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Abstract: We consider a growing population of individuals with binary opinions, namely, 0 or 1, that
evolve in discrete time. The underlying interaction network is complete. At every time step, a fixed
number of individuals are added to the population. The opinion of the new individuals may or may not
depend on the current configuration of opinions in the population. Further, in each time step, a fixed
number of individuals are chosen and they update their opinion in three possible ways: they organically
switch their opinion with some probability and with some probability they adopt the majority or the
minority opinion. We study the asymptotic behaviour of the fraction of individuals with either opinion
and characterize conditions under which it converges to a deterministic limit. We analyze the behaviour
of the limiting fraction as a function of the probability of new individuals having opinion 1 as well as
with respect to the ratio of the number of people being added to the population and the number of
people being chosen to update opinions. We also discuss the nature of fluctuations around the limiting
fraction and study the transitions in scaling depending on the system parameters. Further, for this
opinion dynamics model on a finite time horizon, we obtain optimal external influencing strategies in
terms of when to influence to get the maximum expected fraction of individuals with opinion 1 at the
end of the finite time horizon.
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1. Introduction

Opinion dynamics in social networks is an area that has received significant attention in recent
years [28, 33]. This body of work has applications in the areas of advertising, election campaigns,
opinion evolution in online social networks, and public policy.

One widely used approach to study opinion dynamics in networks is to model it as a stochastic
process on a network of individuals. The voter model [19] is the most popular model used for such
studies. Under the voter model, the network is modeled using a bidirectional graph with the set of
individuals represented by nodes. There exists an edge between two individuals if they interact with
each other. Opinions of individuals are binary. In each time-slot, a node and one of its neighbours are
chosen uniformly at random. The node then adopts the opinion of the chosen neighbour. It is well-
known that the voter model dynamics on a d-dimensional lattice converges almost surely to a state
where all individuals have the same opinion [7]. The consensus opinion depends on the initial state of
the system. This behaviour is similar to that of a Pólya urn process, where a ball is drawn uniformly
at random from the urn at every time-step and it is replaced in the urn along with another ball of
same colour. Such phenomenon of reinforcement is found is several real-life processes like opinion
evolution, disease transmission, modeling ant walks etc. Pólya process has been used to model opinion
evolution in [20, 32]. Numerous other way of modeling evolution of binary opinions and variants of the
voter model have been proposed and studied (See recent surveys [1, 29]). In the majority-rule version
of the voter model, instead of sampling a single neighbour, the updating node/individual adopts the
majority opinion in its neighbourhood [5, 8, 11]. Voter model on various kinds of fixed and evolving
network topology have been studied [4, 10, 12, 27, 34]. The voter model has also been extended to
incorporate biased or stubborn behaviour of individuals [25, 35]. In [26] authors combine some of these
extensions to study voter model with majority rule in presence of biased and stubborn individuals. The
central question is to understand the conditions for asymptotic consensus and the rate of convergence to
the consensus. For instance, in [26] authors show that the expected time to reach consensus isO(log N),
where N is the size of the population. Most of these models assume Markovian evolution and ideas
from Markov Processes, Mean Field Theory and Branching Processes have been used to address these
questions.

In this work, we study a generalization of the voter model and analyze its finite time as well as
asymptotic behaviour. Our generalization has two key aspects. Firstly, we model three types of
behaviours, namely, strong-willed, conformist, and rebel. We say that an individual is strong-willed
when their opinion is not affected by the opinion of their neighbours. Further, we say that an
individual is conformist/rebellious when their opinion is positively/negatively affected by the opinion
of their neighbours. These three types of behaviours have been studied in [31] and [14]. In the model
proposed in this paper, new individuals are added to the population over time and we allow their
initial opinions to depend on the state of the system at the time of joining. We study the asymptotic
behaviour of the opinion dynamics of this growing population on a complete network as a function of
various system parameters.

Although studying asymptotic behaviour has been the main focus of opinion modeling for many
years, in various real-life situations like rumour spread in small communities or online opinion polls,
it is important to understand how close does the opinion profile get to the limiting behaviour in a
given time-period and what happens in presence of an external influencing agent. Opinion evolution
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over finite horizon has been studied in [3, 31]. The information about the finite time behaviour is
particularly important for opinion shaping by advertising and/or influencing agencies. In this paper,
in addition to the asymptotic behaviour, we also study the effect of external influence over finite time
horizons. Opinion manipulation or opinion shaping has been studied before (See [9, 18, 30]) but most
of the research is focused on determining which nodes of the network should be influenced to have
a favourable cascading effect. In this paper, we are interested in understanding whether it is more
advantageous to influence closer to the voting deadline or at the beginning, and how does this depend
on the three types of behaviour described above. Characterizing optimal influence strategies over finite
time horizons in fixed networks is the focus of [16, 23, 31]. In [23], the authors show that if individuals
only exhibit strong-willed behaviour, the optimal strategy is to influence towards the end of the finite
time horizon, while if individuals are conformists, it may be optimal to influence towards the beginning
of the time horizon. In [31], the authors show that if individuals are predominantly strong-willed/rebel,
the optimal strategy is to influence towards the end of the finite time horizon. While [23, 31] consider
a complete graph between individuals in the network, in [16], the authors study the effect of the nature
of the graph (random/fixed) on the nature of optimal influencing strategies. Unlike [16, 23, 31], where
the network of individuals is fixed, in this work we model a system with new individuals entering the
network over time. However, we still restrict our analysis to complete graphs, thus when the chosen
individuals behave conformist or rebellious they take into account the complete opinion profile of the
population at that time.

The main contributions of this work are as follows:
Asymptotic Behaviour: As mentioned above, while the three types of behaviour studied in this

paper are similar to that of [14], this paper advances the investigation of asymptotic properties of
heterogenous populations by incorporating the feature of growing population with arbitrary but fixed
number individuals, extending beyond the single-individual addition model. This gives us an
opportunity to explore the dependence of the opinion profile on the ratio of number of people added
versus the number of people chosen for opinion update at each step. Our analysis of asymptotic
behaviour is divided into three parts:

(i) when the probability of an incoming individuals holding opinion 1 or 0 is independent of the
current state of the system.

(ii) when the probability of an incoming individuals holding opinion 1 is proportional to the fraction
of individuals with opinion 1 in the system at that time.

(iii) when the probability of an incoming individuals holding opinion 1 is proportional to the fraction
of individuals with opinion 0 in the system at that time.
Since the individuals can behave strong-willed with positive probability, in all the three cases the
limiting fraction of people with either opinion converges almost surely to a deterministic limit,
independent of the initial configuration of opinion. The main result on the limiting opinion profile
allows us to study the dependence of the limiting fraction of individuals with either opinion on the
ratio of number of individuals being chosen for opinion update at every time-step and the number of
individuals being added to the population. We also compare the limiting fraction of individuals with
opinion 1 for the three cases and obtain conditions that determine what kind of behaviour of the
incoming individuals leads to a higher fraction of people with opinion 1 asymptotically. Further, we
observe that in the Central Limit Theorem (CLT) type results for cases (i) and (iii), the critical and
superdiffusive regimes do not exist, while case (ii) exhibits all the three regimes. Explicit conditions
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on system parameters for transitions from subdiffusive, critical and superdiffusive regimes are
obtained.

Finite Time Behaviour: We study the system over a time-horizon of T consecutive time-slots out
of which external influence is exerted in bT time-slots for some b ∈ (0, 1). The opinion dynamics
of the network under external influence tends to move towards a specific direction preferred by the
influencer as compared to its organic evolution in the absence of any external influence. An influence
strategy is defined by the time-slots in which external influence is exerted. We show that the optimal
influence strategy, i.e., the strategy that maximizes the number of nodes with the opinion supported
by the influencer at the end of the time-horizon is a function of the number of new nodes joining the
network in each time-slot, and the mechanisms (i)–(iii) via which new nodes form their initial opinion.

The paper is organized as follows. In Section 2 we describe the opinion evolution model. In
Section 3 we state the results concerning the asymptotic properties of the system. More precisely, we
obtain the limiting fraction of people with opinion 1 for various cases and state the fluctuation limit
theorems for each case. In Section 4, we use Martingale concentration to show that the random
process governing the evolution of fraction of people with either opinion can be approximated by
trajectories of an ODE. Using this approximation we analyse the finite-time behaviour of the fraction
of people with opinion 1 and its dependence on certain parameters of the system. Further, in
Section 4.3, we introduce external influence and obtain optimal influencing strategies to maximize the
expected fraction of people with opinion 1 at time T . Finally, Section 5 contains the proofs of the
theorems from Sections 3 and 4. We conclude with discussion on the results obtained in this paper
and possible future directions in Section 6.

2. Setting

We consider a growing population with binary opinions: 1 or 0 (denoted by 1 and 0 respectively).
We start with M0 > 0 individuals at time t = 0. Let Xt denote the fraction of people with opinion 1 at
time t. For t ≥ 1, at each discrete time step, the system evolves in two steps:

1. A fixed number of individuals, denoted by Rc(≤ M0), are chosen uniformly at random and they
update their opinions.

2. A fixed number of individuals, denoted by Ra having opinion 1 with probability αt and 0 with
probability 1 − αt, are added to the population. We study three cases.

(i) αt = α ∀t ≥ 1 and some fixed α ∈ [0, 1]. That is, probability of the new individuals having
opinion 1 remains constant throughout the fixed time interval [0,T ].

(ii) αt = αCXt ∀t ≥ 1 and some fixed αC ∈ [0, 1], that is the probability of the new individuals
having opinion 1 is proportional to the fraction of individuals of opinion 1 in the population
at time t.

(iii) αt = αR(1 − Xt) ∀t ≥ 1 and some fixed αR ∈ [0, 1], that is the probability of the new
individuals having opinion 1 is proportional to the fraction of individuals of opinion 0 in the
population at time t.

We now describe how the opinions of the chosen individual are updated. Define random variables
{Ii(t)}1≤i≤Mt , t ≥ 0 taking values in {0, 1}, where Ii(t) denotes the opinion of the ith individual at time
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t. Note that the total number of individuals at time t + 1 is given by Mt+1 = Mt + Ra. Thus, the

population increases linearly and deterministically in t. Define random variables: Yt =
Mt∑
i=1

Ii(t) and

Nt = Mt −Yt as total number of people with opinion 1 and the total number of people with opinion 0 at
time t respectively. Then, Xt =

Yt
Mt

. The opinion of a chosen individual j evolves in time-slot according
the following transition probabilities.

P(I j(t + 1) = 0|I j(t) = 1) = pt, P(I j(t + 1) = 1|I j(t) = 1) = 1 − pt,

P(I j(t + 1) = 1|I j(t) = 0) = qt, P(I j(t + 1) = 0|I j(t) = 0) = 1 − qt. (2.1)

We model three types of behaviour in the population.

– Strong-willed: the chosen individuals are not influenced by peers and change their opinions
independent of anyone else in the population. In this case, pt = p and qt = q.

– Conformist: the chosen individuals change their opinion based on the majority opinion at that
given time and tend to adopt the “popular” opinion at that time. In this case, pt = p(1 − Xt) and
qt = qXt.

– Rebel: the chosen individuals change their opinion based on the majority opinion at that given
time and tend to adopt the “unpopular” opinion at that time. In this case, pt = pXt and qt =

q(1 − Xt).

Let λ, µ ∈ [0, 1]. At each time-step t, with probability λ the chosen individuals behave as strong-willed,
with probability µ they behave as conformist and with probability 1−λ−µ they behave rebellious. Let
Ot+1 be the change in the number of people of opinion 1 from time t to t + 1. That is, Yt+1 = Yt + Ot+1.
Then, we have

Xt+1 =
Yt+1

Mt+1

=
Mt

Mt+1
Xt +

Ot+1

Mt+1
. (2.2)

The random variable Ot+1 depends on the two independent processes that we can write as

Ot+1 = ORc
t+1 + ORa

t+1,

where ORc
t+1 is the change due to opinion evolution of the chosen individuals and ORa

t+1 is the change due
to the newly added individuals. We have

E[Ot+1|Ft] = E[ORc
t+1 + ORa

t+1|Ft]

= Rc[(1 − Xt)qt − Xt pt] + αtRa

= −Rc(1 − λ − 2µ)(p − q)X2
t + (Rc[(3µ + λ − 2)q − (λ + µ)p])Xt + αtRa + q(1 − µ)Rc

= Rar(1 − λ − 2µ)(q − p)X2
t + Ra

[
r[(3µ + λ − 2)q − (λ + µ)p])Xt + αt + q(1 − µ)r

]
, (2.3)

where r = Rc/Ra is the ratio of people chosen and people added at each time step. Note that E[Ot+1|Ft]
is a linear function of Xt provided (1) λ+2µ = 1 or (2) p = q. The first case is that of a mixed population
where probability of a chosen individual being conformist is same as that of her being a rebel, and the
second case is inspired from the conventional voter model transition rule. Throughout this paper, we
assume the following.
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Assumption 1. We assume that the probability of a chosen individual behaving as conformist is same
as that of her behaving as a rebel. That is, λ + 2µ = 1. Further, we assume that Ra > 0.

As we shall see, the results for the case p = q can be obtained as a special case under Assumption 1.
The linearity of E[Ot+1|Ft] as a function of Xt implies that E[Xt+1|Ft] is linear in Xt. This allows us
to give an ODE approximation for the recursion with explicit error bounds. In the next section, we
investigate the asymptotic properties of the fraction of people with opinion 1.

3. Asymptotic behaviour

We use the stochastic approximation theory to analyse the behaviour of fraction of individuals of
opinion 1. Note that the recursion in Eq (5.2) is of the form

xt+1 = xt + at(h(xt) + S t+1),

where 1/at is a linear function of t, h is a linear function of Xt (whenever λ + 2µ = 1), S t is a square
integrable zero mean martingale and xt is bounded. Therefore the limiting point of the recursion is
same as that of the stable limit point of the ODE ẋt = h(xt) (See Chapter 1 in [2]). Thus, the following
is immediate.

Theorem 3.1. Under Assumption 1, Xt → X∗ almost surely as t → ∞, where

X∗ =


α+q(1−µ)r

1+(p+q)(1−µ)r for αt = α,
q(1−µ)r

1−αC+(p+q)(1−µ)r for αt = αCXt,
αR+q(1−µ)r

1+αR+(p+q)(1−µ)r for αt = αR(1 − Xt).

(3.1)

Note that for large r, that is when the number of individuals chosen at every step for opinion
update is much larger than the number of people being added to the population at every step, X∗ is
approximately q

p+q in all cases. That is, when Rc >> Ra, the asymptotic composition of the opinion in
the population does not depend on the initial inclination of people getting added to the population or
on the behaviour of people chosen at each step. For small r, in cases αt = α and αR(1 − Xt), the
limiting fraction of of people with opinion 1 is close to α and αR

1+αR
respectively, whereas for α = αCXt,

it is close to zero. A similar trend is observed when everyone in the population is conformist with
probability 1.

Remark 1. For the case p = q, we get

X∗ =


α+q(1−µ)r
1+2q(1−µ)r for p = q and αt = α

q(1−µ)r
1−αC+2q(1−µ)r for p = q and αt = αCXt
αR+q(1−µ)r

1+αR+2q(1−µ)r for p = q and αt = αR(1 − Xt),

which turns out to be a special case of Theorem 3.1. This is because the ODE under assumption p = q is
same as that obtained under Assumption 1 along with p = q. However, as we shall see the fluctuations
of Xt around the limit X∗ have a different behaviour under λ + 2µ = 1 and p = q and latter cannot be
obtained as special case of the former.

In the corollary below we compare the limiting fraction of people with opinion 1 in the three cases
and obtain conditions that lead to a larger fraction of people with opinion 1 asymptotically.
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Corollary 3.2. Let X∗S , X
∗
C and X∗R denote the limiting fraction of individuals with opinion 1

asymptotically for cases αt = α, αt = αCXt and αt = αR(1 − Xt) respectively. Under Assumption 1,

(i) X∗S ≥ X∗R if if α ≥ αR or α ≥ 1 − X∗S . In particular, X∗S ≥ X∗R when αR = α.

(ii) X∗S ≥ X∗C if α ≥ αC or α ≥ X∗S . In particular, X∗S ≥ X∗C when αC = α.

(iii) X∗C ≥ X∗R if (1 − µ)r (qαC − pαR) − αR + αRαC ≥ 0. In particular, X∗C ≥ X∗R if αC = 1 and q ≥ p or
αC = αR = α ≥ 1 + (1 − µ)r(p − q).

Remark 2. Note that if αR = 0, in case (iii), new people have opinion 0 with probability 1 and therefore
X∗C ≥ X∗R. This is straightforward from Eq (5.5). Similarly, when αC = 0, X∗C ≤ X∗R. By the argument in
the proof above, we also get that X∗C ≤ X∗R whenever αR = 1 and p ≥ q.

Finally, we show that a phase transition in the fluctuation around the limit exists only for the case
when αt = αCXt, that is when the probability of new individuals having opinion 1 is directly
proportional to the fraction of individuals with opinion 1 at that time. The classification of diffusive,
critical and superdiffusive regime is based on the values of parameters r, p, q, µ and αC. In the other
two cases viz. αt = α and αt = αR(1 − Xt), we only have the diffusive case with

√
t scaling.

Theorem 3.3. Let X∗S , X
∗
C and X∗R be as in Corollary 3.2 and suppose Assumption 1 holds.

1. For αt = α, as t → ∞
√

t(Xt − X∗S )
d
−→ N (0, σ) ,

where σ = Ra
2Ra[r(1−µ)(p+q)+1]−1

[
r(1 − µ)(p − q)

(
r(1−µ)q+α

r(1−µ)(p+q)+1

)
+ r(1 − µ)q + α(1 − α)

]
.

2. For αt = αR(1 − Xt), as t → ∞

√
t(Xt − X∗R)

d
−→ N (0, σR) ,

where

σR =
Ra[r(1 − µ)(p − q) + 2α2

−αR]
2Ra[r(1 − µ)(p + q) + 1 + αR] − 1

(
r(1 − µ)q + αR

r(1 − µ)(p + q) + 1 + αR

)
+

Ra
[
r(1 − µ)q + αR(1 − αR)

]
2Ra[r(1 − µ)(p + q) + 1 + αR] − 1

.

3. For αt = αCXt, as t → ∞

(a) if αC < r(1 − µ)(p + q) + 1 − 1
2Ra

then

√
t(Xt − X∗C)

d
−→ N (0, σC) ,

where

σC =
Ra[r(1 − µ)(p − q) + αC]

2Ra[r(1 − µ)(p + q) + 1 − αC] − 1

(
r(1 − µ)q

r(1 − µ)(p + q) + 1 − αC

)
+

Rar(1 − µ)q
2Ra[r(1 − µ)(p + q) + 1 − αC] − 1

.
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(b) if αC = r(1 − µ)(p + q) + 1 − 1
2Ra

then√
t

log t
(Xt − X∗C)

d
−→ N (0, σC) ,

where σC =
[
(r(1 − µ)(p − q) + αC)

(
r(1−µ)q

r(1−µ)(p+q)+1−αC

)
+ r(1 − µ)q

]
.

(c) if

αC > r(1 − µ)(p + q) + 1 −
1

2Ra

then as as
t → ∞, t−Dh(X∗)(Xt − X∗C)

almost surely converges to a finite random variable, where

−Dh(X∗) = Ra(r(1 − µ)(p + q) + 1 − αC).

A similar result can be obtained for the case p = q. The proofs of the above theorems are in
Section 5.

The scaling limits of this nature can also be obtained for general reinforced stochastic processes,
including urn models and reinforced random walk. While we have used stochastic approximation
theory, such limiting behaviour can also be obtained by exploiting the martingale structure as done
in [15, 24] for urn models or using results from [17]. As mentioned before, the random process
governing the reinforcement of opinions is similar to the behaviour of a generalized two-colour Pólya
urn. The new individuals being added to the population corresponds to adding new balls to the urn
independently or based on the composition of the urn at that time. The chosen individuals correspond
to multiple drawings of balls from the urn that are then replaced after some re-colouring. In this
context, the behaviour of Xt observed here is similar in spirit to that observed in [15, 21, 24] for the
fraction of balls of a given colour in generalized two-colour Pólya urns.

In the next section, we study the same model and obtain optimal influencing strategies over a finite
time horizon.

4. Finite time behaviour and optimal influencing strategies

We now analyse the evolution of opinions over a finite time interval [0,T ]. We are interested in
understanding how the parameters of the system affect the final opinion profile at time T and what
kind of influencing strategies result in a larger fraction of people with opinion 1 at time T . The key
mathematical idea is to approximate the random process of the fraction of people with a given opinion
with an ODE.

4.1. ODE approximation

It can be shown that under Assumption 1, the iterates of the recursion for Xt remain close to the
trajectories of the ODEs given by

dxt

dt
=


−[r(1−µ)(p+q)+1]xt+q(1−µ)r+α

M0/Ra+t when αt = α
−[r(1−µ)(p+q)+1−αC]xt+q(1−µ)r

M0/Ra+t when αt = αCXt
−[r(1−µ)(p+q)+1+αR]xt+q(1−µ)r+αR

M0/Ra+t when αt = αR(1 − Xt).
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Thus it is enough to analyse ODE of the form

dxt

dt
=
−[r(1 − µ)(p + q) + 1 + A]xt + q(1 − µ)r + B

M0/Ra + t
with x0 = X0, (4.1)

where

A =


0 for αt = α

−αC for αt = αCXt

αR for αt = αR(1 − Xt)

and B =


α for αt = α

0 for αt = αCXt

αR for αt = αR(1 − Xt).

The solution for ODE in Eq (4.1) is given by:

xt =
rq(1 − µ) + B

r(1 − µ)(p + q) + 1 + A
+

(
x0 −

rq(1 − µ) + B
r(1 − µ)(p + q) + 1 + A

) (
t + 1 + M0/Ra

1 + M0/Ra

)−(r(1−µ)(p+q)+1+A)

. (4.2)

The following theorem asserts that the recursion Xt remains close to the trajectories of the ODE in
Eq (4.1).

Theorem 4.1 (Martingale concentration). Suppose Assumption 1 holds. Let xT denote the solution at
time T of the ODE in Eq (4.1). Then for DM0 = O

(
1

M0

)
,

P
(
|XT − xT | ≥ ϵ + DM0

)
≤ 2e−ϵ

2CT ,

for some constant C > 0.

The constant C depends on various parameters of the system, including the initial population.
Figures 1 and 2 illustrate how well the ODE solution tracks the simulated trajectories of the recursion
for Xt. In the rest of the paper, we use this approximation to analyse the recursion by studying the
ODE solution. We refer to the random process by Xt and the ODE solution by xt.

Figure 1. The process Xt vs the corresponding ODE solution with system parameters given
by αt = Xt, λ = 0.2, µ = 0.4, r = 5, p = 0.3, q = 0.7,M0 = 100, x0 = 0.3,T = 2000.
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Figure 2. The process Xt vs the corresponding ODE solution with system parameters given
by αt = α = 0.2, λ = 0.3333, µ = 0.3333, r = 0.2, p = 0.8, q = 0.2,M0 = 500, x0 = 0.7,T =
2000.

4.2. Effect of r on the final opinion profile

We first put the above ODE approximation to use for analysing the dependence of the final xT

(which approximates the fraction of individuals with opinion 1 at the time of voting) on r, that is the
ratio of number of people who may change their opinion at time t and the number of people added to the
population at each time-step t. Clearly, the behaviour of xT depends of p, q, x0 and αt. Differentiating
the solution of Eq (4.1) at T with respect to r we get

x′T =

(
(A + 1)q(1 − µ) − B(p + q)(1 − µ)

(r(1 − µ)(p + q) + 1 + A)2

) 1 − (
τ1

τT+1

)r(1−µ)(p+q)+1+A
+

(
x0 −

rq(1 − µ) + B
r(1 − µ)(p + q) + 1 + A

) (p + q)(1 − µ)
(
τ1

τT+1

)r(1−µ)(p+q)+1+A

log
(
τ1

τT+1

) , (4.3)

where τk = k + M0/Ra. We consider the αt = α case first. In this case,

x′T = (1 − µ)
(

q − α(p + q)
(r(1 − µ)(p + q) + 1)2

) 1 − (
τ1

τT+1

)r(1−µ)(p+q)+1
+

(
x0 −

rq(1 − µ) + α
r(1 − µ)(p + q) + 1

) (p + q)(1 − µ)
(
τ1

τT+1

)r(1−µ)(p+q)+1

log
(
τ1

τT+1

) . (4.4)

Clearly, for α = q
q+p , we get that x′T is positive for x0 >

q
p+q , negative for x0 <

q
p+q and zero for x0 =

q
p+q .

For α > q
q+p , it is immediate that x′T < 0 for

x0 <
rq(1 − µ) + α

r(p + q)(1 − µ) + 1
.

For,

x0 >
rq(1 − µ) + α

r(p + q)(1 − µ) + 1
.
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Observe that for T not very small,∣∣∣∣ q
q + p

− α
∣∣∣∣τur

T+1 > τ
ur
1

[
(r(p + q)(1 − µ) + 1)2

(
rq(1 − µ) + α

r(p + q)(1 − µ) + 1
− x0

)
log

(
τ1

τT+1

)
+

∣∣∣∣ q
q + p

− α
∣∣∣∣] ,

where
ur = r(1 − µ)(p + q) + 1.

Therefore, x′T < 0 for all r provided α > q
q+p . A similar argument for α < q

q+p shows that xT is a
non-decreasing function of r. For α = q

q+p , we get

x′T =

(
x0 −

q
p + q

) (p + q)(1 − µ)
(
τ1

τT+1

)r(1−µ)(p+q)+1

log
(
τ1

τT+1

) .
Therefore,

• for x0 >
q

p+q , xT is a non-increasing function of r.
• for x0 =

q
p+q , xT is a constant function of r.

• for x0 <
q

p+q , xT is a non-decreasing function of r.

Using similar arguments we characterize the behaviour of xT as a function of r for the rest of the cases
as well. Table 1 details the behaviour of the final fraction of individuals with opinion 1 as a function
of r.

Table 1. Fraction of people with opinion 1 at time T as a function of r.

Behaviour of xT as a
function of r.

(i) αt = α (ii) αt = αCXt (iii) αt = αR(1 − Xt)

xT is a non-increasing
function of r.

α > q
q+p or

α = q
q+p < x0

αC = 1 and x0 >
q

p+q αR >
q
p or

αR =
q
p , x0 >

q
p+q

xT is a non-decreasing
function of r.

α < q
q+p or

x0 < α =
q

q+p

αC ∈ [0, 1) or
αC = 1, x0 <

q
p+q

αR <
q
p or

αR =
q
p , x0 <

q
p+q

xT is a constant
function of r.

α = q
q+p = x0 αC = 1 and x0 =

q
p+q αR =

q
p

In the next section, we state and discuss the main result for the finite time opinion evolution under
external influence and optimal strategies for influencing the dynamics to obtain higher number of
individuals with opinion 1 at the end of the finite time horizon.

4.3. Optimal influencing strategies over finite time horizon

In this section, we study the opinion evolution over a finite time interval [0,T ]. We assume that
there is an external influencing agency with a limited budget that tries to skew the opinion of the
population in their favour at the end of time T . Due to budgetary constraints, the advertising agency
can influence the opinion in exactly bT of the T time-slots, where b ∈ [0, 1] is such that bT ∈ N.
The influence is exerted by manipulating the transition probabilities of the Markov process defined in
Eq (2.1). That is, if the chosen individuals are being externally influenced in time-slot t, pt = p̃ and
qt = q̃, else, their opinion evolves as described before. Without loss of generality, we assume that the
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aim of the advertising agency is to maximise the number of individuals with the opinion 1 at the end of
the T time-slots. Similar model of opinion evolution in presence of external influence has been studied
for fixed population in [31]. Our aim is to obtain optimal influencing strategies in different regimes
depending on the model parameters. In particular, we want to study the dependence on Rc and Ra. We
begin by defining influencing strategy and what we mean by optimality here.

Definition 4.2 (Influencing strategy). An influencing strategy S ∈ [0, 1]T is defined as binary string of
length T that has exactly bT number of 1s. For all i ∈ {0, . . . ,T − 1} such that Si = 1, the transition
parameters are pi = p̃ and qi = q̃. The strategies to influence in the first bT and the last bT time-slots
are denoted by SF and SL respectively.

For two strategies S1 and S2, we write S1 ≫ S2 if influence according to S1 leads to a higher
expected number of 1 at the end of time T than the expected number of 1 at the end of time T under S2.

Definition 4.3 (Optimal strategy). A strategy is called optimal if the influence according to that strategy
results in a higher expected number of 1 at the end of time T than the expected number of 1 at the end
of time T using any other influence strategy.

Thus, an optimal strategy S∗ is such that S∗ ≫ S, where S is any other collection of bT time-slots to be
influenced. As we shall see, due to monotonicity, in most cases, influencing the first or the last bT slots
is optimal. We assume that the influencing strategy is rational. That is, during influence, the probability
of switching from 0 to 1 increases from what it is when the individuals behave strong-willed. Similarly,
under rational influence the probability of switching from 1 to 0 decreases. More, precisely, we have
the following assumption.

Assumption 2 (Rational influence). We assume that the external influence is such that p̃ < q̃, p̃ < p
and q < q̃.

We now state our results for optimal strategies for the cases αt = α, αt = αCXt and αt = αR(1 − Xt).
Again, a transition in optimality of influencing strategy is observed in the case αt = αCXt at the critical
value αC = r(p̃ + q̃).

Figures 3 and 4 compare the strategies SL,SF and a strategy S where the slots in the interval
[0.4T, 0.7T ] are influenced. In Figure 5, we compare SL,SF and a split strategy S where the influence
is over time-slots in the intervals [0.3T, 0.5T ] and [0.8T,T ]. The figures illustrate that SL is optimal
for the cases αt = α and αR(1 − Xt) whereas there is a transition in optimality of the strategies for a
certain threshold value of αC in the case when α = αCXt.

Figure 3. Comparison of influencing strategies for the case αt = α. Other system parameters
are given by b = 0.4, p̃ = 0.1, q̃ = 0.6,M0 = 1000, p = 0.7, q = 0.3, λ = 0.4, µ = 0.3, x0 =

0.7, r = 1(with Ra = Rc = 5).
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Figure 4. Comparison of influencing strategies for the case αt = αCXt. Other system
parameters are given by b = 0.4, p̃ = 0.16, q̃ = 0.8,M0 = 500, p = 0.8, q = 0.4, λ =
0.6, µ = 0.2, x0 = 0.5, r = 0.625(with Ra = 8,Rc = 5).

Figure 5. Comparison of influencing strategies for the case αt = αR(1 − Xt). Other system
parameters are given by b = 0.4, p̃ = 0.1, q̃ = 0.5,M = 1000, p = 0.8, q = 0.4, λ = 0, µ =
0.5, x0 = 0.5, r = 5, (with Rc = 5,Ra = 1).

Theorem 4.4. Suppose δ = r[( p̃ + q̃) − (1 − µ)(p + q)] = 0. Then, under Assumptions 1 and 2,

1. For αt = α, it is optimal to influence in the last bT slots.

2. For αt = αCXt,

(a) if r( p̃ + q̃) > αC, it is optimal to influence in the last bT slots.
(b) If r(p̃ + q̃) < αC, it is optimal to influence in the first bT slots.
(c) If r(p̃ + q̃) = αC, all strategies perform equally well.

3. For αt = αR(1 − Xt), it is optimal to influence in the last bT slots.

The main idea is to compare the strategies SL and SF and then get optimality using monotonicity of
the ODE solution with respect to the initial conditions. Suppose XL

T and XF
T denote the corresponding

ODE solutions for the influencing strategies SL and SF , respectively. Then, we have

XF
T =

r(1 − µ)q + B
r(1 − µ)(p + q) + 1 + A

+

(
x0 −

rq̃ + B
r(p̃ + q̃) + 1 + A

) [
bT + 1 + M0/Ra

1 + M0/Ra

]−r( p̃+q̃)−1−A
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×

[
T + 1 + M0/Ra

bT + 1 + M0/Ra

]−r(1−µ)(p+q)−1−A

+ ∆

[
T + 1 + M0/Ra

bT + 1 + M0/Ra

]−r(1−µ)(p+q)−1−A

, (4.5)

where ∆ = rq̃+B

r( p̃+q̃)+1+A
−

r(1−µ)q+B
r(1−µ)(p+q)+1+A . Similarly,

XL
T =

rq̃ + B
r(p̃ + q̃) + 1 + A

+

(
x0 −

r(1 − µ)q + B
r(1 − µ)(p + q) + 1 + A

) [
T (1 − b) + 1 + M0/Ra

1 + M0/Ra

]−r(p+q)−1−A

×

[
T + 1 + M0/Ra

(1 − b)T + 1 + M0/Ra

]−r( p̃+q̃)−1−A

− ∆

[
T + 1 + M0/Ra

(1 − b)T + 1 + M0/Ra

]−r(p̃+q̃)−1−A

. (4.6)

Define T̃ = T
1+ M0

Ra

and DT = XL
T − XF

T to be the difference between fraction of people with opinion 1 at

time T when under influencing strategies SL and SF . We get

DT = XL
T − XF

T

= ∆

1 −
 T̃ + 1

(1 − b)T̃ + 1

−r( p̃+q̃)−1−A

−

 T̃ + 1

bT̃ + 1

−r(p+q)−1−A


+

(
x0 −

r(1 − µ)q + B
r(1 − µ)(p + q) + 1 + A

) (
(1 − b)T̃ + 1

)δ
(T̃ + 1)−r( p̃+q̃)−1−A

−

(
x0 −

rq̃ + B
r( p̃ + q̃) + 1 + A

) (
bT̃ + 1

)−δ
(T̃ + 1)−r(p+q)−1−A. (4.7)

To compare SL and SF , it is enough to analyse whether DT is positive or negative. The detailed proof
is in Section 5.

We need the assumption δ = 0 to ensure the mathematical tractability of the expression for DT .
In general, when b is bounded away from 0 and 1 (which is reasonable since we would like to study
scenarios where influence is over a non-trivial subset of [0,T ]) and T is large, we have

(1 − b)T̃ + 1

T̃ + 1
= 1 − b

T̃

T̃ + 1
≈ 1 − b and

bT̃ + 1

T̃ + 1
≈ b.

Using these approximations, we get

DT ≈ ∆
[
1 − (1 − b)r( p̃+q̃)+1+A − br(p+q)+1+A

]
+

(
x0 −

r(1 − µ)q + B
r(1 − µ)(p + q) + 1 + A

)
(1 − b)δ(T̃ + 1)δ(T̃ + 1)−r( p̃+q̃)−1−A

−

(
x0 −

rq̃ + B
r( p̃ + q̃) + 1 + A

)
b−δ(T̃ + 1)−δ(T̃ + 1)−r(p+q)−1−A.

For large T̃ , the second and the third term are very small. Since for αt = α or αR, r(p + q) + 1 + A > 1,
we have

1 = (1 − b) + b ≥ (1 − b)r( p̃+q̃)−1−A + br(p+q)−1−A,

which along with ∆ > 0, implies DT ≥ 0. Combining this with the optimality argument, we get that
if the voting happens after a large time T , in case αt = α or αR, it is better to influence towards the
end. Also, if r << 1 and αt = α, DT ≈ 0, making all strategies more or less comparable in terms of
effectiveness for getting more 1’s at the end of time T .
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5. Proofs

In this section, we prove the results from previous sections. The main tool to prove the results
from Section 3 is the stochastic approximation theory. For the results in Section 4, we first prove
Theorem 4.1 to show that the discrete dynamics can be approximated well by an O.D.E. and then use
the corresponding O.D.E. to show the transition in optimal influence strategy as stated in Theorem 4.4.

5.1. Proofs: asymptotic results

We first prove the results establishing asymptotic behaviour of Xt. From Eq (2.2) we have

Xt+1 =
Mt+1 − Ra

Mt+1
Xt +

E[Ot+1|Ft]
Mt+1

+
Ot+1 − E[Ot+1|Ft]

Mt+1

= Xt +
1

Mt+1
[E[Ot+1|Ft] − RaXt] +

S t+1

Mt+1
, (5.1)

where S t+1 = Ot+1 − E[Ot+1|Ft] is a zero-mean martingale with respect to {F t = σ(Os; 0 ≤ s ≤ t)}t≥1.
We have,

E[Ot+1|Ft] = E[ORc
t+1 + ORa

t+1|Ft] = Rc[(1 − Xt)qt − Xt pt] + αtRa.

Using this in Eq (5.1) and substituting pt = λp+ µp(1− Xt)+ (1− λ− µ)pXt and qt = λq+ µqXt + (1−
λ − µ)q(1 − Xt), we get the following recursion.

Xt+1 = Xt +
1

Mt+1
h(Xt) +

S t+1

Mt+1
, (5.2)

where from Eq (2.3) we get that

h(Xt) = E[Ot+1|Ft] − RaXt

= −Rc(1 − λ − 2µ)(p − q)X2
t + (Rc[(3µ + λ − 2)q − (λ + µ)p] − Ra)Xt + αtRa + q(1 − µ)Rc

= Rar(1 − λ − 2µ)(q − p)X2
t + Ra

[
(r[(3µ + λ − 2)q − (λ + µ)p] − 1)Xt + αt + q(1 − µ)r

]
.

The recursion for Xt can thus be written as a stochastic approximation scheme (See [2]) and the
corresponding ODE is given by

dxt

dt
= Ra

[
r(1 − λ − 2µ)(q − p)x2

t + (r[(3µ + λ − 2)q − (λ + µ)p] − 1)xt + αt + q(1 − µ)r
]

= Ra

[
r(1 − λ − 2µ)(q − p)x2

t + (r[(3µ + λ − 2)q − (λ + µ)p] − 1 − A)xt + q(1 − µ)r + B
]
, (5.3)

where A and B are as in Eq (4.1). It is easy to verify that Eq (5.2) satisfies the conditions of a stochastic
approximation scheme since the martingale difference is bounded, Xt ≤ 1∀t ≥ 0, h(·) is Lipschitz in Xt

and the step-size 1/Mt is inverse of a linear function of t. From the stochastic approximation theory,
we know that the recursion for Xt converges almost surely to the stable limit points of the ODE, which
are given by h(xt) = 0. Define

D(x) :=
∂h
∂x
= Ra

[
2r(1 − λ − 2µ)(q − p)x + r{(3µ + λ − 2)q − (λ + µ)p} − 1 − A

]
.
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Proof of Theorem 3.1. Under Assumption 1, the corresponding ODE is given by

dxt

dt
= Ra[−[r(1 − µ)(p + q) + 1 + A]xt + q(1 − µ)r + B],

where r = Rc
Ra

. Clearly, xt =
rq(1−µ)+B

r(1−µ)(p+q)+1+A is a limit point. Further, it is easy to verify that for λ+2µ = 1
or p = q, D(x) < 0 for all x. Thus, rq(1−µ)+B

r(1−µ)(p+q)+1+A is a stable fixed point. Thus, as t → ∞, Xt → X∗

almost surely where

X∗ =


α+q(1−µ)r

1+(p+q)(1−µ)r for λ = 1 − 2µ and αt = α
q(1−µ)r

1−αC+(p+q)(1−µ)r for λ = 1 − 2µ and αt = αCXt
αR+q(1−µ)r

1+αR+(p+q)(1−µ)r for λ = 1 − 2µ and αt = αR(1 − Xt)

(5.4)

The p = q case mentioned in the remark 1 is obtained in the same way or by simply putting p = q in
Eq (5.4) above since the ODE for p = q is a special case of the ODE under Assumption 1. In general,
h(xt) is a polynomial of degree 2 in xt. Let ρ1 and ρ2 be the roots h(xt) = 0 with ρ1 > ρ2. Note that

ρ1ρ2 =
q(1 − µ)r + B

(1 − λ − 2µ)(q − p)

and

ρ1 + ρ2 = −
(r[(3µ + λ − 2)q − (λ + µ)p] − 1 − A)

(1 − λ − 2µ)(q − p)
.

Thus,D(x) := Ra(1 − λ − 2µ)(q − p)[2x − (ρ1 + ρ2)] and we get the following.

1. for the case λ + 2µ > 1 and q > p or λ + 2µ < 1 and q < p, ρ1 > 0 and ρ2 < 0 as ρ1ρ2 < 0. Also,
D(ρ1) < 0 andD(ρ2) > 0. So, in these cases, ρ1 is a stable limit point.

2. For the case λ + 2µ > 1 and q < p or λ + 2µ < 1 and q > p, ρ1 > 0 and ρ2 > 0 as ρ1ρ2 > 0 and
ρ1 + ρ2 > 0. Also,D(ρ1) > 0 andD(ρ2) < 0. Hence, in these cases, ρ2 is a stable limit point.

While the asymptotic analysis is possible, a martingale argument for ODE approximation as done in
Section 4 is not possible when h is non-linear. Further, the ODE ẋ(t) = h(xt) yields fairly complicated
solutions and obtaining optimal strategies is non-tractable.

Proof of Corollary 3.2. We first compare X∗S , X
∗
R.

X∗S − X∗R =
α + q(1 − µ)r

1 + (p + q)(1 − µ)r
−

αR + q(1 − µ)r
1 + αR + (p + q)(1 − µ)r

=
α[1 + αR + (p + q)(1 − µ)r] − αR(1 + p(1 − µ)r)
(1 + (p + q)(1 − µ)r)(1 + αR + (p + q)(1 − µ)r)

=
(α − αR)[1 + (p + q)(1 − µ)r] + αR[α + q(1 − µ)r]

(1 + (p + q)(1 − µ)r)(1 + αR + (p + q)(1 − µ)r)

=
(α − αR) + αRX∗S

(1 + αR + (p + q)(1 − µ)r)
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Thus, X∗S − X∗R ≥ 0 iff α − αR(1 − X∗S ) ≥ 0. Therefore, α ≥ αR or α ≥ 1 − X∗S implies X∗S ≥ X∗R. Next we
compare X∗S , X

∗
C.

X∗S − X∗C =
α + q(1 − µ)r

1 + (p + q)(1 − µ)r
−

q(1 − µ)r
1 − αC + (p + q)(1 − µ)r

=
α[1 − αC + (p + q)(1 − µ)r] − αCq(1 − µ)r

(1 + (p + q)(1 − µ)r)(1 − αC + (p + q)(1 − µ)r)

=
α[1 + (p + q)(1 − µ)r] − αC[α + q(1 − µ)r]

(1 + (p + q)(1 − µ)r)(1 − αC + (p + q)(1 − µ)r)
Clearly, X∗S − X∗C ≥ 0 iff α ≥ αCX∗S . Thus, α ≥ αC or α ≥ X∗S implies X∗S − X∗C ≥ 0. Further, when
αC = αR = α, X∗S ≥ X∗C for all α ∈ [0, 1].
For the case αt = αR(1 − Xt) and αt = αCXt we get that

X∗C ≥ X∗R ⇐⇒
rq(1 − µ)

r(p + q)(1 − µ) + 1 − αC
≥

rq(1 − µ) + αR

r(p + q)(1 − µ) + 1 + αR
,

which holds if and only if
(1 − µ)r (qαC − pαR) − αR + αRαC ≥ 0. (5.5)

Clearly, this holds for αC = 1 and q ≥ p since p ≥ pαR. Further, for αC = αR = α, we have X∗C ≥ X∗R iff
α ≥ 1 + (1 − µ)r(p − q).
We now prove the fluctuation limit theorem.

Proof of Theorem 3.3. We use results from [36]. We first compute Γ = lim
t→∞

E[S 2
t+1|Ft]. Note that

E[S 2
t+1|Ft] = E[(Ot+1 − E[Ot+1|Ft])2|Ft]. We have

E[(Ot+1 − E[Ot+1|Ft])2|Ft] = Var[Ot+1|Ft] = Var[ORc
t+1 + ORa

t+1|Ft]

= Var[ORc
t+1|Ft] + Var[ORa

t+1|Ft]

= Var[
Mt∑
i=1

Oi(t + 1)|Ft] + Var[ORa
t+1|Ft]

= αt(1 − αt)Ra +

Mt∑
i=1

Rc

Mt
((1 − Xt)qt + Xt pt) −

R2
c

M2
t

((1 − Xt)qt − Xt pt)2

= αt(1 − αt)Ra + Rc ((1 − Xt)qt + Xt pt) −
R2

c

Mt
((1 − Xt)qt − Xt pt)2 .

The term R2
c

Mt
((1 − Xt)qt − Xt pt)2 goes to zero as t −→ ∞. For pt = λp + µp(1 − Xt) + (1 − λ − µ)pXt and

qt = λq + µqXt + (1 − λ − µ)q(1 − Xt) we get that lim
t→∞

E[S 2
t+1|Ft] is same as

lim
t→∞

Ra

[
(r(1 − λ − 2µ)(p + q) + A1)X2

t + (r((λ + 3µ − 2)q + (λ + µ)p) + A2)Xt + r(1 − µ)q + A3

]
, (5.6)

where A1 =


0 for αt = α

−α2
C for αt = αCXt

−α2
R for αt = αR(1 − Xt)

, A2 =


0 for αt = α

αC for αt = αCXt

2αR
2 − αR for αt = αR(1 − Xt)

and, A3 =


α(1 − α) for αt = α

0 for αt = αCXt

αR(1 − αR) for αt = αR(1 − Xt).
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Under Assumption 1, we get

Γ = Ra

[
{r(1 − µ)(p − q) + A2}

(
r(1 − µ)q + B

r(1 − µ)(p + q) + 1 + A

)
+ r(1 − µ)q + A3

]
,

We now compute the limiting variance σ. Thus using Theorems 2.1–2.3 from [36] we have:

• For −Dh(X∗) > 1
2 , σ =

∫ ∞
0

e−(−Dh(X∗)− 1
2 )uΓe−(−Dh(X∗)− 1

2 )udu.

• For −Dh(X∗) = 1
2 , σ = lim

t→∞
1

log t

∫ log t

0
e−(−Dh(X∗)− 1

2 )uΓe−(−Dh(X∗)− 1
2 )udu.

Therefore, whenever −Dh(X∗) = Ra(r(1 − µ)(p + q) + 1 + A) > 1
2 we have,

σ =

∫ ∞

0
e−(−Dh(X∗)− 1

2 )uΓe−(−Dh(X∗)− 1
2 )udu

=

∫ ∞

0
e−2(−Dh(X∗)− 1

2 )uΓdu

= Γ

∫ ∞

0
e−2(Ra(r(1−µ)(p+q)+1+A)− 1

2 )udu

=
Γ

2Ra(r(1 − µ)(p + q) + 1 + A) − 1
.

Thus, with Assumption 1, we get the following.

(a) For αt = α and X∗ = r(1−µ)q+α
r(1−µ)(p+q)+1 , we getDh(X∗) = −Ra(r(1 − µ)(p + q) + 1). Therefore,

√
t(Xt − X∗)

d
−−−−→
t−→∞

N (0, σ) , (5.7)

where σ = Ra
2Ra[r(1−µ)(p+q)+1]−1

[
r(1 − µ)(p − q)

(
r(1−µ)q+α

r(1−µ)(p+q)+1

)
+ r(1 − µ)q + α(1 − α)

]
.

(b) For αt = αR(1 − Xt) and X∗ = r(1−µ)q+αR
r(1−µ)(p+q)+1+αR

, we get Dh(X∗) = −Ra[r(1 − µ)(p + q) + 1 + αR].
Therefore,

√
t(Xt − X∗)

d
−−−−→
t−→∞

N (0, σR) , (5.8)

where

σR =
Ra[r(1 − µ)(p − q) + 2αR

2 − αR]
2Ra[r(1 − µ)(p + q) + 1 + αR] − 1

(
r(1 − µ)q + αR

r(1 − µ)(p + q) + 1 + αR

)
+

Rar(1 − µ)q + αR(1 − αR)
2Ra[r(1 − µ)(p + q) + 1 + αR] − 1

.

(c) For αt = αCXt and X∗ = r(1−µ)q
r(1−µ)(p+q)+1−αC

(i) if −Dh(X∗) = Ra[r(1 − µ)(p + q) + 1 − αC] > 1
2 that is αC < r(1 − µ)(p + q) + 1 − 1

2Ra
then

√
t(Xt − X∗)

d
−−−−→
t−→∞

N (0, σC) , (5.9)

with σC =
Ra

2Ra[r(1−µ)(p+q)+1−αC]−1

[
(r(1 − µ)(p − q) + αC)

(
r(1−µ)q

r(1−µ)(p+q)+1−αC

)
+ r(1 − µ)q

]
.
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(ii) if −Dh(X∗) = Ra[r(1 − µ)(p + q) + 1 − αC] = 1
2 that is αC = r(1 − µ)(p + q) + 1 − 1

2Ra
then√

t
log t

(Xt − X∗)
L
−−−−→
t−→∞

N (0, σC) , (5.10)

with σC =
[
(r(1 − µ)(p − q) + αC)

(
r(1−µ)q

r(1−µ)(p+q)+1−αC

)
+ r(1 − µ)q

]
.

(iii) if −Dh(X∗) = Ra(r(1 − µ)(p + q) + 1 − αC) < 1
2 that is αC > r(1 − µ)(p + q) + 1 − 1

2Ra
then as

t → ∞, t−Dh(X∗))(Xt − X∗) almost surely converges to a finite random variable.

This completes the proof.

A similar argument can be used to obtain scaling limits for the case p = q as well. We get

lim
t−→∞

E[µ2
t+1|Ft] = Ra

{2r(1 − λ − 2µ)q + A1}

(
r(1 − µ)q + B

2r(1 − µ)q + 1 + A

)2

+{2r(λ + 2µ − 1)q + A2}

(
r(1 − µ)q + B

2r(1 − µ)q + 1 + A

)
+ r(1 − µ)q + A3

]
.

Following the same argument as above yields the following.

(a) For αt = α and X∗ = r(1−µ)q+α
2r(1−µ)q+1 we getDh(X∗) = −Ra[2r(1 − µ)q + 1] and Eq (5.7) holds with

σ =
Ra

2Ra[2r(1 − µ)q + 1] − 1

2rq(1 − λ − 2µ)
(

r(1 − µ)q + α
2r(1 − µ)q + 1

)2

+2rq(λ + 2µ − 1)
(

r(1 − µ)q + α
2r(1 − µ)q + 1

)
+ r(1 − µ)q + α(1 − α)

]
.

(b) For αt = αR(1− Xt) and X∗ = r(1−µ)q+αR
2r(1−µ)q+1+αR

, we getDh(X∗) = −Ra[2r(1− µ)q+ 1+ αR] and Eq (5.8)
holds with

σR =
Ra

2Ra[2r(1 − µ)q + 1 + αR] − 1

(2r(1 − λ − 2µ)q − α2
R)

(
r(1 − µ)q + αR

2r(1 − µ)q + 1 + αR

)2

+(2r(λ + 2µ − 1)q + 2αR
2 − αR)

(
r(1 − µ)q + αR

2r(1 − µ)q + 1 + αR

)
+ r(1 − µ)q + αR(1 − αR)

]
.

(c) For αt = αCXt and X∗ = r(1−µ)q
2r(1−µ)q+1−αC

. If −Dh(X∗) = Ra(r(1 − µ)(p + q) + 1 − αC) = 1
2 then Eq (5.9)

holds with

σC =

(2r(1 − λ − 2µ)q − α2
C)

(
r(1 − µ)q

2r(1 − µ)q + 1 − αC

)2

+(2r(λ + 2µ − 1)q + αC)
(

r(1 − µ)q
2r(1 − µ)q + 1 − αC

)
+ r(1 − µ)q

]
.

Thus, unlike for the limiting fraction X∗, the limiting second moment or the variance for the case
p = q cannot be obtained as a special case of λ + 2µ = 1.
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5.2. Proofs: ODE approximation and optimal influencing strategy

In this section, we prove results from Section 4. We use a Martingale Concentration Inequality to
prove the ODE approximation (from Section 4.1) of the recursion of Xt and then use the approximation
to prove Theorem 4.4 for optimal influencing strategy.

Proof of Theorem 4.1. Under Assumption 1, the recurrence is given by

Xt+1 = Xt +
Ra

Mt+1

[
−(r(1 − µ)(p + q) + 1 + A)Xt + q(1 − µ)r + B

]
+

S t

Mt+1
.

This gives,

E[Xt+1|F t] = Xt +
1

M′t+1

[
−(r(1 − µ)(p + q) + 1 + A)Xt + q(1 − µ)r + B

]
,

where M′t+1 =
Mt+1
Ra

. Thus,

E[Xt+1|Ft] = Xt

(
1 −

r(p + q)(1 − µ) + 1 + A
M′t+1

)
+

r(1 − µ)q + B
M′t+1

.

Define αt =

(
1 − r(p+q)(1−µ)+1+A

M′t+1

)
, βt =

r(1−µ)q+B
M′t+1

and

Zt = Xt

t−1∏
i=0

α−1
k −

t−1∑
i=0

βi

i∏
j=0

α−1
j .

Note that Zt is an {Ft}t≥0-martingale by definition. For a fixed T , define Yt =
(∏T−1

k=0 αk

)
Zt is also an

{Ft}t≥0-martingale. Using Azuma-Hoeffding inequality, we get

P(|YT − Y0| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2
∑T

i=1 c2
i

)
,

where |Yt − Yt−1| ≤ ct for all 1 ≤ t ≤ T . We first obtain a reasonable bound on |Yt − Yt−1|. We have

Yt − Yt−1 =

T−1∏
k=0

αk

Xt

t−1∏
k=0

α−1
k − Xt−1

t−2∏
k=0

α−1
k − βt−1

t−1∏
j=0

α−1
j


=

T−1∏
k=t

αk (Xt − Xt−1αt−1 − βt−1)

From Lemma 2 in [6], we get
∣∣∣∣∏T−1

k=t αk

∣∣∣∣ ≤ K
(

T
t

)−C′
, where C′ = r(p + q)(1 − µ) + 1 + A and

K = K(C′,M0/Ra) is a positive constant. Further, |Xt − Xt−1αt−1 − βt−1| ≤
B
t for some constant B > 0.

Then,
T∑

t=0
c2

t = T−2C′ T∑
t=1

K2B2t2C′−2 ≤ K2B2

(2C′−1)T
. This implies,

P(|YT − Y0| ≥ ϵ) ≤ 2 exp
(
−
ϵ2(2C′ − 1)T

K2B2

)
.
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Note 2C′ − 1 > 0. Equivalently, we have

P

∣∣∣∣XT −

t−1∑
i=0

βi

T−1∏
j=i+1

α j −

T−1∏
k=0

αkX0

∣∣∣∣ ≥ ϵ ≤ 2 exp
(
−
ϵ2(2C′ − 1)T

K2B2

)
.

Next, we show that
t−1∑
i=0
βi

∏T−1
j=i+1 α j −

∏T−1
k=0 αkX0 is close to the ODE solution. We have,

T−1∏
i=0

(
1 −

r(p + q)(1 − µ) + 1 + A
M′i+1

)
∼

(
T + 1 + M0/Ra

1 + M0/Ra

)−(r(p+q)(1−µ)+1+A)

(5.11)

and,

T−1∑
i=0

1
M′i+1

T−1∏
j=i+1

1 − r(p + q)(1 − µ) + 1 + A
M′j+1


∼

(T + 1 + M0/Ra)−(r(p+q)(1−µ)+1+A)

r(p + q)(1 − µ) + 1 + A
(T + 1 + M0/Ra)r(p+q)(1−µ)+1+A

−
(T + 1 + M0/Ra)−(r(p+q)(1−µ)+1+A)

r(p + q)(1 − µ) + 1 + A
(1 + M0/Ra)r(p+q)(1−µ)+1+A (5.12)

To be precise, the approximations in Eqs (5.11) and (5.12) give∣∣∣∣ t−1∑
i=0

βi

T−1∏
j=i+1

α j −

T−1∏
k=0

αkX0 − xT

∣∣∣∣ ≤ DM0 ,

where DM0 = O
(

1
M0

)
. We have

P

∣∣∣∣XT −

t−1∑
i=0

βi

T−1∏
j=i+1

α j −

T−1∏
k=0

αkX0

∣∣∣∣ ≥ ϵ + DM0

 ≤ 2 exp
(
−
ϵ2(2C′ − 1)T

4K2B2

)
.

We are now ready to prove Theorem 4.4. In addition to the ODE approximation, we need the
following Lemma.

Lemma 5.1 (xt as a function of x0). The ODE solution obtained by solving Eq (4.1) is an increasing
function of the initial configuration x0.

Proof. Note that the solution (4.2) of the ODE (4.1) is of the form

f (x) = a1 + (x − a1)(b1)−c1 ,

where a1, b1 > 0 and c1 ≥ 0 ∀ A and B . Let x1 < x2 then

x1 < x2 ⇐⇒ x1 − a1 < x2 − a1 ⇐⇒ (x1 − a1)(b1)−c1 < (x2 − a1)(b1)−c1 .

Thus, the ODE solution is an increasing function of the initial configuration x0.
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Before we prove Theorem 4.4, note that restriction of a strategy to any subset of [0,T ] defines an
influencing strategy on that subset. For any strategy S, we denote the strategy on [T1,T2] ⊂ [0,T ]
given by the substring of S on [T1,T2] by S|[T1,T2].

Proof of Theorem 4.4. We first compare SF and SL. For p̃ + q̃ = (1 − µ)(p + q) we get

DT = ∆

1 −
 T̃ + 1

(1 − b)T̃ + 1

−r( p̃+q̃)−1−A

−

 T̃ + 1

bT̃ + 1

−r( p̃+q̃)−1−A

+ (T̃ + 1)−r( p̃+q̃)−1−A

 (5.13)

and
∆ =

rq̃ + B
r( p̃ + q̃) + 1 + A

−
r(1 − µ)q + B

r(1 − µ)(p + q) + 1 + A
=

r(q̃ − (1 − µ)q)
r( p̃ + q̃) + 1 + A

.

Due to rational influence, ∆ > 0. Define F : [0, 1]→ [0, 1] such that

F(b) = 1 −
 (1 − b)T̃ + 1

T̃ + 1

r(p̃+q̃)+1+A

−

bT̃ + 1

T̃ + 1

r(p+q)+1+A

+

(
1

T̃ + 1

)r(p̃+q̃)+1+A

.

Differentiating with respect to b once and twice we get

F′(b) =
(r(p̃ + q̃) + 1 + A)T̃

(T̃ + 1)r( p̃+q̃)+1+A

[
((1 − b)T̃ + 1)r(p̃+q̃)+A − (bT̃ + 1)r( p̃+q̃)+A

]
(5.14)

F′′(b) =
(r( p̃ + q̃) + 1 + A)(r( p̃ + q̃) + A)T̃

2

(T̃ + 1)r( p̃+q̃)+1+A

[
−((1 − b)T̃ + 1)r( p̃+q̃)+A−1 − (bT̃ + 1)r(p̃+q̃)+A−1

]
(5.15)

Clearly, F′(b) = 0 for b = 1/2. For the case αt = α or αR(1 − Xt), A ≥ 0. Thus, F is increasing in
b ∈ [0, 1/2) as F′(b) > 0 and F is decreasing in b ∈ (1/2, 1]. Since, A ≥ 0 we also have for any
b ∈ [0, 1], F′′(1/2) < 0. Thus, b = 1

2 is a point of maxima for F(b). Since, F(0) = F(1) = 0, we get
that F(b) ≥ 0 for b ∈ [0, 1]. This implies, DT ≥ 0. Hence, SL ≫ SF for the case αt = α or αR(1 − Xt).

We now address the case αt = αCXt, A = −αC. If r( p̃ + q̃) > αC the same argument as above works
and we get SL >> SF . If r(p̃ + q̃) < αC, we get that F is decreasing in b ∈ [0, 1/2) and F is increasing
in b ∈ (1/2, 1]. It is also easy to check that F′′(1/2) > 0. Thus, b = 1/2 is a point of minima for F(·).
Again, using F(0) = F(1) = 0, we conclude that F(b) ≤ 0 for b ∈ [0, 1] and therefore DT ≤ 0. Hence,
SL << SF for the case r(p̃ + q̃) < αC. Finally, for the case r(p̃ + q̃) = αC, it can be easily verified that
DT = 0 and therefore SL = SF .

We now prove the optimality using Lemma 5.1. We give the argument for optimality of SL when
SL ≫ SF . A similar argument works for the rest of the cases. Let S be an influencing strategy.
Scanning from the left (from the first coordinate), let t1, t1 + 1 be the first time we encounter a ‘10’
subsequence in S. Since SL ≫ SF , S|[0,t1+1] << S

′, where S′ is a strategy on [0, t1 + 1] with S′i = Si

for all i ≤ t1 − 1 and S′t1 = 0,S′t1+1 = 1. In other words, a local swap of 10 to 01 improves the strategy.
This combined with the Lemma 5.1 shows that SL is optimal.

6. Concluding remarks

We consider a population of M0 individuals on a complete graph, each holding an opinion 1 or 0 at
time t = 0. At every time-step a fixed number of individuals are added to the population and a fixed
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number of uniformly chosen individuals update their opinion. New individuals can have opinion 1
with probability that may or may not depend on the current state of the system. Similarly, chosen
individuals may update their opinion independently of the state of the system or depending on the
fraction of individuals of opinion 1 or 0 at that time. We observed that the limiting fraction of
individuals with opinion 1 depends crucially on various parameters that can be adjusted in order to
obtain a higher fraction of individuals with opinion 1 in the long run. Further, we demonstrate that the
case when the incoming individuals have opinion 1 with probability proportional to the number of
individuals with opinion 1 in the population, the fluctuations exhibit all three regimes (diffusive,
critical and superdiffusive) of scaling, which is not the case otherwise. On the finite horizon version of
the problem, we study optimal influencing strategies to obtain maximum expected fraction of people
with opinion 1 at the end of the finite time T . Again, a transition in the type of the influencing strategy
is observed only in the case when the incoming individuals have opinion 1 with probability
proportional to the number of individuals with opinion 1 in the population. We also remark that we
consider a particular method of influencing the population that works by tweaking the transition
probabilities of the underlying Markov chain. Another possible way to influence such a system is to
add a certain number of bots or stubborn individuals to the system. Further, while modeling evolution
of binary opinion for a growing population is an important direction of extension of the existing body
of work, the same methods could be employed to study a similar multi-opinion model. One of the
important future directions to explore would be to study the transitions in scaling of fluctuations
around the limit as well as the transitions in optimality of the influencing strategies of such growing
population models on a fixed or random graphs with nearest-neighbour interaction. It would also be
interesting to study the same model without the restrictions of Assumption 1. It is clear from Eq (2.3),
that this leads to a non-linear structure in the expression for E[Xt+1|Ft], thereby making the problem
more challenging. Finally, we remark that similar phase transition for asymptotic behaviour has been
observed in reinforced random walks with non-trivial memory effects (for instance, see [13, 22]). This
would be a very interesting aspect to incorporate in this opinion dynamics model as dropping the
Markovian update and introducing some memory would bring these models closer to reality.
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