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Abstract: In this paper, the iterative learning control technique is extended to distributed parameter
systems governed by nonlinear fractional diffusion equations. Based on P-type and PIθ-type iterative
learning control methods, sufficient conditions for the convergences of systems are given. Finally,
numerical examples are presented to illustrate the efficiency of the proposed iterative schemes. The
numerical results show that the closed-loop iterative learning control scheme converges faster than
the open-loop iterative learning control scheme and the PIθ-type iterative learning control scheme
converges faster than the P-type and the PI-type iterative learning control scheme.
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1. Introduction

In this paper,we consider boundary tracing problem of nonlinear fractional diffusion equations with
Neumann boundary condition 

Dα
t φ = φxx + F(x, t, φ, φx), (x, t) ∈ ΩT ,

φx(0, t) = u(t), t ∈ (0,T ],
φx(1, t) = g(t), t ∈ (0,T ],
φ(x, 0) = φ0(x), x ∈ [0, 1]

(1.1)

by iterative learning algorithms, where Dα
t is the Caputo fractional derivative of order α, 0 < α < 1,

(x, t) ∈ ΩT ≜ [0, 1] × [0,T ] and F(x, t, φ, φx) is the nonlinear function.
The basic idea of iterative learning control (ILC) [1, 4, 16] can be traced back to Garden [8] in 1967

and Uchiyama [28] in 1978. ILC is a control method suitable for dealing with iterative systems, which
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uses information obtained from previous trial to improve the tracking performance of current trial.
Owing to simplicity and effectiveness, ILC plays an important role in many fields and applications
[9, 10, 14].

ILC schemes are widely used for ordinary differential equations (ODEs) [23, 25, 26, 29]. However,
there are few studies on its application to partial differential equations (PDEs) and fractional partial
differential equations (FPDEs) [11, 24]. Choi et al. [3] employed the characteristic line method and
the Q-ILC method to study the ILC schemes of a first-order hyperbolic PDE system. Huang et al. [12]
studied the P-type ILC scheme for boundary tracking of nonlinear hyperbolic parametric systems and
evaluated the robustness of the scheme. Kang et al. [15] proposed a Newton-type ILC algorithm
for nonlinear parametric equations and provided sufficient conditions for convergence of the Newton
descent method using the λ-norm. Different from the convergence in the sense of the λ norm, Dai
et al. [5] derived the P-type ILC for linear parabolic parametric equations and proved its convergence in
the sense of the L2-norm and the W1,2-norm. Lan et al. [22] presented a second-order ILC method for a
class of multi-agent systems (MAS) with time-delay distributed parameters and proved its convergence.

For the diffusion equation, Xu et al. [30] proposed P-type and D-type ILC methods for infinite-
dimensional linear systems in Hilbert spaces. Huang et al. [13] extended ILC to solve the boundary
tracking problem of inhomogeneous heat equations and provided evidence for the effectiveness of the
D-type ILC scheme. Zhang et al. [32] presented a novel intermittent updating PD-type ILC algorithm
for semi-linear distributed parameter systems with sensors or actuators, and provided convergence
conditions for the output error. For the fractional diffusion equation, Lan et al. [20] discussed the P-
type ILC of fractional order parameter exchange systems and demonstrated that the exchange system
maintains traceability over two time periods. Lan et al. [21] proposed a second-order P-type ILC
scheme for a class of linear fractional order distributed parameter systems and established a sufficient
condition for convergence using λ-norm and generalized Gronwall inequality.

Overall, there have been relatively few studies on iterative learning control algorithms for
fractional diffusion equations, which can describe a variety of memory materials and genetic
processes [6, 18]. Applying the ILC algorithm to fractional diffusion equations can improve control
of the system for nonlocal transport phenomena and long-range memory effects, leading to faster
convergence and improved tracking accuracy [19]. We aim to extend ILC to the nonlinear fractional
diffusion equation and study their convergence. However, this work is challenging, as the difficulty
lies in proving the convergence of the iterative learning control algorithm for fractional diffusion
equations, with added challenges posed by the fractional derivatives and nonlinear source terms.
Therefore, we assume that source term is Lipschitz continuous and employ Sobolev imbedding
theorem to overcome difficulties in the proof.

In this paper, we consider boundary tracing problem of one dimensional fractional diffusion
equation with input, state and output functions at the k-th iteration,

Dα
t φ

k = φk
xx + F(x, t, φk, φk

x), (x, t) ∈ ΩT ,

φk
x(0, t) = uk(t), t ∈ (0,T ],
φk

x(1, t) = g(t), t ∈ (0,T ],
φk(x, 0) = φ0(x), x ∈ [0, 1],
yk(t) = c(t)φk(1, t) + d(t)uk(t),

(1.2)

where k denotes the iterative number of the process and uk, φk, yk(t) are the input, state and output of
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the system at the k-th iteration respectively. The main idea is to adjust the control input uk(t) iteratively
in order that system output yk(t) can track the predefined target yd(t) when k → ∞.

In addition, we make some assumptions about the functions in system (1.2). Suppose c(t) and d(t)
are bounded and F(x, t, φk, φk

x) satisfies Lipschitz condition.
Assumption 1: The functions c(t) and d(t) satisfy

|c(t)| ≤ c1, 0 < d1 ≤ d(t) ≤ d2,

where c1, d1, d2 are positive constants.
Assumption 2: The nonlinear function Fk ≜ F(x, t, φk, φk

x) is Lipschitz continuous,

|Fk+1 − Fk| ≤ CF
(
|φk+1 − φk| + |φk+1

x − φk
x|
)
, (1.3)

where CF is a constant.
This paper is organized as follows. Preliminaries are presented in Section 2. In Section 3, P-type

ILC scheme, PIθ-type ILC scheme and corresponding convergence conditions are proposed for the
nonlinear system. Numerical examples are given in Section 4 to illustrate the effectiveness of the
methods. Finally, conclusions are drawn in Section 5.

2. Preliminaries

To prepare for our subsequent analysis, it is essential to introduce some definitions, useful lemmas
and theorems.

Definition 2.1. [17] Let z(t) ∈ AC[0,T ], the Caputo fractional derivative of order α is defined by

Dα
t z(t) =

1
Γ(1 − α)

∫ t

0

z′(τ)
(t − τ)α

dτ, 0 < α < 1, 0 < t ≤ T.

Definition 2.2. [17] Let z(t) ∈ L(0,T ), the Riemann-Liouville fractional integral of order α is defined
by

Iαt z(t) =
1
Γ(α)

∫ t

0
(t − τ)α−1z(τ)dτ, 0 < α < 1, 0 < t ≤ T.

Definition 2.3. [27] The two-parameter Mittag-Leffler function is defined by the series expansion

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, α > 0, β > 0.

Lemma 2.1. [27] Suppose 0 < α < 1. Caputo fractional derivative and fractional integral of order α
have the following relationship

Iαt (Dα
t (x(t))) = x(t) − x(0).

Lemma 2.2. [7] Assume x(t) be a differentiable function. The following relationship holds

1
2

Dα
t x(t)2 ≤ x(t)Dα

t x(t), ∀α ∈ (0, 1].
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Lemma 2.3. (Gronwall inequality [31]) Suppose a(t) is a nonnegative, nondecreasing, locally
integrable function over 0 ≤ t0 ≤ t ≤ T and g(t) is a nonnegative, nondecreasing continuous function
over 0 ≤ t0 ≤ t ≤ T , g(t) ≤ M, where M is a postive constant. If u(t) is nonnegative and locally
integrable function over 0 ≤ t0 ≤ t ≤ T and satisfies

u(t) ≤ a(t) + g(t)
∫ t

t0
(t − s)α−1u(s)ds, α > 0,

then, we have
u(t) ≤ a(t)Eα,1 (g(t)Γ(α)tα) .

Theorem 2.1. (Sobolev imbedding theorem [2]) Let Ω ∈ Rd be a bounded Lipschitz domain and
1 ≤ p ≤ ∞. If 0 ≤ m < k − d

p < m + 1, the space Wk,p(Ω) is continuously imbedded in Cm,α(Ω) for

α = k − d
p − m and compactly imbedded in Cm,β(Ω) for all 0 ≤ β < α.

Remark 2.1. Using the Sobolbev imbedding theorem 2.1 in the case of d=1, we can get

max
x∈[0,1]

|φ(x, t)|2 ≤ C1||φ(x, t)||2H1 , (2.1)

where ||φ(x, t)||2H1
≜
∫
Ω
φ2 + φ2

xdx and C1 is a positive constant.

3. ILC design for nonlinear systems

We need to give some necessary lemmas to obtain the convergence conditions for the ILC scheme.

Lemma 3.1. Suppose e(t) ∈ AC[0,T ) and 0.5 < θ ≤ 1, then, we have

|Iθt e|2 ≤
Γ(2θ − 1)eλtT
Γ(θ)2λ2θ−1 |e|

2
λ. (3.1)

Proof. From the Definition 2.2 of fractional integral, we can get

|Iθt e|2 =
1
Γ(θ)2

( ∫ t

0
(t − τ)θ−1e(τ)dτ

)2
=

1
Γ(θ)2

( ∫ t

0
(t − τ)θ−1e

λ
2 τe−

λ
2 τe(τ)dτ

)2
≤

1
Γ(θ)2

∫ t

0
(t − τ)2θ−2eλτdτ

∫ t

0
e2(τ)e−λτdτ

≤
1
Γ(θ)2

∫ t

0
(t − τ)2θ−2eλτdτ|e|2λt

=
eλt

Γ(θ)2

∫ t

0
(t − τ)2θ−2e−λ(t−τ)dτ|e|2λt.

where |e|2λ ≜ sup
t∈[0,T ]
{e−λt|e(t)|2, λ > 0} and |e(t)| represents absolute value of e(t). Let t − τ = ω and
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λω = v, we have

eλt

Γ(θ)2

∫ t

0
(t − τ)2θ−2e−λ(t−τ)dτ|e|2λt

=
eλt

Γ(θ)2

∫ t

0
ω2θ−2e−λωdω|e|2λt

=
eλt

Γ(θ)2

∫ λt

0
(
v
λ

)2θ−2e−v 1
λ

dv|e|2λt =
eλt

Γ(θ)2

∫ λt

0
v2θ−2e−vdv

|e|2λt
λ2θ−1 .

(3.2)

From the definition of the Gamma function, we can get

1
Γ(θ)2

∫ t

0
(t − τ)2θ−2eλτdτ|e|2λt

≤
eλt

Γ(θ)2

∫ ∞

0
v2θ−2e−vdv

|e|2λt
λ2θ−1

=
eλt

Γ(θ)2Γ(2θ − 1)
|e|2λt
λ2θ−1 =

Γ(2θ − 1)eλtT
Γ(θ)2λ2θ−1 |e|

2
λ.

(3.3)

This completes the proof.

Lemma 3.2. If ψ satisfies the equation
Dα

t ψ = ψxx + δF, (x, t) ∈ ΩT ,

ψx(0, t) = e(t), t ∈ [0,T ],
ψx(1, t) = 0, t ∈ [0,T ],
ψ(x, 0) = 0, x ∈ [0, 1],

(3.4)

we have

||ψ||2L2,λ
≤
|e|2λ
λα

Eα,1
(
(C2

F + 2CF + 1)Tα), (3.5)

||ψx||
2
L2,λ
≤
( |e|2λ
λα
+

Mc1

λα
+

C2
F

λα
||ψ||2L2,λ

)
Eα,1(C2

FTα), (3.6)

where
||ψ(·, t)||2L2,λ

≜ sup
t∈[0,T ]
{e−λt||ψ(·, t)||2L2

, λ > 0},

|e(t)|2λ ≜ sup
t∈[0,T ]
{e−λt|e(t)|2, λ > 0},

|e(t)| represents absolute value of e(t), M = max
t∈[0,T ]

|Dα
t ψ(0, t)|2, c1 =

αα

αΓ(α)eα , δF = F(x, t, φk+1, φk+1
x ) −

F(x, t, φk, φk
x) and ψ = φk+1 − φk.

Proof. (i) We firstly prove the formula (3.5). Multiplying both sides of the equation Dα
t ψ = ψxx + δF

by ψ and integrating with respect to x, it yields∫ 1

0
ψDα

t ψdx =
∫ 1

0
ψψxx + ψδFdx.
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Based on Lemma 2.2, formula (1.3) and boundary condition, it is not hard to know

1
2

Dα
t ||ψ||

2
L2 ≤ −

∫ 1

0
|∇ψ|2dx +

∫
∂Ω

ψψxds +CF

∫ 1

0
|ψ|
(
|ψ| + |ψx|

)
dx

≤ −

∫ 1

0
|ψx|

2dx + |ψ(0, t)e(t)| +CF ||ψ||
2
L2 +CF

∫ 1

0
|ψψx|dx.

Using Young inequality (weighted form) and taking the positive constant C1 in formula (2.1), it leads
to

Dα
t ||ψ||

2
L2 ≤ − 2||ψx||

2
L2 + 2|ψ(0, t)e(t)| + 2CF ||ψ||

2
L2 + 2CF

∫ 1

0
|ψψx|dx

≤ − 2||ψx||
2
L2 +C1|e(t)|2 +

1
C1
|ψ(0, t)|2 + 2CF ||ψ||

2
L2 + ||ψx||

2
L2 +C2

F ||ψ||
2
L2

≤C1|e(t)|2 +
1

C1
|ψ(0, t)|2 + c2||ψ||

2
L2 − ||ψx||

2
L2 ,

where c2 = C2
F + 2CF . It follows from Theorem 2.1 that

Dα
t ||ψ||

2
L2 ≤ C1|e(t)|2 + ||ψ||2H1 + c2||ψ||

2
L2 − ||ψx||

2
L2

≤ C1|e(t)|2 + (c2 + 1)||ψ||2L2 .

Integrating both sides of the inequality with respect to t, by Lemma 2.1 we have

||ψ||2L2 ≤ ||ψ(x, 0)||2L2 +
C1

Γ(α)

∫ t

0
(t − τ)α−1|e(τ)|2dτ +

c2 + 1
Γ(α)

∫ t

0
(t − τ)α−1||ψ||2L2dτ

≤ ||ψ(x, 0)||2L2 +
C1

Γ(α)

∫ t

0
(t − τ)α−1eλτdτ|e|2λ +

c2 + 1
Γ(α)

∫ t

0
(t − τ)α−1||ψ||2L2dτ.

Using initial condition, we can get

||ψ||2L2 ≤
C1

Γ(α)

∫ t

0
(t − τ)α−1eλτdτ|e|2λ +

c2 + 1
Γ(α)

∫ t

0
(t − τ)α−1||ψ||2L2dτ. (3.7)

Applying Lemma 2.3, we can obtain

||ψ||2L2 ≤ C1
eλt

λα
|e|2λEα,1

(
(C2

F + 2CF + 1)Tα).
Taking λ-norm on both sides of inequality, we can derive

||ψ||2L2,λ
≤

C1

λα
|e|2λEα,1

(
(C2

F + 2CF + 1)Tα). (3.8)

(ii) We then prove the formula (3.6). Multiplying both sides of the equation Dα
t ψ = ψxx + δF by ψxx

and integrating with respect to x, it yields∫ 1

0
ψxxDα

t ψdx = ||ψxx||
2
L2 +

∫ 1

0
ψxxδFdx.
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By boundary condition, we get∫ 1

0
ψxDα

t ψxdx = −e(t)Dα
t ψ(0, t) − ||ψxx||

2
L2 −

∫ 1

0
ψxxδFdx.

Based on Lemma 2.2, it is not hard to know

1
2

Dα
t ||ψx||

2
L2 ≤ −e(t)Dα

t ψ(0, t) − ||ψxx||
2
L2 −

∫ 1

0
ψxxδFdx.

We can conclude from the formula (1.3) that

1
2

Dα
t ||ψx||

2
L2 ≤ −e(t)Dα

t ψ(0, t) − ||ψxx||
2
L2 +CF

∫ 1

0
|ψxxψ| + |ψxxψx|dx.

Using Young inequality (weighted form), it leads to

Dα
t ||ψx||

2
L2 ≤ |e(t)|2 + |Dα

t ψ(0, t)|2 +C2
F(||ψx||

2
L2 + ||ψ||

2
L2)

≤ |e(t)|2 + M +C2
F ||ψ||

2
L2 +C2

F ||ψx||
2
L2 ,

where M = max
t∈[0,T ]

|Dα
t ψ(0, t)|2. Integrating both sides of the inequality about t and using initial condition,

according to Lemma 2.1 we get

||ψx||
2
L2 ≤||ψx(x, 0)||2L2 +

1
Γ(α)

∫ t

0
(t − τ)α−1(|e(τ)|2 + M +C2

F ||ψ||
2
L2

)
dτ +

C2
F

Γ(α)

∫ t

0
(t − τ)α−1||ψx||

2
L2dτ

≤
1
Γ(α)

∫ t

0
(t − τ)α−1eλτdτ|e|2λ +

M
αΓ(α)

tα

+
C2

F

Γ(α)

∫ t

0
(t − τ)α−1eλτdτ||ψ||2L2,λ

+
C2

F

Γ(α)

∫ t

0
(t − τ)α−1||ψx||

2
L2dτ.

Applying Lemma 2.3, we obtian

||ψx||
2
L2 ≤
(
|e|2λ

eλt

λα
+

Mtα

αΓ(α)
+C2

F
eλt

λα
||φ||2L2,λ

)
Eα,1(C2

FTα).

Taking λ-norm on both sides of inequality, we can derive

||ψx||
2
L2e−λt ≤

( |e|2λ
λα
+

Mtαe−λt

αΓ(α)
+

C2
F

λα
||φ||2L2,λ

)
Eα,1(C2

FTα).

Since tαe−λt gets the maximum value αα

λαeα at t = α
λ
. Therefore, we can get

||ψx||
2
L2e−λt ≤

( |e|2λ
λα
+

Mc1

λα
+

C2
F

λα
||ψ||2L2,λ

)
Eα,1(C2

FTα) (3.9)

where c1 =
αα

αΓ(α)eα . Then, taking the maximum value on the left side of the inequality, we have

||ψx||
2
L2,λ
≤
( |e|2λ
λα
+

Mc1

λα
+

C2
F

λα
||ψ||2L2,λ

)
Eα,1(C2

FTα). (3.10)

This completes the proof.
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Lemma 3.3. If ψ satisfies the equation
Dα

t ψ = ψxx + δF, (x, t) ∈ ΩT ,

ψx(0, t) = βe(t) + γIθt e(t), t ∈ [0,T ],
ψx(1, t) = 0, t ∈ [0,T ],
ψ(x, 0) = 0, x ∈ [0, 1],

(3.11)

we have

||ψ||2L2,λ
≤ (

2C1β
2

λα
+

C1c3

λα+2θ−1 )|e|2λEα,1
(
(C2

F + 2CF + 1)Tα),
||ψx||

2
L2,λ
≤
(2β2

λα
|e|2λ +

Mc1

λα
+

C2
F

λα
||ψ||2L2,λ

+
c3|e|2λ
λα+2θ−1

)
Eα,1(C2

FTα),

where
||ψ(·, t)||2L2,λ

≜ sup
t∈[0,T ]
{e−λt||ψ(·, t)||2L2

, λ > 0},

|e(t)|2λ ≜ sup
t∈[0,T ]
{e−λt|e(t)|2, λ > 0},

|e(t)| represents absolute value of e(t), M = max
t∈[0,T ]

|Dα
t ψ(0, t)|2, c1 =

αα

αΓ(α)eα , δF = F(x, t, φk+1, φk+1
x ) −

F(x, t, φk, φk
x), ψ = φ

k+1 − φk and c3 =
2Γ(2θ−1)γ2T
Γ(θ)2 .

Proof. (i) We firstly prove the formula (3.12). Multiplying both sides of the equation Dα
t ψ = ψxx + δF

by ψ and integrating with respect to x, it yields∫ 1

0
ψDα

t ψdx =
∫ 1

0
ψψxx + ψδFdx.

Based on Lemma 2.2 and boundary condition, it is not hard to know

1
2

Dα
t ||ψ||

2
L2 ≤ −

∫ 1

0
|∇ψ|2dx + ψψx|

1
0 +CF

∫ 1

0
|ψ|
(
|ψ| + |ψx|

)
dx

≤ −

∫ 1

0
|ψx|

2dx + |ψ(0, t)(βe(t) + γIθt e(t))| +CF ||ψ||
2
L2 +CF

∫ 1

0
|ψψx|dx.

Using Young inequality (weighted form) and taking the positive constant C1 in formula (2.1), we obtain

Dα
t ||ψ||

2
L2 ≤ 2C1β

2|e(t)|2 + 2C1γ
2|Iθt e(t)|2 +

1
C1
|ψ(0, t)|2 +

(
C2

F + 2CF
)
||ψ||2L2 − ||ψx||

2
L2 .

Applying Theorem2.1 and Lemma 3.1, it leads to

Dα
t ||ψ||

2
L2 ≤ 2C1β

2|e(t)|2 + 2C1γ
2|Iθt e(t)|2 + ||ψ||2H1 +

(
C2

F + 2CF
)
||ψ||2L2 − ||ψx||

2
L2

≤ 2C1β
2|e|2 +

C1c3eλt

λ2θ−1 |e|
2
λ +
(
C2

F + 2CF + 1
)
||ψ||2L2 .
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where c3 =
2Γ(2θ−1)γ2T
Γ(θ)2 . Integrating both sides of the inequality about t and using initial condition, by

Lemma 2.1 we get

||ψ||2L2 ≤ ||ψ(x, 0)||2L2 +
2C1β

2

Γ(α)

∫ t

0
(t − τ)α−1|e|2dτ +

C1c3eλt

λα+2θ−1 |e|
2
λ +

C2
F + 2CF + 1
Γ(α)

∫ t

0
(t − τ)α−1||ψ||2L2dτ

≤ 2C1β
2 eλt

λα
|e|2λ +

C1c3eλt

λα+2θ−1 |e|
2
λ +

C2
F + 2CF + 1
Γ(α)

∫ t

0
(t − τ)α−1||ψ||2L2dτ.

It follows from Lemma 2.3 that

||ψ||2L2 ≤ (2C1β
2 eλt

λα
+

C1c3eλt

λα+2θ−1 )|e|2λEα,1
(
(C2

F + 2CF + 1)Tα).
Taking λ-norm on both sides of inequality, we can derive

||ψ||2L2,λ
≤ (

2C1β
2

λα
+

C1c3

λα+2θ−1 )|e|2λEα,1
(
(C2

F + 2CF + 1)Tα). (3.12)

(ii) We then prove the formula (3.12). Multiplying both sides of the equation Dα
t ψ = ψxx + δF by

ψxx and integrating with respect to x, it yields∫ 1

0
ψxxDα

t ψdx = ||ψxx||
2
L2 +

∫ 1

0
ψxxδFdx.

Based on boundary condition, it is not hard to know∫ 1

0
ψxDα

t ψxdx = −(βe(t) + γIθt e(t))Dα
t ψ(0, t) − ||ψxx||

2
L2 −

∫ 1

0
ψxxδFdx.

According to Lemma 2.2, we obtain

1
2

Dα
t ||ψx||

2
L2 ≤ −(βe(t) + γIθt e(t))Dα

t ψ(0, t) − ||ψxx||
2
L2 −

∫ 1

0
ψxxδFdx.

Applying Lipschitz condition (1.3), we have

1
2

Dα
t ||ψx||

2
L2 ≤ −(βe(t) + γIθt e(t))Dα

t ψ(0, t) − ||ψxx||
2
L2 +CF

∫ 1

0
|ψxxψ| + |ψxxψx|dx.

Using Young inequality (weighted form), it leads to

Dα
t ||ψx||

2
L2 ≤ 2β2|e(t)|2 + 2γ2|Iθt e(t)|2 + |Dα

t ψ(0, t)|2 +C2
F ||ψx||

2
L2 +C2

F ||ψ||
2
L2

≤ 2β2|e(t)|2 + 2γ2|Iθt e(t)|2 + M +C2
F ||ψ||

2
L2 +C2

F ||ψx||
2
L2 .

Integrating both sides of the inequality with respect to t and using initial condition, by Lemma 2.1 and
Lemma 3.1, we get

||ψx||
2
L2 ≤||ψx(x, 0)||2L2 +

1
Γ(α)

∫ t

0
(t − τ)α−1(2β2|e|2 + M +C2

F ||ψ||
2
L2

)
dτ
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+
C2

F

Γ(α)

∫ t

0
(t − τ)α−1||ψx||

2
L2dτ +

c3eλt|e|2λ
λα+2θ−1

≤
2β2

Γ(α)

∫ t

0
(t − τ)α−1eλτdτ|e|2λ +

M
αΓ(α)

tα

+
C2

F

Γ(α)

∫ t

0
(t − τ)α−1eλτdτ||ψ||2L2,λ

+
c3eλt|e|2λ
λα+2θ−1 +

C2
F

Γ(α)

∫ t

0
(t − τ)α−1||ψx||

2
L2dτ

≤2β2 eλt

λα
|e|2λ +

M
αΓ(α)

tα +C2
F

eλt

λα
||ψ||2L2,λ

+
C2

F

Γ(α)

∫ t

0
(t − τ)α−1||ψx||

2
L2dτ +

c3eλt|e|2λ
λα+2θ−1 ,

where c3 =
2Γ(2θ−1)γ2T
Γ(θ)2 . Using Lemma 2.3, we have

||ψx||
2
L2 ≤ (2β2|e|2λ

eλt

λα
+

M
αΓ(α)

tα)Eα,1(C2
FTα) + (C2

F
eλt

λα
||ψ||2L2,λ

+
c3eλt|e|2λ
λα+2θ−1 )Eα,1(C2

FTα).

Taking λ-norm on both sides of inequality, similar to Lemma (3.2), we obtain

||ψx||
2
L2,λ
≤
(2β2

λα
|e|2λ +

Mc1

λα
+

C2
F

λα
||ψ||2L2,λ

+
c3|e|2λ
λα+2θ−1

)
Eα,1(C2

FTα),

where c1 =
αα

αΓ(α)eα . This completes the proof.

3.1. Open-loop P-type ILC

The open-loop P-type ILC scheme for Eq (1.2) is

uk+1(t) = uk(t) + βek(t), (3.13)

where ek(t) = yd(t) − yk(t) denotes the output error and the learning gain β is an unknown parameter to
be determined later.

Theorem 3.1. For system (1.2) and the open-loop P-type law (3.13), if there exist a learning gain β
and a constant l(l > 0) satisfying

(1 + l)ρ2
1 ≤ 1, (3.14)

where ρ1 = max
t∈[0,T ]

|1 − βd(t)|, then the output error ek can converge to the ϵ-neighborhood of zero for

any constant ϵ > 0 in the sense of λ-norm as k → ∞.

Proof. From the definition of error, we get

ek+1(t) = yd(t) − yk+1(t)
= yd(t) − yk(t) − (yk+1(t) − yk(t)). (3.15)

Based on the formula (3.13), it is not hard to know

ek+1(t) = ek(t) − c(t)δφk+1(1, t) − βd(t)ek(t)
= (1 − βd(t))ek(t) − c(t)δφk+1(1, t). (3.16)
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Squaring both sides of the equation, we get

|ek+1(t)|2 ≤ ρ2
1|e

k(t)|2 + c2
|δφk+1(1, t)|2 + 2ρ1c|ek(t)||δφk+1(1, t)|,

where ρ1 = max
t∈[0,T ]

|1 − βd(t)| and c = max
t∈[0,T ]

|c(t)|. Using Young inequality (weighted form) to ensure

(1 + l)ρ2
1 ≤ 1 and Theorem 2.1, we have

|ek+1(t)|2 ≤ (1 + l)ρ2
1|e

k(t)|2 + (1 +
1
l
)c2
|δφk+1(1, t)|2

≤ (1 + l)ρ2
1|e

k(t)|2 + (1 +
1
l
)c2 max

x∈[0,1]
|δφk+1(x, t)|2

≤ (1 + l)ρ2
1|e

k(t)|2 + (1 +
1
l
)c2C1||δφ

k+1||2H1 . (3.17)

Taking λ-norm on both sides of inequality, we get

|ek+1(t)|2λ ≤ (1 + l)ρ2
1|e

k(t)|2λ + (1 +
1
l
)c2C1||δφ

k+1||2H1,λ

≤ (1 + l)ρ2
1|e

k(t)|2λ + (1 +
1
l
)c2C1

(
||δφk+1||2L2,λ

+ ||δφk+1
x ||

2
L2,λ

)
.

Using Lemma 3.2, we obtain

|ek+1(t)|2λ ≤ q1|ek(t)|2λ + µ1,k, (3.18)

where

q1 = (1 + l)ρ2
1 + (1 +

1
l
)c2C1β

2(CT + Eα,1(C2
FTα) +C2

FCT Eα,1(C2
FTα)

1
λα
) 1
λα
,

µ1,k = (1 +
1
l
)c2C1

Eα,1(C2
FTα)Mkα

α

αΓ(α)eαλα
,CT = Eα,1

(
(C2

F + 2CF + 1)Tα)
and Mk = max

t∈[0,T ]
|Dα

t φ
k(0, t)|2. Choosing λ large enough so that q1 < 1, we get

|ek+1(t)|2λ ≤q1(|ek−1(t)|2λ + µ1,k−1) + µ1,k

≤qk+1
1 |e

0(t)|2λ + qk
1µ1,0 + qk−1

1 µ1,1 + · · · + µ1,k

≤qk+1
1 |e

0(t)|2λ +
µ1,k

1 − q1
, (3.19)

where µ1,k ≜ max
m∈{0,1,··· ,k}

µ1,m. We select λ large enough so that µ1,k is sufficiently small. Therefore, to

ensure |ek+1(t)|2λ ≤ ϵ
2, it is sufficient to make

qk+1
1 |e

0(t)|2λ < ϵ
2, (3.20)

which means that the output error converges to the ϵ-neighborhood of zero after finite step iteration
(k > 2(ln ϵ−ln |e0 |λ)

ln q1
− 1).
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Remark 3.1. Due to q1(λ) is a monotonic decreasing function of λ and (1 + l)ρ2
1 < 1, we can see that

the inequality q1 < 1 holds when λ is large enough. From the definition of µ1,k, µ1,k is proportional to
λ−α. The number of iterations k is finited, so µ1,k is also proportional to λ−α and µ1,k tends to zero when
λ is large enough.

Remark 3.2. In order to satisfy the convergence condition (3.14), the learning gain β should satisfy
√

1 + l − 1

d1
√

1 + l
< β <

√
1 + l + 1

d2
√

1 + l
.

To ensure that the above inequality holds, parameter l should satisfy

l < (
d2 + d1

d2 − d1
)2 − 1.

3.2. Closed-loop P-type ILC

The closed-loop P-type ILC control scheme for (1.2) is

uk+1(t) = uk(t) + βek+1(t), (3.21)

where ek+1(t) = yd(t)− yk+1(t) is the output error and the learning gain β is an unknown parameter to be
determined later.

Theorem 3.2. For system (1.2) and the ILC law (3.21), if there exist a learning gain β and a constant
l(l > 0) satisfying

(1 + ρ2
2l)ρ2

2 ≤ 1, (3.22)

where ρ2 = max
t∈[0,T ]

1
|1+βd(t)| , then the output error ek can converge to the ϵ-neighborhood of zero for any

constant ϵ > 0 in the sense of λ-norm as k → ∞.

Proof. From the definition of error, we get

ek+1(t) = yd(t) − yk+1(t)
= yd(t) − yk(t) − (yk+1(t) − yk(t))
= ek(t) − c(t)δφk+1(1, t) − βd(t)ek+1(t). (3.23)

Based on the formula (3.21), it is not hard to know

(1 + βd(t))ek+1(t) = ek(t) − c(t)δφk+1(1, t). (3.24)

Simplifying the above equation, we have

ek+1(t) =
ek(t)

(1 + βd(t))
−

c(t)δφk+1(1, t)
(1 + βd(t))

. (3.25)

Squaring both sides of the equation, we get

|ek+1(t)|2 ≤ ρ2
2|e

k(t)|2 + ρ2
2c2
|δφk+1(1, t)|2 + 2ρ2

2c|ek(t)||δφk+1(1, t)|,
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where ρ2 = max
t∈[0,T ]

1
|1+βd(t)| and c = max

t∈[0,T ]
|c(t)|. Using Theorem 2.1 and Young inequality (weighted form)

to ensure (1 + ρ2
2l)ρ2

2 < 1, we have

|ek+1(t)|2 ≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2 + (ρ2

2 +
1
l
)c2
|δφk+1(1, t)|2

≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2 + (ρ2

2 +
1
l
)c2 max

x∈[0,1]
|δφk+1(x, t)|2

≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2 + (ρ2

2 +
1
l
)c2C1||δφ

k+1||2H1 .

Taking λ-norm on both sides of inequality, we get

|ek+1(t)|2λ ≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2λ + (ρ2

2 +
1
l
)c2C1||δφ

k+1||2H1,λ
.

According to Lemma 3.2, we obtain

|ek+1(t)|2λ ≤ (1 + ρ2
2l)ρ2

2|e
k|2λ + N1|ek+1|2λ + N2,k, (3.26)

where
N1 = (ρ2

2 +
1
l
)c2C1β

2(CT + Eα,1(C2
FTα) +C2

FCT Eα,1(C2
FTα)

1
λα
) 1
λα
,

N2,k = (ρ2
2 +

1
l
)c2C1

Eα,1(C2
FTα)Mkα

α

αΓ(α)eαλα
,

CT = Eα,1
(
(C2

F + 2CF + 1)Tα)
and Mk = max

t∈[0,T ]
|Dα

t φ
k(0, t)|2. Selecting a sufficiently large λ such that N1 < 1,we can get

|ek+1(t)|2λ ≤
(1 + ρ2

2l)ρ2
2

1 − N1
|ek|2λ +

N2,k

1 − N1

≤ q2|ek|2λ + µ2,k, (3.27)

where q2 =
(1+ρ2

2l)ρ2
2

1−N1
and µ2,k =

N2,k

1−N1
. Using recursion,we get

|ek+1(t)|2λ ≤q2(q2|ek−1(t)|2λ + µ2,k−1) + µ2,k

≤qk+1
2 |e

0(t)|2λ + qk
2µ2,0 + qk−1

2 µ2,1 + · · · + µ2,k

≤qk+1
2 |e

0(t)|2λ +
µ2,k

1 − q2
, (3.28)

where µ2,k ≜ max
m∈{0,1,··· ,k}

µ2,m. We select λ large enough such that q2 is less than 1 and µ2,k is sufficiently

small. Therefore, to ensure |ek+1(t)|2λ ≤ ϵ
2, it is sufficient to make

qk+1
2 |e

0(t)|2λ < ϵ
2, (3.29)

which means that the output error converges to the ϵ-neighborhood of zero after finite step iteration
(k > 2(ln ϵ−ln |e0 |λ)

ln q2
− 1).

Remark 3.3. In order to satisfy the convergence condition (3.22), the learning gain β should satisfy

β >

√
1 + l − 1

d1
.
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3.3. Open-loop PIθ-type ILC

The open-loop P-type ILC scheme for (1.2) is

uk+1(t) = uk(t) + βek(t) + γIθek(t), 0.5 < θ ≤ 1 , (3.30)

where ek(t) = yd(t)−yk(t) denotes the output error and the learning gain β and γ are unknown parameters
to be determined later.

Theorem 3.3. For system (1.2) and the ILC law (3.30), if the learning gain γ is bounded, and there
exist the learning gain β and the constant l(l > 0) satisfying

(1 + l)ρ2
1 ≤ 1, (3.31)

where ρ1 = max
t∈[0,T ]

|1 − βd(t)|, then the output error ek can converge to the ϵ-neighborhood of zero for

any constant ϵ > 0 in the sense of λ-norm as k → ∞.

Proof. By the definition of error, we have

ek+1(t) = yd(t) − yk+1(t)
= yd(t) − yk(t) − (yk+1(t) − yk(t)). (3.32)

Based on the formula (3.30), it is not hard to know

ek+1(t) = ek(t) − c(t)δφk+1(1, t) − βd(t)ek(t) − γd(t)Iθt ek

= (1 − βd(t))ek(t) − c(t)δφk+1(1, t) − γd(t)Iθt ek(t).

Applying Young inequality (weight form), we get

|ek+1(t)|2 ≤ (1 + l)(1 − βd(t))2|ek(t)|2 + (2 +
2
l
)
(
c(t)2|δφk+1(1, t)|2 + γ2d(t)2|Iθt ek|2

)
.

Using Theorem 2.1, it leads to

|ek+1(t)|2 ≤ (1 + l)ρ2
1|e

k(t)|2 + (2 +
2
l
)(c2
|δφk+1(1, t)|2 + γ2d2

2 |I
θ
t ek|2)

≤ (1 + l)ρ2
1|e

k(t)|2 + (2 +
2
l
)(c2 max

x∈[0,1]
|δφk+1(x, t)|2 + γ2d2

2 |I
θ
t ek|2)

≤ (1 + l)ρ2
1|e

k(t)|2 + (2 +
2
l
)(c2C1||δφ

k+1(·, t)||2H1 + γ
2d2

2 |I
θ
t ek|2),

where ρ1 = max
t∈[0,T ]

|1 − βd(t)| and c = max
t∈[0,T ]

|c(t)|. Using Lemma 3.1, we obtain

|ek+1(t)|2 ≤ (1 + l)ρ2
1|e

k(t)|2 + (2 +
2
l
)(c2C1||δφ

k+1||2H1 +
d2

2c3eλt

λ2θ−1 |e
k|2λ),

where c3 =
2Γ(2θ−1)γ2T
Γ(θ)2 . Taking λ-norm on both sides of inequality, we have

|ek+1(t)|2λ ≤ ((1 + l)ρ2
1 + (2 +

2
l
)

d2
2c3

λ2θ−1 )|ek(t)|2λ + (2 +
2
l
)c2C1||δφ

k+1||2H1,λ
.
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According to Lemma 3.3, we get

|ek+1(t)|2λ ≤ q3|ek(t)|2λ + µ3,k, (3.33)

where

q3 = (1 + l)ρ2
1 + (2 +

2
l
)c2C1

(
CEC1CPCT +CPEα,1(C2

FTα)
)
+ (2 +

2
l
)

d2
2c3

λ2θ−1 ,

µ3,k = (2 +
2
l
)c2C1

Eα,1(C2
FTα)Mkα

α

αΓ(α)eαλα
,

CT = Eα,1
(
(C2

F + 2CF + 1)Tα),
CP =

2β2

λα
+

c3

λα+2θ−1 ,

CE = 1 +
C2

F Eα,1(C2
FTα)

λα

and
Mk = max

t∈[0,T ]
|Dα

t φ
k(0, t)|2.

Choosing λ large enough such that q3 < 1, it leads to

|ek+1(t)|2λ ≤q3(q3|ek−1(t)|2λ + µ3,k−1) + µ3,k

≤qk+1
3 |e

0(t)|2λ + qk
3µ3,0 + qk−1

3 µ3,1 + · · · + µ3,k

≤qk+1
3 |e

0(t)|2λ +
µ3,k

1 − q3
, (3.34)

where µ3,k ≜ max
m∈{0,1,··· ,k}

µ3,m. We select λ large enough such that q3 is less than 1 and µ3,k is sufficiently

small. Therefore, to ensure |ek+1(t)|2λ ≤ ϵ
2, it is sufficient to make

qk+1
3 |e

0(t)|2λ < ϵ
2, (3.35)

which means that the output error converges to the ϵ-neighborhood of zero after finite step iteration
(k > 2(ln ϵ−ln |e0 |λ)

ln q3
− 1).

3.4. Closed-loop PIθ-type ILC

The closed-loop P-type ILC scheme for (1.2) is

uk+1(t) = uk(t) + βek+1(t) + γIθek+1(t), 0.5 < θ ≤ 1, (3.36)

where ek(t) = yd(t)−yk(t) denotes the output error and the learning gain β and γ are unknown parameters
to be determined later.

Theorem 3.4. For system (1.2) and the ILC law (3.36), if the learning gain γ is bounded, and there
exist the learning gain β and the constant l(l > 0) satisfying

(1 + ρ2
2l)ρ2

2 ≤ 1, (3.37)

where ρ2 = max
t∈[0,T ]

1
|1+βd(t)| , then the output error ek can converge to the ϵ-neighborhood of zero for any

constant ϵ > 0 in the sense of λ-norm as k → ∞.
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Proof. By the definition of error, we have

ek+1(t) = yd(t) − yk+1(t)
= yd(t) − yk(t) − (yk+1(t) − yk(t)). (3.38)

Based on the formula (3.36), it is not hard to know

ek+1(t) = ek(t) − c(t)δφk+1(1, t) − βd(t)ek+1(t) − γd(t)Iθt ek+1.

Combining similar items, it leads to

(1 + βd(t))ek+1(t) = ek(t) − c(t)δφk+1(1, t) − γd(t)Iθt ek+1. (3.39)

Simplifying the above equation, we have

ek+1(t) =
ek(t)

1 + βd(t)
−

c(t)δφk+1(1, t)
1 + βd(t)

−
γd(t)

1 + βd(t)
Iθt ek+1(t).

Applysing Young inequality (weighted form), we get

|ek+1(t)|2 ≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2 + (2ρ2

2 +
2
l
)(c2
|δφk+1(1, t)|2 + γ2d2

2 |I
θ
t ek+1(t)|2),

where ρ2 = max
t∈[0,T ]

1
|1+βd(t)| and c = max

t∈[0,T ]
|c(t)|. Using Theorem 2.1, we obtain

|ek+1(t)|2 ≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2 + (2ρ2

2 +
2
l
)(c2 max

x∈[0,1]
|δφk+1(·, t)|2 + γ2d2

2 |I
θ
t ek+1|2)

≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2 + (2ρ2

2 +
2
l
)(c2C1||δφ

k+1||2H1 + γ
2d2

2 |I
θ
t ek+1|2).

According to Lemma 3.1, we have

|ek+1(t)|2 ≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2 + (2ρ2

2 +
2
l
)(c2C1||δφ

k+1||2H1 +
d2

2c3eλt|ek+1|2λ

λ2θ−1 ),

where c3 =
2Γ(2θ−1)γ2T
Γ(θ)2 . Taking λ-norm on both sides of inequality, it leads to

|ek+1(t)|2λ ≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2λ + (2ρ2

2 +
2
l
)(c2C1||δφ

k+1||2H1,λ
+

d2
2c3|ek+1|2λ

λ2θ−1 ).

Using Lemma 3.3, we can get

|ek+1(t)|2λ ≤ (1 + ρ2
2l)ρ2

2|e
k(t)|2λ + N3|ek+1(t)|2λ + N4,k, (3.40)

where

N3 = (2ρ2
2 +

2
l
)c2C1

(
CEC1CPCT +CPEα,1(C2

FTα)
)
+ (2ρ2

2 +
2
l
)

d2
2c3

λ2θ−1 ,

N4,k = (2ρ2
2 +

2
l
)c2C1

Eα,1(C2
FTα)Mkα

α

αΓ(α)eαλα
,
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CT = Eα,1
(
(C2

F + 2CF + 1)Tα),
CP =

2β2

λα
+

c3

λα+2θ−1 ,

CE = 1 + C2
F Eα,1(C2

FTα)
λα

and Mk = max
t∈[0,T ]

|Dα
t φ

k(0, t)|2. Selecting a sufficiently large λ such that q4 < 1, we

can obtain

|ek+1(t)|2λ ≤
(1 + ρ2

2l)ρ2
2

1 − N3
|ek(t)|2λ +

N4,k

1 − N3

≤ q4|ek(t)|2λ + µ4,k, (3.41)

where q4 =
(1+ρ2

2l)ρ2
2

1−N3
and µ4,k =

N4,k

1−N3
. Using recursion, we get

|ek+1(t)|2λ ≤q4(q4|ek−1(t)|2λ + µ4,k−1) + µ4,k

≤qk+1
4 |e

0(t)|2λ + qk
4µ4,0 + qk−1

4 µ4,1 + · · · + µ4,k

≤qk+1
4 |e

0(t)|2λ +
µ4,k

1 − q4
, (3.42)

where µ4,k ≜ max
m∈{0,1,··· ,k}

µ4,m. We select λ large enough such that q4 is less than 1 and µ4,k is sufficiently

small. Therefore, to ensure |ek+1(t)|2λ ≤ ϵ
2, it is sufficient to make

qk+1
4 |e

0(t)|2λ < ϵ
2, (3.43)

which means that the output error converges to the ϵ-neighborhood of zero after finite step iteration
(k > 2(ln ϵ−ln |e0 |λ)

ln q4
− 1).

4. Numerical examples

In this section, we use the following numerical examples to verify convergence conditions of the
open-loop P-type ILC, Closed-loop P-type ILC, open-loop PIθ-type ILC and Closed-loop PIθ-type
ILC schemes. We can also observe the convergence speed of the four iterative learning algorithms
from the numerical results.

Example 4.1. We consider a boundary tracing problem of one dimensional fractional diffusion
equation 

C
0 Dα

t φ
k = φk

xx + F(x, t, φk), (x, t) ∈ (0, 1) × (0, 1],
φk

x(0, t) = uk(t), t ∈ [0, 1],
φk

x(1, t) = 2t2 − 3t + 2, t ∈ [0, 1],
φk(x, 0) = x2, x ∈ [0, 1],

where

F(x, t, φk) = 2x2(t − 1)2−α + xt1−α − 2(t − 1)2 − x2(t − 1)2 − xt − (x2(t − 1)2 + xt)2 + φk + |φk|2,

α = 0.9 and T = 1. In this simulation, the output is determined as yk(t) = tφk(1, t) + (t2 − t + 1)uk(t),
that is c(t) = t, d(t) = (t2 − t + 1). The output reference trajectory is yd(t) = 2(t3 − t2 + t).
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Figure 1a displays the tracking performance of the open-loop P-type ILC, while Figure 1b shows
the tracking performance of the closed-loop P-type ILC. Additionally, Figure 1c displays the tracking
performance of the open-loop PIθ-type ILC, and Figure 1d shows the tracking performance of the
closed-loop PIθ-type ILC.
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(a) Open-loop P-type: β = 0.5.
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(b) Closed-loop P-type: β = 0.5.

0 0.2 0.4 0.6 0.8 1

t

0

0.5

1

1.5

2

2.5

y

exact

k=1

k=5

k=10

0.8 0.81 0.82
1.2

1.3

1.4

1.5

(c) Open-loop PIθ-type: β = 0.5, γ = 2, θ = 0.95.
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(d) Closed-loop PIθ-type: β = 0.5, γ = 2, θ = 0.95.

Figure 1. P-type and PIθ-type schemes.

Figure 2 displays the maximum norm of four ILC schemes at different iteration times, including the
open-loop P-type, closed-loop P-type, open-loop PIθ-type, and closed-loop PIθ-type ILC schemes.
The results demonstrate that the closed-loop-type ILC schemes converge faster than the open-loop-
type ILC schemes.

Figure 3a shows the unstable behavior of the open-loop ILC scheme. When β is set to 2, the
open-loop P-type ILC scheme fails to meet the convergence conditions. Figure 3b displays that the
closed-loop P-type ILC scheme satisfies the convergence conditions and achieves faster convergence
speed.
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Figure 2. Maximum norm of error for β = 0.5, γ = 2, θ = 0.95.
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(b) Closed-loop P-type: β = 0.5, 2.

Figure 3. Open-loop and Closed-loop P-type schemes.

Figure 4 illustrates the convergence behavior of the maximum error ||ek||∞ of the closed-loop P-type
ILC scheme over 100 iterations. Although the maximum error does not decrease at iteration k = 50,
the scheme remains stable and does not diverge.
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Figure 4. Closed-loop P-type scheme for β = 0.5.
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Tables 1 and 2 respectively provide the maximum error of open-loop PIθ-type and closed-loop PIθ-
type schemes. Comparing the data of PIθ-type and P-type schemes in the tables, it can be observed
that the PIθ-type ILC scheme converges faster than the P-type ILC scheme. Comparing the data of
the PIθ-type (0.5 < θ < 1) and the PI-type (θ = 1) schemes in the tables, it can be observed that the
PIθ-type ILC scheme converges faster than the PI-type ILC scheme.

Table 1. Maximum norm of open-loop PIθ-type scheme error: ||ek||∞.

open-loop P-type open-loop PIθ-type
θ = 1 θ = 0.95 θ = 0.7 θ = 0.5 θ = 0.3

k = 1 0.630568931 0.630568931 0.630568931 0.630568931 0.630568931 0.630568931
k = 4 0.202638726 0.019996924 0.015212742 0.008726639 0.005928183 0.010502699
k = 7 0.068332236 0.002482255 0.001857693 3.6649 × 10−4 9.5086 × 10−5 0.002354680
k = 10 0.021782898 2.8469 × 10−4 1.9983 × 10−4 3.1580 × 10−5 6.5572 × 10−6 7.2370 × 10−5

k = 13 0.006572122 5.0058 × 10−5 3.5348 × 10−5 3.5879 × 10−6 2.8750 × 10−7 5.7637 × 10−6

k = 15 0.002889629 1.5586 × 10−5 1.0709 × 10−5 8.4523 × 10−7 3.3754 × 10−8 1.9978 × 10−7

Table 2. Maximum norm of closed-loop PIθ-type scheme error: ||ek||∞.

closed-loop P-type closed-loop PIθ-type
θ = 1 θ = 0.95 θ = 0.7 θ = 0.5 θ = 0.3

k = 1 0.473649453 0.222303282 0.218931679 0.209854876 0.205446586 0.199953476
k = 3 0.132338134 0.006667802 0.005053414 0.001356560 0.002265694 0.001989692
k = 5 0.037264451 7.3260 × 10−4 4.5345 × 10−4 1.1225 × 10−4 7.2258 × 10−5 8.0773 × 10−5

k = 7 0.009879078 7.2626 × 10−5 4.9175 × 10−5 4.7746 × 10−6 6.0573 × 10−6 7.3168 × 10−6

k = 9 0.002488555 1.0026 × 10−5 6.6767 × 10−6 4.7218 × 10−7 5.1262 × 10−7 6.9890 × 10−7

k = 11 6.0534 × 10−4 1.5862 × 10−6 1.0129 × 10−6 4.9032 × 10−7 4.9714 × 10−7 4.3887 × 10−7

k = 13 1.4366 × 10−4 2.5168 × 10−7 1.4757 × 10−7 3.1214 × 10−8 3.7037 × 10−8 5.1572 × 10−8

k = 15 3.3461 × 10−5 3.8956 × 10−8 2.1760 × 10−8 1.2383 × 10−9 5.7806 × 10−9 3.3308 × 10−9

5. Conclusions

In this paper, we investigate iterative learning algorithms for boundary tracking of nonlinear
fractional diffusion equation. We provide convergence conditions for open-loop P-type, closed-loop
P-type, open-loop PIθ-type and closed-loop PIθ-type ILC algorithms. Numerical results demonstrate
the effectiveness and stability of our proposed ILC schemes. Specifically, the closed-loop ILC
schemes converge faster than the open-loop ILC schemes, and the PIθ-type ILC scheme outperforms
the P-type and PI-type ILC schemes.
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