed in Part I. Furthermore, we define

p[r],Rd := p ∩
⋃
x∈∂p

Br(x)(x) . (2.9)

Lemma 2.6. Let r > 0, let P ⊂ Rd be a Lipschitz domain and let η, r : ∂P→ R be continuous such that
η ≤ r and P is η- and r-regular. For ε ∈ (0, 1] let η(p) = εδ(p) or η(p) = ερn(p), n ∈ N. For η̃ := η[ η8 ],Rd

there exists a constant C > 0 only depending on the dimension d such that for every bounded open
domain Q and k ∈ [0, 4) it holds

ˆ
Aη,r∩Q

χη̃>0η̃
−α ≤ C

ˆ
B r

4
(Q)∩∂P

η1−αMd−2
[ η4 ],Rd , (2.10)

ˆ
Aη,r∩Q

η̃−αMr
[k η8 ,

η
8 ],Rd ≤ C

ˆ
B r

4
(Q)∩∂P

η1−αMr
[k η8 ,

η
4 ],Rd Md−2

[ η4 ],Rd . (2.11)

Finally, it holds

x ∈ B 1
8 η(p)(p) ⇒ η(p) > η̃(x) >

3
4
η(p) . (2.12)

2.3. A fundamental Poincaré inequality

We define for a ∈ Rd and δ > 0 the operator

Mδau :=
 
Bδ(a)

u . (2.13)

The following two estimates are special cases of results already proved in Part I.

Lemma 2.7. There exists C > 0 depending only on the dimension d such that for a, b ∈ Rd with
0 < δa ≤ δb and for either i ∈ {a, b}

∣∣∣Mδaa u −Mδbb u
∣∣∣ ≤ C

δ1−d
b

(
δa

δb

)1−d

+ δ1−d
i

 ˆ
Bδb (b)∪conv(Bδi ({a,b}))

|∇u| . (2.14)

Proof. Inequality (2.14) follows from Part I Lemma 2.10 and Corollary 2.11. □
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2.4. Ergodic theorem and Palm measure

In order to make clear what we mean by a random stationary ergodic Lipschitz domain we briefly
introduce the technical details which will be used for the averaging property given by the ergodic
theorem [9, 11] below.

Definition 2.8. Throughout this work, (Ω,F ,P) is a probability space with a dynamical system on Ω,
i.e., a family (τx)x∈Rd of measurable bijective mappings τx : Ω 7→ Ω satisfying (i)–(iii):

(i) τx ◦ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rd, B ∈ F (Measure preserving)

(iii) A : Rd ×Ω→ Ω (x, ω) 7→ τxω is measurable (Measurability of evaluation)

We further assume that (τx)x∈Rd is ergodic, i.e., a P-measurable function satisfies f (τx· ) = f ( · ) if
and only if f is constant.

Definition 2.9 (Stationary). Let X be a measurable space and let f : Ω × Rd → X. Then f is called
(weakly) stationary if f (ω, x) = f (τxω, 0) for (almost) every x.

Although the original definition is different, it is sufficient for this work (see [4] Section 2) to say
that a random Lipschitz domain p(ω) is stationary if χp(ω)(x) is stationary and there exists P ⊂ Ω such
that

χp(ω)(x) = χP(τxω) .

A random measure is a measurable mapping

µ• : Ω→ M(Rd) , ω 7→ µω

which is equivalent to either one of the following two conditions

1. For every bounded Borel set A ⊂ Rd the map ω 7→ µω(A) is measurable

2. For every f ∈ Cc(Rd) the map ω 7→
´

f dµω is measurable.

A random measure is stationary if the distribution of µω(A) is invariant under translations of A that is
µω(A) and µω(A + x) share the same distribution. The Palm measure is defined as

µP(A) =
ˆ
Ω

ˆ
[0,1]d
χA(τsω) dµω(s) dP(ω)

on the measurable space Ω and in case µω = L we find µP = P. By a deep theorem due to Mecke
(see [1,9]) every B(Rd)×B(Ω)-measurable non negative or µP ×L- integrable functions f satisfies the
Campbell formula ˆ

Ω

ˆ
Rd

f (x, τxω) dµω(x) dP(ω) =
ˆ
Rd

ˆ
Ω

f (x, ω) dµP(ω) dx .

We denote by

EµP( f ) :=
ˆ
Ω

f dµP the expectation of f w.r.t. µP . (2.15)

For random measures we find the following.
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Theorem 2.10 (Ergodic Theorem [1] 12.2.VIII). Let (Ω,F ,P) be a probability space, Q be a bounded
open domain with Lipschitz boundary and let f : Ω → R be measurable with

´
Ω
| f | dµP < ∞. Then

for P-almost all ω ∈ Ω
1

nd |Q|

ˆ
nQ

f (τxω) dµω(x)→ EµP( f ) . (2.16)

In our setting, the above implies in total for any differentiable function f : R3 → R that almost
surely

lim
n→∞

1
nd |Q|

ˆ
∂p(ω)∩nQ

f (ρ, δ,M) = EµP( f (ρ, δ,M)) . (2.17)

lim
n→∞

1
nd |Q|

ˆ
p(ω)∩nQ

f (d,R,S ) = E( f (d,R,S ))P(P) . (2.18)

Since the essential property of f in Eq (2.16) is its stationarity, we infer that Eq (2.18) also holds
for “non-local” functions such as b in Eq (2.19) in the following Lemma 2.11.

2.5. A Voronoi-integration lemma

We state and prove a variant of a Voronoi integration lemma that was proved in Section 4 of Part I.

Lemma 2.11. Let Xr be a stationary and ergodic random point process with minimal mutual distance
2r for r > 0. Given fixed constants η, ξ > 0 let

b(y) :=
∑
x∈Xr

χBR(x)(x)(x)d(x)ηR(x)ξ , (2.19)

and write Pk,R := P(d(x) ∈ [k, k + 1), R(x) ∈ [R,R + 1)). Then there exists C > 0 depending only on d
and r such that for any r > 1 it holds

E(bp) ≤ C

 ∞∑
k=1

k−r

2  ∞∑
k,R=2

(kR)d(p+1)+r(p−1) kηpRζpPk,R

 . (2.20)

Proof. In what follows C is a varying constant depending only on d and r. W.l.o.g let r = 1. We write
di = d(xi), Ri = R(xi), Bi := BRi(xi). Let

Xk,R(ω) := {xi ∈ Xr : di ∈ [k, k + 1), Ri ∈ [R,R + 1)} , Ak,R :=
⋃

xi∈Xk,R

Bi

We observe that the mutual minimal distance of points in xr implies

∀x ∈ Rd : #
{
xi ∈ Xk,R : x ∈ Bi

}
≤ C (R + 1)d (k + 1)d , (2.21)

which follows from the uniform boundedness of the Bi for xi ∈ Xk,R and the minimal distance of∣∣∣xi − x j

∣∣∣ > 2r. Then for every y ∈ Rd, M > 0 it holds by stationarity and the ergodic theorem for every
y ∈ Rd

P
(
y ∈ Ak,R

)
= lim

N→∞

∣∣∣Ak,R ∩ BN(0)
∣∣∣

|BN(0)|
= lim

N→∞
|BN(0)|−1

∣∣∣∣∣∣∣∣BN(0) ∩
⋃

xi∈Xk,R

Bi

∣∣∣∣∣∣∣∣
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≤ C lim
N→∞
|BN(0)|−1

∑
xi∈Xk,R∩BN (0)

(R + 1)d (k + 1)d (2.22)

≤ C lim
N→∞

#
{
xi ∈ Xk,R ∩ BN(0)

}
# {xi ∈ xr ∩ BN(0)}

(R + 1)d (k + 1)d (2.23)

→ CPk,R (R + 1)d (k + 1)d .

In the last inequality we made use of the fact that every ball BRi(xi), xi ∈ Xk,N , has volume smaller than
C (R + 1)d (k + 1)d and # {xi ∈ xr ∩ BN(0)} < C |BN(0)|. We note that for 1

p +
1
q = 1

ˆ
Q

∑
xi

χBid
η
i R
ξ
i


p

≤

ˆ
Q

 ∞∑
k=1

∞∑
R=1

 ∑
xi∈Xk,R

χBi (k + 1)η (R + 1)ξ



p

≤

ˆ
Q

 ∞∑
k,R=1

α
q
k,R


p
q
 ∞∑

k,R=1

α
−p
k,R

 ∑
xi∈Xk,R

χBi (k + 1)η (R + 1)ξ


p .
Due to Eq (2.21) we find ∑

x∈Xk,R

χBi ≤ χAk,R (R + 1)d (k + 1)d
∣∣∣Sd−1

∣∣∣
and obtain for q = p

p−1 and Cq :=
(∑∞

k,R=1 α
q
k,R

) p
q
∣∣∣Sd−1

∣∣∣p due to Eq (2.22):

1
|BN(0)|

ˆ
BN (0)

∑
xi∈Xr

χBid(x)ηR(x)ξ


p

≤ Cq
1

|BN(0)|

ˆ
BN (0)

 ∞∑
k,R=1

α
−p
k,RχAk,R (R + 1)dp+ζp (k + 1)dp+ηp


→ Cq

 ∞∑
k,R=1

α
−p
k,RP

(
Ak,R

)
(R + 1)dp+ζp (k + 1)dp+ηp


≤ Cq

 ∞∑
k,R=1

α
−p
k,R (k + 1)d(p+1)+ηp (R + 1)d(p+1)+ζp Pk,R


For the sum

∑∞
k,R=1 α

q
k,R to converge, it is sufficient that αq

k,R = (k + 1)−r (R + 1)−r for some r > 1. Hence,
for such r it holds αk,R = (k + 1)−r/q (R + 1)−r/q and thus Eq (2.20). □

3. Proof of Theorem 1.6

In this section, we will prove Theorem 1.6. The proof consists of 5 sections: In Section 3.1 we
quote one of the main results from Part I. This is a an estimate of the extended gradient field by the
original gradient field and the difference of local averages. This makes it clear that one has to estimate
differences of local averages by the gradient field “connecting” the two averaging regions. Since the
geometry p is connected, we identify in Section 3.2 a constant β ∈ (0, 1) such that for M ∈ N large
enough the set QM := MQ is connected through paths inside BMβ(QM). In Section 3.3 we extend the
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covering Corollary 2.4 of ∂p to a full covering of p using also the seeds xr. This covering will provide
a basis to suitably integrate the gradient along paths connecting the averaging regions. In Section 3.5
we will finally prove the main theorem.

3.1. The Main Result from Part I

Based on the notation from Section 1.1 we use the Voronoi tessellation (Ga)a∈N with seeds (xa)a∈N =

xr and a partition of unity (Φa)a∈N with support B r
2
(Ga). The gradient of Φa is locally bounded by the

number of sets B r
2
(Ga) interacting. Since the number of cells Ga interacting with Br(Ga) is bounded by

(Part I, Lemma 2.19)
(
4d(xa)r−1

)d
we obtain

∀x ∈ B r
2
(Ga) : |∇Φa(x)| ≤ 2

(
4d(xa)r−1

)d
. (3.1)

Furthermore, there exists by Corollary 2.4 (cited from Part I) a complete covering of ∂p by balls
Ai := Bρ̃n(pn

i )
(
pn

i

)
,
(
pn

i

)
i∈N
⊂ ∂p, where ρ̃n(p) := 2−5ρn(p) and where Eq (2.6) holds for any two points

pi, pk with Ai ∩ Ak , ∅. Finally there exists a partition of unity (ϕi)i∈N\{0} with support of ϕi in Ai and
ϕ0 with support in Rd\∂p such that

∑
i∈N ϕi = 1.

Given n ∈ {0, 1} and α ∈ [0, 1] from Definitions 1.4 and 1.5 we chose

rn,α,i := ρ̃n,i/32(1 + Mρ̃n,i(pn,i)α) (3.2)

and some yn,α,i such that
Bn,α,i := Brn,α,i

(
yn,α,i

)
⊂ p ∩ B 1

8 ρ̃n,i

(
pn,i

)
. (3.3)

and for every pi ∈ ∂p and xa ∈ xr, we define

τn,α,iu :=
 

Bn,α,i

u , Mau :=
 
B ra

16
(xa)

u , (3.4)

local averages close to ∂p and in xa. We finally have to recall from Lemma 4.4 of Part I that

#
{

j : x ∈ Bδ
(
p j

)}
< C(1 + M[ 3δ

8 ,
δ
8 ],Rd (x))n(d−1) . (3.5)

Theorem 3.1. Let p ⊂ Rd be a stationary ergodic Lipschitz domain of extension order n with r > 0
from Lemma 1.1 and inner regularity α ∈ [0, 1] (Definitions 1.4 and 1.5). Then for every 1 ≤ r < p
there exists a linear extension operator

Un,α : W1,p
loc (p)→ W1,r

loc

(
Rd

)
and C > 0 such that with

fα,n(M) :=
((

1 + M[ 3δ
8 ,
δ
8 ],Rd

)n(d−1) (
1 + M[ 1

8 δ],R
d

)r (
1 + M[ρ̃n],Rd

)α(d−1)
) p

p−r

for every bounded Lipschitz domain Q the operatorUn,α satisfies

1
|Q|

ˆ
Q

∣∣∣∇ (
Un,αu

)∣∣∣r ≤ C
(

1
|Q|

ˆ
Br(Q)

fα,n(M)
)r p−r

p
(

1
|Q|

ˆ
Br(Q)∩p

|∇u|p
) r

p
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+C
1
|Q|

ˆ
Q\p

∣∣∣∣∣∣∣∑a

Φa

∑
i,0

ρ−1
n,iϕi

(
τsn,α,iu −M

s
au

)∣∣∣∣∣∣∣
r

(3.6)

+
1
|Q|

ˆ
Q

∣∣∣∣∣∣∣
d∑

l=1

∑
a: ∂lΦa>0

∑
b: ∂lΦb<0

∂lΦa |∂lΦb|

DΦl+

(
Msau −Msbu

)∣∣∣∣∣∣∣
r

,

1
|Q|

ˆ
Q

∣∣∣Un,αu
∣∣∣r ≤ C

(
1
|Q|

ˆ
Br(Q)

fα,n(M)
)r p−r

p
(

1
|Q|

ˆ
Br(Q)∩p

|u|p
) r

p

. (3.7)

where
DΦl+ :=

∑
a,0: ∂lΦa<0

|∂lΦa| . (3.8)

Remark. We recall in this context Remark 1.8 on the lack of a dependence on δ for the above Theorem.

3.2. The support lemma

Definition 3.2. Given a domain Q ⊂ Rd and a stationary random domain p with the jointly stationary
point process xr we define the sets

xr(Q) :=
{
xa ∈ xr : Bd(xa)(xa) ∩Q , ∅

}
,

C(Q, xr) :=
⋃

xa∈xr(Q)

BR(xa)(xa) . (3.9)

Remark 3.3. Since Br(xa) ⊂ Ga the last definition implies xa ∈ xr(Q) for every xa ∈ xr with χQχBr(Ga) .

0.

In order to estimate the terms
(
τsn,α,iu −M

s
au

)
and

(
Msau −Msbu

)
in Eq (3.6) we integrate the gradient

along paths connecting the centers of the balls underlying the definition of τsn,α,i andMsa in Eq (3.4).
However, in doing so we cannot possibly avoid quitting the domain Q but we can avoid quitting the
domain C(Q, xr). In homogenization, we start with a given domain Q and scale p by ε and study the
intersection Q∩εp. Alternatively, we can study the intersection p∩NQ, N = ε−1. The follwoing lemma
now states that if the distribution of R is lucky, i.e., it decreases fast enough for large R, the probability
to find xa ∈ xr(NQ) with BR(xa)(xa) 1 BNβ0 (NQ) tends to 0 for some β0 ∈ (0, 1) and almost surely there
exists N0 such that for N > N0 the maximal support of paths lies in C(NQ, xr) ⊂ BNβ0 (NQ). The
fact β0 ∈ (0, 1) then causes that C(Q, εxr) ⊂ Bε1−β0 (Q), i.e. the paths leaving Q lie in a comparatively
thin strip around Q. We finally note that in the periodic case we can assume that β0 = 0 and hence
C(Q, εxr) ⊂ Bε(Q).

Lemma 3.4. Recalling (1.5) and (1.7) assume that

1. either there exist C > 0 and βd, βR > d+1 such that for every D > r, r > 1 it holds fd(D) ≤ CD−βd

and fR(r) ≤ Cr−βR

2. or d and S are independent and there exist C > 0 and βd > d + 2, βS > 1 such that for every
D > r, S > 1 it holds fd(D) ≤ CD−βd and fS (S ) ≤ CS −βS .
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Then there exists β0 ∈ (0, 1) such that the following holds: For every bounded open set Q with 0 ∈ Q
there almost surely exists a constant N0 > 0 such that for every N > N0

C(NQ, xr) ⊂ BNβ0 (NQ) .

Remark 3.5. The scaling Nβ0of the radius of BNβ0 (NQ) implies that the additional mass of C(NQ, xr)\
NQ becomes asymptotically negligible.

Proof. We consider two balls Br(0) ⊂ Q ⊂ BR(0) with r > 0. We write QN := NQ and Bk,Q
N,β0

:=
BNβ0+k(Q) and Sk,Q

N,β0
:= Bk,Q

N,β0
\Bk−1,Q

N,β0
for β0 ∈ (0, 1). Our aim is to show that for the events BN :=(

C(Q, xr) ⊂ B
0,QN

2
1
β0 N,β0

)
it holds P(BN)→ 1 as N → ∞, provided β0 is chosen properly. For this we use

P(¬BN) ≤ P(AN ∧ ¬BN) + P(¬AN)

where AN :=
(
Q̃N ⊂ B

0,QN
N,β0

)
, Q̃N :=

⋃
xa∈xr(NQ)

Bd(xa)(xa) . (3.10)

Step 1: It holds xr(NQ) ⊂ Q̃N and we find

P(¬AN) ≤
∞∑

k=0

P
(
∃xa ∈

(
B

k+1,QN
N,β0

\B
k,QN
N,β0

)
∩ xr : Bda(xa) ∩QN , ∅

)
≤

∞∑
k=0

P
(
∃xa ∈

(
S

k+1,QN
N,β0

)
∩ xr : da > Nβ0 + k

)
We use the very rough estimate #

(
S

k+1,QN
N,β0

)
∩ xr ≤

(
NR + Nβ0 + k + 1

)d
to find

P(¬AN) ≤
∑

k

(
RN + Nβ0 + k + 1

)d
fd
(
Nβ0 + k

)
≤

∑
k

(
RN + Nβ0 + k + 1

)d (
Nβ0 + k

)−βd
≤ C

ˆ ∞

1

(
2RN + Nβ0 + x

)d (
Nβ0 + x

)−βd
dx

≤ C
(
Nd+1−βd + Nβ0(d+1−βd)

)
,

where in the last inequality we used (d − 1)-times integration by parts and C depends on d, βd and R.
Step 2: We now assume that AN holds true. Since

C
(
QN , xr

)
=

⋃
xa∈xr(NQ)

BRa(xa)(xa)

and since xr(NQ) ⊂ Q̃N ⊂ BN,β0,0,QN it holds

P(AN ∧ ¬BN) ≤
+∞∑
k=1

P

(
∃xa ∈

(
S
−k+1,QN
N,β0

)
∩ xr(QN) : BR(xa)(xa) 1 B0,QN

2
1
β0 N,β0

)
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≤
∑

k

P

(
∃xa ∈

(
S
−k+1,QN
N,β0

)
∩ xr : BR(xa)(xa) 1 B0,QN

2
1
β0 N,β0

)
≤

∑
k

∑
xa∈S

−k+1,QN
N,β0

∩xr

P
(
Ra(xr, (Φi)i) ≥ Nβ0 + k

)

≤ C
NR+1∑
k=0

(NR − k + 1)d fR
(
Nβ0 + k

)
≤ CNd

ˆ ∞

0
fR(Nβ0 + x)dx ≤ CNd−β0βR+1 .

If βR > d + 1 and βd > d + 1 it holds(
Nd+1−βd + Nβ0(d+1−βd)

)
+ Nd−β0βR+1 → 0 as N → ∞

and the first statement of the lemma almost surely holds due to Eq (3.10).
Step 3: Alternatively we can assume that da and S a are independent with

Ra ≤ daS a. Then

P(Ra ≥ R) ≤
ˆ ∞

r

P(da ≥ D)
ˆ ∞

max{1,R/D}
P(S a ≥ S ) dS dD

≤ C
ˆ ∞

r

D−βd
ˆ ∞

max{1,R/D}
S −βS dS dD

≤ C
(ˆ R

r

D−βd
ˆ ∞

R/D
S −βS dS dD +

ˆ ∞

R
D−βd

ˆ ∞

1
S −βS dS dD

)
≤ C

(ˆ R

r

D−βd
( R
D

)1−βS
dD + R1−βd

)
≤ CR1−βd .

From here we conclude from the first part.
□

3.3. An extended covering lemma

For x ∈ p let

η(x) := min
{
dist(x, ∂p) ,

r

2

}
and η̃ =

1
4
η . (3.11)

Then we find the following:

Lemma 3.6. Let p be a connected open set which is locally (δ,M)-regular and has inner regularity
α ∈ [0, 1]. For r > 0 let xr = (xk)k∈N be a family of points with a mutual distance of at least 2r satisfying
dist(xk, ∂p) > 1

2r and let n ∈ N and ∂x := (pk)k∈N ⊂ ∂p with corresponding (ρ̃k)k∈N :=
(
ρ̃n,k

)
k∈N,(

rn,α,k
)

k∈N :=
(
rn,α,k

)
k∈N and y∂x := (yk)k∈N :=

(
yn,α,k

)
k∈N like in Corollary 2.4. Then there exists a family

of points x̊ =
(
p̂ j

)
j∈N
⊂ p with xr ⊂ x̊ such that with η̃k := η̃( p̂k), B̂k := Bη̃k( p̂k) and Bk := Bρ̃k(pk) the

family (Bk)k∈N ∪
(
B̂k

)
k∈N

covers p and

B̂k ∩ B̂i , ∅ ⇒


1
2
η̃i ≤ η̃k ≤ 2η̃i

and 3 min {η̃i, η̃k} ≥ |p̂i − p̂k| ≥
1
2

max {η̃i, η̃k} .

(3.12)
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Furthermore, Bk ∩ B̂ j , ∅ implies

1
4
ρ̃k ≤ η̃ j ≤

1
3
ρ̃k , 4η̃ j ≤

∣∣∣p̂ j − pk

∣∣∣ ≤ 4
3
ρ̃k , (3.13)

i.e. Brk(yk) ∩ B 1
8 η̃ j

(
p̂ j

)
= ∅ and x ∈ B̂i for some i implies

∀p ∈ ∂p : dist(x, ∂p) >
4
5
ρ̃n(p) . (3.14)

Finally, there exists C > 0 such that for every x ∈ p

#
{
j ∈ N : x ∈ Bη̃ j

(
p̂ j

)}
+ #

{
k ∈ N : x ∈ Bρ̃k(pk)

}
≤ C . (3.15)

Proof of Lemma 3.6. We recall ρ̃k := ρ̃ (pk) := 2−5ρ (pk) and rk =
ρ̃k

32(1+Mk) and that Eq (2.6) holds.

Furthermore, Brk(yk) ⊂ Bρ̃k/8(pk) ∩ p and hence we also find Brk(yk) ∩ Br j
(
y j

)
= ∅ for k , j.

If we define pB := p\
⋃

k Bk and observe that pB is η-regular (for η defined in Eq (3.11)). Then
Lemma 2.2 and Theorem 2.3 yield a cover of pB by a locally finite family of balls B̂k = Bη̃k(p̂k), where
( p̂k)k∈N ⊂ pB, and where Eq (3.12) holds. Looking into the proof of Theorem 2.3 we can assume
w.l.o.g. that (xk)k∈N ⊂ ( p̂k)k∈N by suitably bounding η.

Furthermore, we find for Bk ∩ B̂ j , ∅ that on one hand

η̃ j + ρ̃k ≥
∣∣∣ p̂ j − pk

∣∣∣ ≥ 4η̃ j ⇒ η̃ j ≤
1
3
ρ̃k and

∣∣∣p̂ j − pk

∣∣∣ ≤ 4
3
ρ̃k .

On the other hand p̂ j < Bk by construction of
(
B̂i

)
i∈N

. Hence η̃ j ≥
1
4 ρ̃k . Finally, Brk(yk) ∩ B 1

8 η̃ j

(
p̂ j

)
= ∅

follows from ρ̃k ≤ 4η̃ j ≤
∣∣∣p̂ j − pk

∣∣∣.
If x ∈ B̂i let px ∈ ∂p with |px − x| = dist(x, ∂p) and chose some pk with px ∈ Bk. Then the above

implies

|px − x| = dist(x, ∂p) > 3η̃i >
3
4
ρ̃k >

4
5
ρ̃n(px) .

To see Eq (3.15) let x ∈ p and let p̂ j such that η̃ j is maximal among all B̂ j with x ∈ B̂ j. Let p̂i with
x ∈ B̂i ∩ B̂ j and observe that both

∣∣∣p̂i − p̂ j

∣∣∣ and η̃i are bounded from below and above by a multiple of
η̃ j. If x ∈ B̂i ∩ B̂k ∩ B̂ j, | p̂i − p̂k| is bounded from above and below by η̃i, hence by η̃ j. This provides
a uniform bound on #

{
j ∈ N : x ∈ Bη̃ j

(
p̂ j

)}
. The second part of Eq (3.15) follows in an analogue

way. □

3.4. Set-paths

We recall the notations given in Eqs (2.7) and (2.8). In the below formula (3.17) we furthermore
highlight that with the text following Eqs (2.7) and (2.8) we could also provide the following upper
estimate:

|z(ξ)| ≤ χp3δ/8
(ξ) (ρ̃n)1−d

[ 3
8 δ],Rd (ξ)M(α+n)(d−1)

[ 3
8 δ],R

d (ξ) + χRd\p 4
5 ρ̃n

(ξ) dist(ξ, ∂p)d−1 .

Here we make use of the notation (2.9) modified as pr = p[r],Rd for notational convenience.
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Lemma 3.7. There exists a constant C > 0 such that the following holds:
Let p be a connected open set which is locally Lipschitz regular and has inner regularity α ∈ [0, 1]

and extension order n ∈ N∪{0}. For r > 0 let xr = (xk)k∈N be a family of points with a mutual distance of
at least 2r satisfying dist(xk, ∂p) > 1

2r and ∂x := (pk)k∈N ⊂ ∂p with corresponding (ρ̃k)k∈N :=
(
ρ̃n,k

)
k∈N,(

rn,α,k
)

k∈N :=
(
rn,α,k

)
k∈N and y∂x := (yk)k∈N :=

(
yn,α,k

)
k∈N like in Corollary 2.4.

If x ∈ xr with bx := B r
64

(x) and either y ∈ y∂x ∩B4d(x)(x) with by = B 1
8 η̃(y)(y) or y ∈ xr ∩B4d(x)(x) with

by = B 1
64 r

(y) then there exists an open set γ(x, y) ⊂
(
p ∩ BR(x)(x)

)
with bx ∪ by ⊂ γ(x, y) and such that

for C independent of u ∈ L1
loc(p), x, y and p∣∣∣∣∣∣

 
bx

u −
 

by

u

∣∣∣∣∣∣ ≤ C
ˆ
γ(x,y)
z |∇u| (3.16)

where

z(ξ) := χp3δ/8
(ξ) (ρ̃n)1−d

[ 3
8 δ],Rd (ξ)Mα(d−1)

[3ρ̃n,
3
8 δ],R

d Mn(d−1)
[ 1

8 δ,
3
8 δ],R

d (ξ) + χRd\p 4
5 ρ̃n

(ξ) dist(ξ, ∂p)d−1 . (3.17)

Proof. We cover p by a set of balls given by Lemma 3.6 and write for simplicity ρ̃ = ρ̃n. Given x ∈ xr
and y ∈ y∂x ∪ xr ∩ B4d(x)(x) let then γ : [0, 1]→ p ∩ BR(x)− r2 (x) be a continuous path with γ(0) = x and
γ(1) = y. Such γ exists because of the definition of R in Eq (1.6).

Step 1: We chose a finite sequence of points (Yi)i as a discrete equivalent of γ using the following
algorithm:

1. Set Y0 := x and b0 := B 1
4 η(x)(x) = B r

8
(x), t0 = 0.

2. For i ∈ N ∪ {0}: If γ(t) ∈ bi for every t > ti cancel loop. Otherwise define ti+1 :=
sup {T > t0 : ∀t ∈ (t0,T ) : γ(t) ∈ bi} and chose ε > 0 and
• either Yi+1 ∈ ∂x with bi+1 = Bρ̃(Yi+1)(Yi+1)
• or Yi+1 ∈ x̊ with bi+1 = Bη̃(Yi+1)(Yi+1)
such that it holds γ(ti+1) ∈ bi+1.

We have thus constructed a sequence of points (Yi)i=0,...,I with Y0 = x and y ∈ bI . Furthermore, it holds
bi ∩ bi+1 , ∅ for every i ∈ {0, . . . , I − 1} and γ([0, 1]) ⊂

⋃
i bi.

Step 2: For two points p̂1, p̂2 ∈ x̊ with η̃i := η̃(pi) and Bη̃2( p̂2) ∩ Bη̃1( p̂1) , ∅ and η1 > η2 we find
due to Eq (3.12) that B 1

8 η̃2
( p̂2) ⊂ Bη̃1( p̂1). Hence for the convex hull holds conv

(
B 1

8 η̃2
( p̂2) ∪ B 1

8 η̃1
(p̂1)

)
⊂

Bη̃1( p̂1) and according to Eq (3.12) together with Lemma 2.7 we find∣∣∣∣∣M 1
8 η̃2

p̂2
u −M

1
8 η̃1

p̂1
u
∣∣∣∣∣ ≤ Cη1−d

1

ˆ
Bη̃1 ( p̂1)

|∇u| .

We define γ̃( p̂1, p̂2) = γ̃( p̂2, p̂1) := Bη̃1( p̂1).
Let p1, p2 ∈ x∂, with ρ̃i := ρ̃(pi) and Bρ̃2(p2) ∩ Bρ̃1(p1) , ∅. We find for ri and yi given by

Corollary 2.4 w.l.o.g. Br2(y2) ⊂ B3ρ̃1(p1) and r1 < r2. Furthermore, there exists a connected set
γ̃(y1, y2) consisting of Br2(y2) and of two cylinders inside p∩B 1

8 δ(p1)(p1) of radius r1 and length smaller
than ρ̃(p1) (1 + M)n (p1) such that Br1(y1) ⊂ γ̃(y1, y2) and Br2(y2) ⊂ γ̃(y1, y2). Together this implies with
Lemma 2.7 ∣∣∣Mr2y2

u −Mr1y1
u
∣∣∣ ≤ CMα(d−1)

3ρ̃1
(p1)ρ̃1−d

1

ˆ
p∩B 1

8 δ(p1)
(p1)
|∇u| .
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We define γ̃(p1, p2) = γ̃(p2, p1) := p ∩ B 1
8 δ(p1)(p1).

Let p1 ∈ x∂, p̂2 ∈ x̊ with ρ̃1 := ρ̃(p1), η̃2 := η̃(p2) and Bη̃2( p̂2)∩Bρ̃1(p1) , ∅. According to (3.13) we
find B 1

8 η̃2
( p̂2) ⊂ B2ρ̃1(p1) and from here we conclude similar to the previous case∣∣∣∣∣M 1

8 η̃(p̂2)
p̂2

u −Mr1y1
u
∣∣∣∣∣ ≤ CMα(d−1)

3ρ̃1
(p1)ρ̃1−d

1

ˆ
p∩B 1

8 δ(p1)
(p1)
|∇u| .

We define γ̃(p1, p̂2) = γ̃( p̂2, p1) := p ∩ B 1
8 δ(p1)(p1).

Step 3: Let (Yi)i=0,...,I be the sequence of points constructed in Step 1 and we assume w.l.o.g that
every point appears only once in the sequence (otherwise the path may be shortened). Let γ(x, y) :=⋃i−1

i=0 γ̃(Yi,Yi+1). Then γ([0, 1]) ⊂ γ(x, y) and by Step 2, the total bound on the number of local overlaps
(3.15) of Bηi and estimate (3.5) on the local bound on the number of overlapping Bδi(pi), the condition
(3.14), Remark 2.5 and the triangle inequality we find C > 0 such that Eqs (3.16) and (3.17) holds. □

3.5. Proof of Theorem 1.6

Proof. Throughout the proof, C > 0 is a varying constant depending on s, r, q, q̃, r, d,Q but not on p or
N.

Step 1: For simplicity of notation, set N = 1 during Steps 1 and 2 but keep in mind that the constant
C below does not depend on Q unless this is state explicitly. In view of Theorem 3.1 it remains to
derive estimates on the terms

I1 :=
1
|Q|

ˆ
Q\p

∣∣∣∣∣∣∣∑a

Φa

∑
i,0

ρ−1
n,iϕi

(
τsn,α,iu −M

s
au

)∣∣∣∣∣∣∣
r

, (3.18)

I2,l :=
1
|Q|

ˆ
Q

∣∣∣∣∣∣∣ ∑
a: ∂lΦa>0

∑
b: ∂lΦb<0

∂lΦa |∂lΦb|

DΦl+

(
Msau −Msbu

)∣∣∣∣∣∣∣
r

, (3.19)

in terms of C(Q,p)
(

1
|Q|

´
p(ω)∩C(Q,xr) |∇u|p

) r
p .

Denoting ci := ρ−1
n,i and c̃ = ρ−1

n,[ρ̃n] observe ci ≤ c̃ and apply Lemma 3.7 and Jensens inequality:

I1 ≤
1
|Q|

ˆ
Q\p

∣∣∣∣∣∣∣∑a

Φa

∑
i,0

ciϕi

ˆ
γ(xa,yi)

z |∇u|

∣∣∣∣∣∣∣
r

≤
1
|Q|

ˆ
Q\p

dx
ˆ
γ(xa,yi)

dy
∑

a

Φa(x)
∑
i,0

|γ(xa, yi)|r−1 c̃r(x)ϕi(x)zr(y) |∇u|r (y) .

We writeBa := BR(xa)(xa) and make use ofΦaϕi |γ(xa, yi)|r−1
≤ Φaϕi |Ba|

r−1, γ(xa, yi) ⊂ Ba and
∑

i,0 ϕi ≤

1 to find for s ∈ (r, p) from Hölder’s inequality

I1 ≤ C
∑

xa∈xr(Q)

1
|Q|

(ˆ
Ba

d
d
az

r(y) |Ba|
r−1
|∇u|r (y)dy

) (ˆ
Q\p
Φac̃r

)

≤ C

 ∑
xa∈xr(Q)

1
|Q|

(ˆ
Ba

d
d r

s
a |Ba|

r−1
z

r(y) |∇u|r (y)dy
) s

r


r
s
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1429 ∑
xa∈xr(Q)

1
|Q|

(
1
dda

ˆ
Q\p
d

d s−r
s

a Φac̃r

) s
s−r


s−r

s

(3.20)

From Jensen’s inequality and the fact that
∣∣∣suppΦa

∣∣∣ ≤ dda and
∑
Φ

s
s−r
a ≤ 1 we find

∑
xa∈xr(Q)

1
|Q|

(
1
dda

ˆ
Q\p
d

d s−r
s

a Φac̃r

) s
s−r

≤
1
|Q|

ˆ
Q(xr)\p

c̃
rs

s−r . (3.21)

Next, we simplify the notation and write
ffl
C

f := 1
|Q|

´
C(Q,xr) f . For q and q̃ with s

p +
1
q +

s
rq̃ = 1 it then

holds

∑
xa∈xr(Q)

1
|Q|

(ˆ
Ba

d
d r

s
a |Ba|

r
z

r(y) |∇u|r (y)dy
) s

r

≤ C
1
|Q|

∑
xa∈xr(Q)

ˆ
Ba

d
d
a |Ba|

s(r+1)−r
r z

s(y) |∇u|s (y)dy
r
s

≤ C

 
C

 ∑
xa∈xr(Q)

χBad
d
a |Ba|

s(r+1)−r
r


q

1
q ( 

C

z
rq̃

) s
rq̃

( 
C

|∇u|p
) r

p

(3.22)

Now define Φ̃a,l := ∂lΦa
DΦl+

. Since the number of cells interacting with the support of Φa is limited by(
4d(xa)r−1

)2
and with Eq (3.1) we observe DΦl+ ≤

∑
a d(xa)2d χGa(x). Hence by a similar calculation to

the estimate of I1

I2,l ≤
C
|Q|

ˆ
Q\p

∣∣∣∣∣∣∣∑a

Φ̃a,l

∑
b

DΦl+Φ̃b,l

ˆ
γ(xa,xb)

z |∇u|

∣∣∣∣∣∣∣
r

≤
C
|Q|

ˆ
Q\p

dx
ˆ
γ(xa,xb)

dy
∑

a

Φa(x)d(xa)2rd
∑

b

|γ(xa, xb)|r−1 Φ̃b,l(x)zr(y) |∇u|r (y)

We make use of ΦaΦ̃b,l |γ(xa, xb)|r ≤ ΦaΦ̃b,l |Ba|
r, γ(xa, xb) ⊂ Ba and

∑
b Φ̃b,l ≤ 1 as well as the

definition of C(Q, xr) to find that

I2,l ≤
∑

xa∈xr(Q)

C
|Q|

(ˆ
C(Q,xr)

χBad
3rd
a |Ba|

r−1
z

r(y) |∇u|r (y)dy
)

≤ C

 1
|Q|

ˆ
C(Q,xr)

∑
xa

χBad
3rd
a |Ba|

r−1


q

1
q

(
1
|Q|

ˆ
C(Q,xr)

z
rq̃

) 1
q̃
(

1
|Q|

ˆ
C(Q,xr)

|∇u|p
) r

p

(3.23)

Step 2: We continue deriving an estimate on 1
|Q|

´
C(Q,xr) z

rq̃ in terms of (δ,M).
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We first observe thatˆ
C(Q,xr)

z
rq̃ ≤ C

ˆ
p3δ/8∩C(Q,xr)

(ρ̃n)(1−d)rq̃

[ 3
8 δ],Rd (ξ)Mα(d−1)rq̃

[3ρ̃n,
3
8 δ],R

d Mn(d−1)rq̃
[ 1

8 δ,
3
8 δ],R

d (ξ)

+C
ˆ
C(Q,xr)\p 4

5 ρ̃n

(
dist(ξ, ∂p)1−d

)rq̃
(3.24)

Since the first integral on the right hand side can be estimated using Lemma 2.6, we focus on the
second integral. Because of Lemma 2.2 it holds for the support

p 4
5 ρ̃n
⊃ p ∩

⋃
k

Bk , where Bk := B 1
2 ρ̃n(pk)(pk)

for the family of points pk given by Corollary 2.4 resp. Lemma 3.6. Using that the covering with Bk is
absolutely locally bounded it holds

ˆ
C(Q,xr)

χRd\p 4
5 ρ̃n

(ξ)
(
dist(ξ, ∂p)1−d

)rq̃
dξ

≤ Cq

ˆ
C(Q,xr)

r
rq̃(1−d) +

∑
k

ˆ
p∩(Br(pk)\Bk)

(
dist(ξ, ∂p)1−d

)rq̃
 ,

and using
ˆ

p∩(Br(pk)\Bk)

(
dist(ξ, ∂p)1−d

)rq̃
≤ C

ˆ r

1
2 ρ̃n(pk)

r(1−d)rq̃rd−1dr

≤ Cqρ̃n(pk)(1−d)(rq̃−1)+1

≤ Cqρ̃n(pk)(1−d)(rq̃−1)+1+d M̃αd
ρ̃n

(pk)
∣∣∣Brk(yk)

∣∣∣
≤ Cq

ˆ
p∩Bk

ρ̃n(pk)(1−d)(rq̃−1)+1+d M̃αd
ρ̃n

(pk)

we find ˆ
C(Q,xr)

χRd\p 4
5 ρ̃n

(ξ)
(
dist(ξ, ∂p)1−d

)rq̃
dξ

≤ Cq

(ˆ
C(Q,xr)

r
rq̃(1−d) +

ˆ
p∩C(Q,xr)

ρ̃
(1−d)(rq̃−1)+1+d
n,[ρ̃n] M̃αd

[ρ̃n,ρ̃n]

)
(3.25)

Step 3: Let now N > 1, i.e., replace Q by NQ in the above calculations. We observe from Lemma 3.4
for sufficiently large N0 and every N > N0 that

C(NQ, xr) ⊂ BNβ0 (NQ) ⊂ 2NQ . (3.26)

Given Theorem 3.1, the definition of I1 and I2,l as well as Eqs (3.20)–(3.25) we find

1
|NQ|

ˆ
NQ
|∇Uu|r ≤

(
C1,N +C2,N(C00 +C3,N)

)  C0

|NQ|

ˆ
p∩B

Nβ0
(NQ)
|∇u|p


r
p
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where the finite positive constants C0,C00 depend only on r, s, p and q, q̃ as well as d, r and Q but not
on N and where

C1,N =

(
1
|NQ|

ˆ
Br(NQ)

fα,n

) p
p−r

, C2,N =

(
1
|NQ|

ˆ
p∩2NQ

fmes

) 1
q

,

C3,N =

(
1
|NQ|

ˆ
p∩2NQ

fmic

) 1
q̃

with fα,n given by Theorem 3.1 and

fmes :=

 ∑
xa∈xr(Q)

χBad
d
a |Ba|

s(r+1)−r
r


q

+

 ∑
xa∈xr(Q)

χBad
3rd
a |Ba|

r−1


q

,

fmic := ρ̃(1−d)(rq̃−1)+1+d
n,[ρ̃n] M̃αd

[ρ̃n,ρ̃n] .

It remains to show that Ci,N , i = 1, 2, 3, are bounded independently from N. Due to the ergodic theorem,
this is guarantied if

lim
N→∞

C1,N +C2,N +C3,N = E fα,n + E fmes + E fmic < ∞ . (3.27)

Step 4: Using Lemma 2.6 and M[ 3δ
8 ,
δ
8 ],Rd > M[ 1

8 δ],R
d > M[ρ̃n],Rd as well as M 3δ

4
> M[ 3δ

8 ,
δ
8 ],Rd on ∂p we infer

C
p−r

p

1,N ≤
1
|NQ|

ˆ
Br(NQ)

(
1 + M[ 3δ

8 ,
δ
8 ],Rd

) p
p−r [(n+α)(d−1)+r]

≤
1
|NQ|

ˆ
B2r(NQ)∩∂p

δ
(
1 + M[ 3δ

8 ,
δ
8 ],Rd

) p
p−r [(n+α)(d−1)+r]+d−2

≤
1
|NQ|

ˆ
B2r(NQ)∩∂p

δ
(
1 + M 3δ

4

) p
p−r [(n+α)(d−1)+r]+d−2

Taking the limit N → ∞ and using the ergodic theorem in its form Eq (2.17) we obtain the condition

lim
N→∞

C
p−r

p

1,N ≤ E
(
δ
(
1 + M 3δ

4

) p
p−r [(n+α)(d−1)+r]+d−2

)
.

Similarly we can show that

lim
N→∞

Cq̃
3,N ≤ E

(
ρ̃(1−d)(rq̃−1)+2+d

n M̃αd+d−2
4ρ̃n

)
.

Step 5: We observe from the lower bound on d and R that

fmes ≤ f̃ := C

 ∑
xa∈xr(Q)

χBad
3dr
a |Ba|

s(r+1)−r
r


q

Lemma 2.11 now shows that

lim
N→∞

Cq
2,N ≤ E f ≤ E f̃
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≤

∞∑
k,R=1

(k + 1)d(q+1)+3drq+r(q−1) (R + 1)d(q+1)+ s(r+1)−r
r q+r(q−1) Pk,R .

Step 6: Steps 4 and 5 imply (3.27) and the theorem is thus proved in the first case. In the second case,
if S and d are independent, we can proceed in a similar way except that Ba := BS (xa)d(xa)(xa) and we
use Part I Lemma 3.18 and thus

E f̃ ≤
∞∑

k,S=1

(k + 1)d(q+1)+d(3r+sr)q+r(q−1) (S + 1)d(q+1)+dsrq+r(q−1) Pd,kPS ,S .
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