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Abstract: This paper addresses the problem of scheduling n equal-processing-time jobs with release
dates non-preemptively on identical machines to optimize two criteria simultaneously or hierarchically.
For simultaneous optimization of total completion time (and makespan) and maximum cost, an
algorithm is presented which can produce all Pareto-optimal points together with the corresponding
schedules. The algorithm is then adapted to solve the hierarchical optimization of two min-max
criteria, and the final schedule has a minimum total completion time and minimum makespan among
the hierarchical optimal schedules. The two algorithms provided in this paper run in O(n3) time.
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1. Introduction

Parallel machine scheduling has received extensive attention since 1950, given the wide diversity
of real-world systems it represents. A variety of criteria has been considered. Among the most studied
criteria are makespan (maximum completion time) and total completion time, which can measure the
effective utilization of the machines. A second set of criteria are related to meeting due dates and
thus considering the system’s customers. If the criteria are not specified, we can consider two types of
general objective functions: min-sum and min-max.

http://http://www.aimspress.com/journal/nhm
http://dx.doi.org/10.3934/nhm.2023060


1379

In real production, decision makers may need to consider a number of criteria simultaneously
before arriving at a decision. However, it is often the case that different criteria are in conflict. A
solution which is optimal with respect to a given criterion might be a poor candidate for some other
criterion. Thus, in the last two decades, multicriteria optimization approaches and techniques have
been increasingly applied to provide solutions where the criteria are balanced in an acceptable and
profitable way [1, 2].

An important subclass in multicriteria optimization is bicriteria optimization where only two
criteria, say γ1 and γ2, are considered. There are four popular approaches in the literature: (a) Positive
combination optimization: find a schedule to minimize the positive linear combination of γ1 and γ2.
(b) Constrained optimization: find a schedule to minimize γ2 under an upper bound on γ1. (c) Pareto
optimization (also called simultaneous optimization): find all Pareto-optimal solutions for γ1 and γ2.
A feasible schedule σ is (strict) Pareto-optimal for γ1 and γ2 if there is no feasible schedule σ′ such
that γ1(σ′) ≤ γ1(σ) and γ2(σ′) ≤ γ2(σ), where at least one of the inequalities is strict. The objective
vector (γ1(σ), γ2(σ)) of a Pareto-optimal schedule σ is called a Pareto-optimal point [1]. A feasible
schedule σ is weak Pareto-optimal for γ1 and γ2 if there is no feasible schedule σ′ such that
γ1(σ′) < γ1(σ) and γ2(σ′) < γ2(σ). (d) Hierarchical optimization (also called lexicographical
optimization): find a schedule to minimize γ2 among the set of optimal schedules minimizing γ1. In
hierarchical bicriteria scheduling problems, the two criteria have different levels of importance thus
they are optimized in a lexicographic fashion. Such problems appear naturally in situations where
there are several optimal solutions with respect to a specific objective and the decision maker needs to
select from among these solutions the one with the best second objective.

In this paper, we consider the bicriteria problem of scheduling equal-processing-time jobs with
release dates non-preemptively on identical machines. We apply a Pareto optimization approach to
minimize the total completion time (and makespan) and maximum cost simultaneously, and we apply
a hierarchical optimization approach to minimize two general min-max criteria hierarchically.

Formally speaking, we are given a set of n jobs, J = {J1, J2, . . . , Jn}, to be processed on m identical
machines. The machines run in parallel and each machine can process at most one job at a time. All
jobs have the same processing time p > 0. Each job, J j ∈ J , has a release date r j ≥ 0 before which it
cannot be processed, as well as two cost functions f j(t) and g j(t) which denote the costs incurred if the
job is completed at time t. We assume that all f j and g j are regular, i.e., f j and g j are non-decreasing
in the job completion times [3].

A schedule assigns each job J j to exactly one machine and specifies its completion time C j on
the machine. Given a schedule σ, let f j(C j(σ)) and g j(C j(σ)) be two scheduling costs of J j. Then
fmax(σ) = max j f j(C j(σ)) and gmax(σ) = max jg j(C j(σ)) are two maximum costs of σ. Two important
special cases of maximum cost are the makespan Cmax(σ) = max j{C j(σ)} and the maximum lateness
Lmax(σ) = max j{C j(σ) − d j}, where d j denotes the due date of job J j. We omit the argument σ when it
is clear to which schedule we are referring.

The first bicriteria problem we consider is to determine Pareto-optimal schedules which
simultaneously minimize the total completion time

∑n
j=1 C j (and makespan Cmax) and maximum cost

fmax. Following the notation schemes of [1–3], it can be denoted by P|r j, p j = p|(
∑n

j=1 C j, fmax) (and
P|r j, p j = p|(Cmax, fmax)).

The second bicriteria problem we consider is to determine a lexicographical optimal schedule such
that the secondary criterion gmax is minimized under the constraint that the primary criterion fmax is
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minimized. Following the notation schemes of [1–3], it can be denoted by P|r j, p j = p|Lex( fmax, gmax),
where the criterion mentioned first in the argument of Lex is the more important one.

For parallel machine scheduling that considers multiple criteria, please refer to [4–6] for the surveys.
Examples of Pareto optimization and hierarchical optimization scheduling on parallel machines can be
found in [7–11] and [12–14], respectively.

Bruno et al. [15] proved that problem P||Lex(
∑n

j=1 C j,Cmax) (the jobs have unequal processing
times and equal release dates) is NP-hard. Gupta et al. [16] further gave a complexity result: they
showed that P||Lex(

∑n
j=1 C j,Cmax) is strongly NP-hard. Hence, Pareto optimization problem

P||(
∑n

j=1 C j, fmax) is also strongly NP-hard. Since the single criterion problem P||Cmax is strongly
NP-hard [17], the lexicographical optimization problem P||Lex( fmax, gmax) is strongly NP-hard, too.
Also, problem 1|r j|(

∑n
j=1 C j, fmax) (the single machine case where the jobs have arbitrary processing

times and release dates) is strongly NP-hard, due to the strong NP-hardness results
by Lenstra et al. [18] for problems 1|r j|

∑n
j=1 C j and 1|r j|Lmax. Thus, we are interested in the special

case where all jobs have equal processing times.
Although the problem setting of equal-processing-time jobs appears simple, it captures important

aspects of a wide range of applications. For example, in standardized systems in practice, the products
consistently have the same processing times. In networking and information systems, transmission
packets also often have a constant length [19]. Since products and data packets usually arrive
dynamically, it is reasonable to consider the jobs with release dates.

For single criterion scheduling, Kravchenko and Werner [19, 20] surveyed the approaches and
exposed the problems with an open complexity status for scheduling jobs with equal processing times
on parallel machines. Brucker and Shakhlevich [21] characterized optimal schedules for scheduling
jobs with unit processing times on parallel machines by providing necessary and sufficient conditions
of optimality. Hong et al. [22] studied the problem of scheduling jobs with equal processing times and
eligibility restrictions on identical machines to minimize total completion time. For the problem with
a fixed number of machines, they provided a polynomial time dynamic programming algorithm. For
the problem with an arbitrary number of machines, they provided two polynomial time approximation
algorithms with approximation ratios of 3/5 and 1.4. Vakhania [23] studied the problem of scheduling
jobs with equal processing times on identical machines to minimize the maximum delivery
completion time, which is defined to be the time by which all jobs are delivered. He presented an
algorithm which can be considered as either pseudo-polynomial with time complexity
O(qmaxmn log n) or as polynomial with time complexity O(mκn)), where qmax denotes the maximum
delivery time of all jobs and κ < n is a parameter which is known only after the termination of the
algorithm. The maximum cost minimization problem P|r j, p j = p, d̄ j| fmax can be solved by the
polynomial time algorithm developed in [19] by Kravchenko and Werner, where d̄ j denotes the
deadline of job J j before which J j must be completed in any feasible schedule. Vakhania and
Werner [24] studied the problem of scheduling jobs with equal processing times on uniform machines
(processing jobs at different speeds) to minimize the maximum delivery completion time. For this
problem whose complexity status remains open for a long time, they presented an O(λm2n log n)-time
algorithm which is optimal under an explicitly stated special condition, where λ can be any of the
magnitudes n or qmax.

Tuzikov et al. [25] studied the bicriteria problems of scheduling jobs with equal processing times
on uniform machines, denoted as Q|p j = p|( fmax, gmax) and Q|p j = p|(

∑n
j=1 f j, gmax), where fmax and
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gmax are two min-max criteria, and
∑n

j=1 f j is a min-sum criterion. They showed that problems
Q|p j = p|( fmax, gmax) and Q|p j = p|(

∑n
j=1 f j, gmax) can be solved iteratively in O(n4) and O(n5) time,

respectively. Note that they discussed only the case of equal release dates. In this paper, we apply the
framework used in [25] and extend the results in [25] to deal with release dates. In fact, the main
contribution of this paper is the incorporation of the release dates and general maximum costs into the
problem.

Sarin and Prakash [26] studied the lexicographical optimization problem of scheduling jobs with
equal processing times and equal release dates on identical machines for various pairwise
combinations of primary and secondary criteria f and g, where
f , g ∈ {Tmax,

∑
j T j,
∑

j U j,
∑

j C j,
∑

j w jC j}. (Please refer to [3] for the definitions.) Apart from
P|p j = p|Lex(

∑
j U j,
∑

j w jC j) whose computational complexity was left open in [26], all other
problems P|p j = p|Lex( f , g) studied in [26] are solvable in polynomial time. Zhao and Yuan [27]
revisited the bicriteria problems of scheduling jobs with equal processing times on uniform machines.
They presented a comprehensive study on the problems with respect to various regular criteria.
Particularly, they obtained an O(n3)-time algorithm for P|p j = p|Lex(

∑
j U j,
∑

j w jC j), solving the
open problem posed in [26].

As for the parallel machines case with release dates and equal processing times, Simons [28]
proposed the first polynomial algorithm running in O(n3 log log n) time for P|r j, p j = p, d̄ j|

∑n
j=1 C j.

(The algorithm also solves the feasibility problem P|r j, p j = p, d̄ j|−). Simons and Warmuth [29]
further improved this bound to O(mn2). For the same problem, Dürr and Hurand [30], López-Ortiz
and Quimper [31] gave algorithms that run in O(n3) and O(min{1, p/m}n2) time, respectively. These
schedules all minimize both the objectives

∑n
j=1 C j and Cmax. Since the maximum lateness Lmax is

upper-bounded by ⌈np/m⌉, Fahimi and Quimper [32] remarked that problems
P|r j, p j = p|(

∑n
j=1 C j, Lmax) and P|r j, p j = p|(Cmax, Lmax) can be solved in polynomial time with time

complexity O(log(np/m) min{1, p/m}n2) and using the binary search that calls the algorithm in [31] at
most log(np/m) times. They also extended the algorithm presented in [31] for P|r j, p j = p, d̄ j|

∑n
j=1 C j

to solve a variation of the problem where the number of machines fluctuates over time. They further
proved that minimizing the total cost of the jobs, i.e.,

∑n
j=1 f j(S j), for arbitrary functions f j(t) is

NP-hard, where S j denotes the start time of job J j. They then specialized this objective function to the
case that it is merely contingent on the time and showed that although this case is pseudo-polynomial
solvable, one can derive polynomial time algorithms for either a monotonic or periodic cost function.

To the best of our knowledge, problems P|r j, p j = p|(
∑n

j=1 C j, fmax) and P|r j, p j = p|Lex( fmax, gmax)
have not been studied to date. Note that here fmax and gmax are two general min-max criteria. The
above-mentioned results [28–32] discussed only

∑n
j=1 C j, Cmax or Lmax.

In Section 2, we present an O(n3)-time algorithm for P|r j, p j = p|(
∑n

j=1 C j, fmax). The algorithm
also solves problem P|r j, p j = p|(Cmax, fmax). Consequently, problem P|r j, p j = p| fmax can be solved
in O(n3) time, which has its own independent interest. In Section 3, we adapt the algorithm to solve
P|r j, p j = p|Lex( fmax, gmax) in O(n3) time. The final generated schedule also has the minimum total
completion time and minimum makespan among the lexicographical optimal schedules for fmax and
gmax. Finally, we draw some concluding remarks in the last section.
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2. An algorithm for P|r j, p j = p|(
∑n

j=1 C j, fmax)

In this section we will present an O(n3)-time algorithm for P|r j, p j = p|(
∑n

j=1 C j, fmax). As a by-
product, the last schedule constructed by the algorithm is optimal for P|r j, p j = p| fmax.

For ease of discussion, throughout the paper, we always represent a feasible schedule σ by a
sequence Jσ(1), Jσ(2), · · · , Jσ(n) of jobs, where Jσ(i) is the job scheduled at the i-th position in σ,
i = 1, 2, . . . , n. The positions in σ are indexed from 1 to n in non-decreasing order of their start times
in σ (ties broken in favor of the job on the machine with the smallest index).

Intuitively, if a job has a large cost when it completes late, then we need to move it to the left (i.e.,
start it earlier) to decrease its cost, even if it has a large release date. Therefore, it is quite often that in
a feasible schedule, some jobs with larger release dates may start earlier than some jobs with smaller
release dates.

To recover a schedule from its job sequence representation, we need the following lemma whose
proof can be found in [28]. Though simple, this lemma plays a non-negligible role in our algorithms. It
allows us to focus on the positions of the jobs in a schedule; we do not worry about their release dates.

Let S σ(i) denote the start time of Jσ(i) in σ = (Jσ(1), Jσ(2), · · · , Jσ(n)), i = 1, 2, . . . , n.

Lemma 2.1. ( [28]) For any feasible schedule, a solution σ identical except in machine assignment
exists and is cyclic, i.e., for any i, Jσ(i), Jσ(i+m), . . . are scheduled on the same machine. Moreover,
S σ(1) = rσ(1), S σ(i) = max{S σ(i−1), rσ(i)} (i = 2, 3, . . . ,m) and S σ(i) = max{S σ(i−1), rσ(i), S σ(i−m) + p}
(i = m + 1,m + 2, . . . , n).

The ε-constraint method (see, e.g., [1, 2]) provides a general way to find Pareto-optimal points: let
y be the optimal value of constrained optimization problem α| f ≤ x̂|g, and let x be the optimal value of
constrained optimization problem α|g ≤ y| f . Then (x, y) is a Pareto-optimal point for problem α||( f , g).

Figure 1. Illustration of Algorithm M1.

The algorithm follows the framework used in [25] which repeatedly uses the ε-constraint method
to construct the Pareto-optimal schedules. Please see Figure 1 for an illustration. Similar figures and
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illustrations can be found, e.g., in [25, 33]. All circles (white solid, black solid and white dashed) in
Figure 1 represent weak Pareto-optimal points (schedules), but only the black solid circles represent
Pareto-optimal points (schedules). The weak Pareto-optimal schedules (σ1, σ2, σ3, . . ., which are
generated in turn in Algorithm M1) are constructed in strictly decreasing order of their fmax-values,
and within that order in non-decreasing order of their

∑n
j=1 C j-values. Since the constraint fmax < y is

used instead of fmax ≤ y, all white dashed circles will be ignored by Algorithm M1. The
Pareto-optimal schedules output by Algorithm M1 are π1, π2, π3, . . .. The last Pareto-optimal schedule
has the minimum fmax-value.

Let Ω(J) denote the Pareto set which consists of all Pareto-optimal points together with their
corresponding Pareto-optimal schedules. Let Π (J) denote the set of all feasible schedules for J . Let
Π (J , y) ⊆ Π (J) denote the set of the schedules with maximum cost ( fmax-value) less than y, where y
denotes a given threshold value. Obviously, we have that Π (J ,+∞) = Π (J).

Below is the algorithm called Algorithm M1 for constructing the Pareto set Ω(J) for P|r j, p j =

p|(
∑n

j=1 C j, fmax). It first assigns the unassigned job with the largest release date to the i-th position
(i = n, n − 1, . . . , 1), ignoring the scheduling cost fmax (see the initial schedule σ̂ below). It then
repeatedly decreases the fmax-value of the current schedule until the cost cannot be further improved.
During the process, all Pareto-optimal schedules are constructed one by one.

The initial schedule is σ̂ = {Jσ̂(1), Jσ̂(2), . . . , Jσ̂(n)}, where the jobs Jσ̂(1), Jσ̂(2), . . . , Jσ̂(n) are in non-
decreasing order of their release dates (ties broken arbitrarily). Note that this order is also the non-
decreasing order of their start times in σ̂ (ties broken in favor of the job on the machine with the
smallest index). It is easy to see that σ̂ is optimal for P|r j, p j = p|

∑n
j=1 C j and P|r j, p j = p|Cmax. (Set

the start times of the jobs in σ̂ by Lemma 2.1.)
The basic idea of our algorithms is as follows: schedule the jobs backwardly (from the right to

the left) and at each decision point always select the job with the largest release date from among the
candidate jobs (check the choice of σ̂ in Step 1 of Algorithm M1 and Step 3 of Procedure A1(. . .),
as well as the choice of π∗ in Step 1 of Algorithm M2 and Step 3 of Procedure A2(. . .)). To coincide
with this idea, we treat the initial schedule σ̂ = {Jσ̂(1), Jσ̂(2), · · · , Jσ̂(n)} as a schedule in which the jobs
Jσ̂(n), Jσ̂(n−1), . . . , Jσ̂(1) are in non-increasing order of their release dates.

Algorithm M1: Input: An instance of P|r j, p j = p|(
∑n

j=1 C j, fmax).
Output: The Pareto set Ω(J).

Step 1. Initially, set s = 1. Let σs = {Jσs(1), Jσs(2), · · · , Jσs(n)} = σ̂, ys = fmax(σs). Let Ω(J) = ∅,
k = 0.

Step 2. Run Procedure A1(ys) to get a schedule σs+1, using σs as the input schedule.

Step 3. If σs+1 , ∅, then do the following:

(i) Set ys+1 = fmax(σs+1).

(ii) If
∑n

j=1 C j(σs) <
∑n

j=1 C j(σs+1), then set k = k + 1 and πk = σs. Incorporate
(
∑n

j=1 C j(πk), fmax(πk), πk) into Ω(J).

(iii) Set s = s + 1. Go to Step 2.

Step 4. If σs+1 = ∅, then set k = k + 1 and πk = σs. Incorporate (
∑n

j=1 C j(πk), fmax(πk), πk) into Ω(J)
and return Ω(J).
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Procedure A1(ys):
Input: Schedule σs = {Jσs(1), Jσs(2), · · · , Jσs(n)} with ys = fmax(σs).
Output: Schedule σs+1 = {Jσs+1(1), Jσs+1(2), · · · , Jσs+1(n)} which has the minimum total completion

time (and minimum makespan) among all schedules in Π (J , ys).

Step 1. Initially, set h = 0. Let σh = {Jσh(1), Jσh(2), · · · , Jσh(n)}, where σh(i) = σs(i), i = 1, 2, . . . , n.

Step 2. Set the start times of the jobs in σh (by Lemma 2.1): S σh(1) = rσh(1); for i = 2, 3, . . . ,m, let
S σh(i) = max{S σh(i−1), rσh(i)}; for i = m+1,m+2, . . . , n, let S σh(i) = max{S σh(i−1), rσh(i), S σh(i−m)+p}.
Update the cost f j(C j(σh)) of job j in σh, J j ∈ J .

Step 3. Adjust σh:

IF for all i, the inequality fσh(i)(Cσh(i)) < ys holds, THEN Return σs+1 = σ
h.

ELSE Pick a job Jσh(i) such that fσh(i)(Cσh(i)) ≥ ys. Let E(σh(i)) = {l|1 ≤ l ≤ i∧ fσh(l)(Cσh(i)) < ys}

denote the set of the candidate jobs at time Cσh(i).

IF E(σh(i)) = ∅, THEN Return σs+1 = ∅.

ELSE Find the job with the largest release date in E(σh(i)), say Jσh(e). Let Jσh(e) be scheduled

at the i-th position instead of Jσh(i). Set Jx = Jσh(i). For q = i− 1, i− 2, . . . , e+ 1 (this ordering

is used crucially), let Jσh(q) be the job in {Jσh(q), Jx} with the larger release date, and let Jx be

the other job. Finally, let Jx be scheduled at the e-th position.

Let σh+1 = σh and then set h = h + 1. Go to Step 2.

Remark 1. Let us illustrate Step 3 of Procedure A1(ys) in more detail. Suppose that we find a job
Jσh(i) violating its inequality. We remove Jσh(i) from position i and select the candidate job Jσh(e) from
E(σh(i)) which has the largest release date. Let Jσh(e) be scheduled at position i. Treat Jσh(i) as the job
in hand, denoted by Jx, for which we need to find a suitable position. We compare Jx and Jσh(i−1), and
let the one with the larger release date be scheduled at position i − 1. Let Jx be the other job. As will
be seen in Lemma 2.2 below, the job at position i − 1 now has the release date that is not less than
the largest release date among the candidate jobs in E(σh(i − 1)). Its cost may not less than ys at time
Cσh(i−1). However, we do not worry about this possibility, since the job can be moved further to the
left in the next iterations. We continue to compare Jx and Jσh(i−2), and so on. In this way, we can find
suitable positions for jobs Jσh(i), Jσh(i−1), . . . , Jσh(e+1). Thus, we accomplish the idea mentioned before:
schedule the jobs backwardly and at each decision point always select the job with the largest release
date from among the candidate jobs.

Example: We now demonstrate an example to illustrate Algorithm M1. There are three machines and
six jobs J1, J2, . . . , J6 with processing four times , where r1 = r2 = 0, r3 = 1, r4 = 2, r5 = r6 = 3;
d1 = d2 = 4, d3 = 3, d4 = 2, d5 = d6 = 1. Algorithm M1 works as follows:

(1) σ1 = σ̂ = {J1, J2, J3, J4, J5, J6}, jobs J1, J2, . . . , J6 are in non-decreasing order of their release
dates. The schedule is recovered by Lemma 2.1 with

∑
C j(σ1) = 38 and Lmax(σ1) = 8.

(2) Run Procedure A1(y1), where y1 = 8.
Initially, σ0 = σ1 = {J1, J2, J3, J4, J5, J6}. The job violating the inequality is J6. The set of the

candidate jobs at time C6 is E(σ0(6)) = {J1, J2, J3, J4}. Since J4 has the largest release date among
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the jobs in E(σ0(6)), it is scheduled at the sixth position instead of J6. Job J6 becomes the job in
hand. We compare J6 and J5. Since r5 ≥ r6, J5 stays at the fifth position. We continue to consider
the fourth position. The fourth position is not occupied because J4 has been moved from this position
to the sixth position. Therefore, J6 is scheduled at the fourth position. Set the start times of the
jobs by Lemma 2.1. We get: σ1 = {J1, J2, J3, J6, J5, J4} with

∑
C j(σ1) = 38 and Lmax(σ1) = 7.

Since Lmax(σ1) = 8 > 7 = Lmax(σ1), Procedure A1(y1) returns σ2 = σ
1 = {J1, J2, J3, J6, J5, J4} with∑

C j(σ2) = 38 and Lmax(σ2) = 7. Since
∑

C j(σ1) = 38 =
∑

C j(σ2), by Step 3 of Algorithm M1, we
get rid of σ1 since it cannot be a Pareto-optimal schedule.

(3) Run Procedure A1(y2), where y2 = 7.
(i) Initially, σ0 = σ2 = {J1, J2, J3, J6, J5, J4}. The jobs violating the inequalities are J4, J5, J6. The

set of the candidate jobs at time C4 is E(σ0(6)) = {J1, J2, J3}. Since J3 has the largest release date
among the jobs in E(σ0(6)), it is scheduled at the sixth position instead of J4. Job J4 becomes the job
in hand. We compare J4 and J5. Next, we compare J4 and J6, and then decide to schedule J4 at the
third position. Set the start times of the jobs by Lemma 2.1. We get σ1 = {J1, J2, J4, J6, J5, J3} with∑

C j(σ1) = 40 and Lmax(σ1) = 7.
(ii) Now, the jobs violating the inequalities are J3, J5, J6. We select J3 as the job in hand and adjust

σ1. We get σ2 = {J1, J3, J4, J6, J5, J2} with
∑

C j(σ2) = 42 and Lmax(σ2) = 8.
(iii) Since y2 = 7, the jobs violating the inequalities are J5, J6. We select J5 as the job in hand and

adjust σ2. We get: σ3 = {J1, J4, J5, J6, J3, J2} with
∑

C j(σ3) = 47 and Lmax(σ3) = 8.
(iv) Since y2 = 7, the jobs violating the inequalities are J2, J3, J6. We select J2 as the job in hand

and adjust σ3. Since E(σ3(6)) = ∅, Procedure A1(y2) returns σ3 = ∅, implying that Π (J , y2) = ∅.
By Step 4 of Algorithm M1, we get: π1 = σ2 = {J1, J2, J3, J6, J5, J4} with

∑
C j(π1) = 38 and

Lmax(π1) = 7. Finally, Algorithm M1 returns the Pareto set Ω(J) = {(38, 7, π1)}.

Step 1 of Procedure A1(ys) can be implemented in O(n) time. Steps 2 and 3 can be implemented in
O(n) time in each iteration. Here, an iteration refers to a job inequality violation adjustment. In each
iteration, there is a job which has to be moved to the left because of the inequality violation. Later, by
Lemma 3.1 we will know that this job cannot be moved back again. Hence, since there are n jobs and
each job goes through at most n − 1 positions (from the rightmost to the leftmost), the total number of
iterations is O(n2). The running time of Procedure A1(ys) is O(n3).

The running time of Algorithm M1 is O(n3), since although it is not clear how many times Algorithm
M1 calls for Procedure A1(...), the total number of iterations in all calls for Procedure A1(...) is still
O(n2), and each iteration can be done in O(n) time.

In Lemma 2.2 below, we will prove the following: (1) Algorithm M1 schedules the jobs backwardly
and always selects the job with the largest release date from among the candidate jobs; (2) in the course
of the algorithm, no job moved to the left can be moved back again; (3) at each iteration, Procedure
A1(ys) constructs a schedule in which the i-th job, counting from the left, starts no later than the i-th
job in any feasible schedule in Π (J , ys), i = 1, 2, . . . , n.

Therefore, the schedule obtained at each iteration of Procedure A1(ys) is no worse than any feasible
schedule in Π (J , ys) for the objectives

∑n
j=1 C j and Cmax. Therefore, the final schedule (i.e., σs+1, if

it exists) obtained by Procedure A1(ys) at the last iteration is in Π (J , ys) and optimal for
∑n

j=1 C j and
Cmax.
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Lemma 2.2. Let σh = (Jσh(1), Jσh(2), · · · , Jσh(n)) be the schedule obtained at iteration h (h = 0, 1, . . .) of
Procedure A1(ys). Let σ = (Jσ(1), Jσ(2), · · · , Jσ(n)) be any schedule in Π (J , ys). Then for i = 1, 2, . . . , n,
we have the following: (1) rσh(i) ≥ max{r j| j ∈ E(σh(i))} ; (2) S σh(i) ≤ S σ(i) (and thus Cσh(i) ≤ Cσ(i)); (3)
Cσh(i) ≤ Cσh+1(i).

Proof. We prove the lemma by induction on s and h.
First, we consider the input schedule for Procedure A1(y1), which is the initial schedule σ̂. Property

(1) of the lemma clearly holds. We are going to prove property (2) for the base case h = 0 of the call
for Procedure A1(y1). Let σ be any schedule in Π (J , y1). We compare σ̂ and σ backwardly (from the
right to the left) looking for a difference between the jobs. Suppose that the first difference occurs at the
k-th position, which is occupied by jobs Ja and Jb in σ̂ and σ, respectively. By the construction of σ̂,
we know that ra ≥ rb. Since Ja is processed earlier than Jb in σ, we can safely interchange Ja and Jb in
σ (regardless of whether Ja can be scheduled at the k-th position in σ), without increasing the job start
or completion time at any position. Repetition of this argument shows that σ can be safely transformed
into σ̂. Thus, for i = 1, 2, . . . , n, we have that S σ̂(i) ≤ S σ(i), proving property (2) for the base case h = 0
of the call for Procedure A1(y1). Hence, the lemma holds for the 0-th iteration of Procedure A1(y1).

Assume that the lemma holds for the first h iterations of Procedure A1(y1). We now consider the
(h+1)-th iteration. More precisely, we observe σh+1 at the moment that it is being constructed to adjust
σh during Step 3 of Procedure A1(y1), but the next round of Step 2 has not been executed yet. That is,
σh+1 is obtained from σh by performing an inequality violation adjustment, but the completion times
and the costs of the jobs in σh+1 have not been updated yet.

As described in Step 3 of Procedure A1(y1), for adjusting σh, we pick a job Jσh(i) in σh such that
fσh(i)(Cσh(i)) ≥ ys, and find a job Jσh(e) which has the largest release date in E(σh(i)). Let Jσh(e) be
scheduled at the i-th position instead of Jσh(i). Clearly, rσh(e) = max{r j| j ∈ E(σh(i))}. By the inductive
assumption, if we do not consider Jσh(i), then we have that rσh(i−1) ≥ max{r j| j ∈ E(σh(i − 1))}. By
comparing Jx = Jσh(i) and Jσh(i−1), letting the one with the larger release date be scheduled at position
i − 1, and letting Jx be the other job, we can ensure that rσh(i−1) ≥ max{r j| j ∈ E(σh(i − 1))} after Jσh(i)

has been taken into consideration. We continue to deal with Jx and Jσh(i−2), and so on, as described in
Step 3. Therefore, we prove property (1) for the (h + 1)-th iteration of Procedure A1(y1).

To prove property (2) for the (h + 1)-th iteration of Procedure A1(y1), we compare σh+1 and σ
backwardly looking for a difference between the jobs. Suppose that the first difference occurs at the
k-th position, which is occupied by jobs Ja and Jb in σh+1 and σ, respectively. By the inductive
assumption, Cσh(k) ≤ Cσ(k) and thus fb(Cσh(k)) ≤ fb(Cσ(k)) < y1 (test the feasibility of job Jb when it
is completed at Cσh(k)), which means that job Jb is also a candidate job at time Cσh(k). By the rule of
selecting a candidate job in favor of the largest release date (which has just been proved), we know
that ra ≥ rb. Since Ja is processed earlier than Jb in σ, we can safely interchange Ja and Jb in σ,
without increasing the job start or completion time at any position. Repetition of this argument shows
that σ can be safely transformed into σh+1, without increasing the job start or completion time at any
position. Thus, for i = 1, 2, . . . , n we have that S σh+1(i) ≤ S σ(i), proving property (2) of the lemma for
the (h + 1)-th iteration of Procedure A1(y1).

Finally, we observe σh+1 at the moment that it has been obtained and the next round of Step 2
has been executed already, which is, the moment when the completion times and the costs of the
jobs in σh+1 have been updated. Clearly, for e + 1 ≤ l ≤ i we have that rσh(l) ≥ rσh(e). (Otherwise,
since Jσh(e) is a candidate job at time Cσh(l), by the rule of selecting a candidate job in favor of the
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largest release date, Jσh(e) should have been scheduled at the l-th position instead of Jσh(l).) After
scheduling jobs Jσh(i), Jσh(i−1), . . . , Jσh(e) at the suitable positions, only the release date at i-th position
may become smaller. The release dates at all the other positions remain unchanged or become larger.
Since Jσh(1), Jσh(2), · · · , Jσh(n) are processed in non-decreasing order of their start times in σh, by Lemma
2.1, during the adjustment of σh, none among Cσh(1),Cσh(2), · · · ,Cσh(n) can decrease. It follows that
for all i Cσh(i) ≤ Cσh+1(i). Therefore, we prove property (3) for the (h + 1)-th iteration of Procedure
A1(y1). Note that property (1) still holds, since the increasing completion times can only reduce the
set of candidate jobs, and thus only makes property (1) easier to satisfy. Property (3) also holds, since
scheduling the jobs in a given sequence as described in Lemma 2.1 is optimal.

Summarizing the above, we have proved the lemma for Procedure A1(y1). Assume that the lemma
holds for Procedures A1(y1), A1(y2), . . ., A1(ys). We now consider Procedure A1(ys+1). Let
σ = (Jσ(1), Jσ(2), · · · , Jσ(n)) be any schedule in Π (J , ys+1). Since ys+1 < ys, we have that
Π (J , ys+1) ⊆ Π (J , ys). The input schedule for Procedure A1(ys+1) is just the output schedule of
Procedure A1(ys). By the inductive assumption, the lemma holds for this schedule and σ. Assume that
the lemma holds for the first h iterations of Procedure A1(ys+1). We now consider σh+1 and σ. In
almost the same manner as described above, we can prove that the lemma holds for the (h + 1)-th
iteration of Procedure A1(ys+1).

By the principle of induction, we complete the proof. □

We get the following:

Lemma 2.3. Let σlast (i.e., σs+1) be the schedule obtained at the last iteration of Procedure A1(ys). If
σlast = ∅, then Π (J , ys) = ∅; Otherwise σlast is a schedule which has minimum total completion time
(and minimum makespan) among all schedules in Π (J , ys).

Proof. If σlast = ∅, then by Step 3 of Procedure A1(ys), at the last iteration, there is a job Jσh(i) such
that fσh(i)(Cσh(i)) ≥ ys and E(σh(i)) = ∅, where E(σh(i)) = {l|1 ≤ l ≤ i ∧ fσh(l)(Cσh(i)) < ys} denotes
the set of the candidate jobs at time Cσh(i). Therefore, the first i jobs in σlast−1 can only be scheduled at
the first i positions in any schedule in Π (J , ys), but none of them can be scheduled at the i-th position.
This contradiction tells us that Π (J , ys) = ∅.

If σlast , ∅, then by Lemma 2.2, we have the following: Cσlast(i) ≤ Cσ(i), i = 1, 2, . . . , n, where
σ = (Jσ(1), Jσ(2), · · · , Jσ(n)) denotes any schedule in Π (J , ys). Hence, σlast is a schedule which has the
minimum total completion time (and minimum makespan) among all schedules in Π (J , ys).

□

Algorithm M1 applies the ε-constraint method of Pareto optimization. The following theorem shows
its correctness, the proof of which is based on Lemma 2.3. We omit the proof since it is standard and
implied in Figure 1 and, e.g., [1, 25].

Theorem 2.4. Algorithm M1 constructs all Pareto-optimal points together with the corresponding
Pareto-optimal schedules for P|r j, p j = p|(

∑n
j=1 C j, fmax) in O(n3) time. Consequently, problem

P|r j, p j = p| fmax can also be solved in O(n3) time.

Moreover, by Lemma 2.3, Algorithm M1 also solves P|r j, p j = p|(Cmax, fmax) in O(n3) time. We
only need to change the obtained Pareto-optimal points. The Pareto-optimal schedules for Cmax and
fmax are the same as those for

∑n
j=1 C j and fmax.
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3. An algorithm for P|r j, p j = p|Lex( fmax, gmax)

In this section we will adapt Algorithm M1 to solve P|r j, p j = p|Lex( fmax, gmax) in O(n3) time. Note
that Lemma 2.1 still holds for this problem.

During the run of Algorithm M1, we only care about the criteria
∑n

j=1 C j and fmax, totally ignoring
gmax. To solve P|r j, p j = p|Lex( fmax, gmax), we need to incorporate gmax into the framework.

Let schedule π∗ be the last schedule obtained upon the completion of Algorithm M1. Let f ∗ =
fmax(π∗). By Theorem 2.4, π∗ is an optimal schedule for P|r j, p j = p| fmax, i.e., f ∗ = minσ∈Π(J) fmax(σ).
Let σ be any schedule in Π (J) with fmax(σ) = f ∗. By Lemma 2.2, the i-th job in π∗, counting from
the left, starts no later than the i-th job in σ, i = 1, 2, . . . , n. As we saw in the last section, this property
plays a key role in solving P|r j, p j = p|(

∑n
j=1 C j, fmax). We will maintain a similar property for solving

P|r j, p j = p|Lex( fmax, gmax).
Let Π (J , f ∗, y) denote the set of the schedules in Π (J) whose fmax-values are equal to f ∗ and

gmax-values are less than y.
Below is the algorithm (Algorithm M2) for P|r j, p j = p|Lex( fmax, gmax). (The basic idea of the

algorithm has been illustrated in the preceding section before the description of Algorithm M1.) The
initial schedule is π∗, which is the optimal schedule for P|r j, p j = p| fmax obtained by Algorithm M1.

Algorithm M2:
Input: An instance of P|r j, p j = p|Lex( fmax, gmax).
Output: A lexicographical optimal schedule such that gmax is minimized under the constraint that

the fmax-value is equal to f ∗.

Step 1. Initially, set s = 1. Let σs = π
∗, ys = gmax(σs).

Step 2. Run Procedure A2(ys) to get a schedule σs+1 in Π (J , f ∗, ys), using σs as the input schedule.

Step 3. If σs+1 , ∅, then set ys+1 = gmax(σs+1), s = s + 1. Go to Step 2. Otherwise, return σs.

Procedure A2(ys):
Input: Schedule σs = {Jσs(1), Jσs(2), · · · , Jσs(n)} with fmax(σs) = f ∗ and ys = gmax(σs).
Output: Schedule σs+1 = {Jσs+1(1), Jσs+1(2), · · · , Jσs+1(n)} which has the minimum total completion

time (and minimum makespan) among all schedules in Π (J , f ∗, ys).

Step 1. Initially, set h = 0. Let σh = {Jσh(1), Jσh(2), · · · , Jσh(n)}, where σh(i) = σs(i), i = 1, 2, . . . , n.

Step 2. Set the start times of the jobs in σh (by Lemma 2.1): S σh(1) = rσh(1); for i = 2, 3, . . . ,m, let
S σh(i) = max{S σh(i−1), rσh(i)}; for i = m+1,m+2, . . . , n, let S σh(i) = max{S σh(i−1), rσh(i), S σh(i−m)+p}.

Step 3. Adjust σh:

IF for all i, the inequalities fσh(i)(Cσh(i)) ≤ f ∗ and gσh(i)(Cσh(i)) < ys hold,
THEN Return σs+1 = σ

h.

ELSE Pick a job Jσh(i) such that fσh(i)(Cσh(i)) > f ∗ or gσh(i)(Cσh(i)) ≥ ys. Let E(σh(i)) = {l|1 ≤ l ≤
i ∧ fσh(l)(Cσh(i)) ≤ f ∗ ∧ gσh(l)(Cσh(i)) < ys} denote the set of the candidate jobs at time Cσh(i).

IF E(i) = ∅, THEN Return σs+1 = ∅.

ELSE Find the job with the largest release date in E(σh(i)), say Jσh(e). Let Jσh(e) be scheduled
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at the i-th position instead of Jσh(i). Set Jx = Jσh(i). For q = i− 1, i− 2, . . . , e+ 1 (this ordering

is used crucially), let Jσh(q) be the job in {Jσh(q), Jx} with the larger release date, and let Jx be

the other job. Finally, let Jx be scheduled at the e-th position.

Let σh+1 = σh and then set h = h + 1. Go to Step 2.

We omit the proof of Lemma 3.1 because it is very similar to that of Lemma 2.2.

Lemma 3.1. Let σh = (Jσh(1), Jσh(2), · · · , Jσh(n)) be the schedule obtained at iteration h (h = 0, 1, . . .)
of Procedure A2(ys). Let σ = (Jσ(1), Jσ(2), · · · , Jσ(n)) be any schedule in Π (J , f ∗, ys). Then for i =
1, 2, . . . , n, we have the following: (1) rσh(i) ≥ max{r j| j ∈ E(σh(i))} ; (2) S σh(i) ≤ S σ(i) (and thus
Cσh(i) ≤ Cσ(i)); (3) Cσh(i) ≤ Cσh+1(i).

We get the following:

Lemma 3.2. Let σlast (i.e., σs+1) be the schedule obtained at the last iteration of Procedure A2(ys). If
σlast = ∅, thenΠ (J , f ∗, ys) = ∅; otherwise σlast is a schedule which has the minimum total completion
time and minimum makespan among all schedules in Π (J , f ∗, ys).

Proof. If σlast = ∅, then by Step 3 of Procedure A2(ys), at the last iteration, there is a job Jσh(i) such that
fσh(i)(Cσh(i)) > f ∗ or gσh(i)(Cσh(i)) ≥ ys and E(σh(i)) = ∅, where E(σh(i)) = {l|1 ≤ l ≤ i ∧ fσh(l)(Cσh(i)) ≤
f ∗ ∧ gσh(l)(Cσh(i)) < ys} denotes the set of candidate jobs at time Cσh(i). Therefore, the first i jobs in
σlast−1 can only be scheduled at the first i positions in any schedule in Π (J , f ∗, ys), but none of them
can be scheduled at the i-th position. This contradiction tells us that Π (J , f ∗, ys) = ∅.

If σlast , ∅, then by Lemma 3.1, σlast is a schedule which has the minimum total completion time
and minimum makespan among all schedules in Π (J , f ∗, ys).

□

Based on Lemma 3.2, we get the following:

Theorem 3.3. Algorithm M2 solves P|r j, p j = p|Lex( fmax, gmax) in O(n3) time.

Moreover, by Lemma 3.2, the last schedule generated by Algorithm M2 has the minimum total
completion time and minimum makespan among the lexicographical optimal schedules for P|r j, p j =

p|Lex( fmax, gmax).

4. Conclusions

In this paper we studied the bicriteria problem of scheduling equal-processing-time jobs with release
dates on identical machines to minimize total completion time (and makespan) and maximum cost
simultaneously, or to minimize the two general min-max criteria hierarchically. We presented O(n3)-
time algorithms for the two problems. For future research, for Pareto optimization it is interesting to
consider more general min-sum objective functions instead of total the completion time, such as the
total weighted completion time, in combination with a maximum cost or another min-sum objective
function. For lexicographical optimization, we can try to extend the results in [26, 27] to the case of
unequal release dates.
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